First Calibration and Application of Leaf Wax n-Alkane Biomarkers in Loess-Paleosol Sequences and Modern Plants and Soils in Armenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Settings and Sampling
2.2. Stratigraphic Patterns of the Loess-Paleosol Sequences
2.3. Leaf Wax Analyses and Calculation of n-Alkane Indices
3. Results and Discussion
3.1. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns of Modern Plants
3.2. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns of Litter and Topsoil Samples
3.3. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns in Armenian Loess-Paleosol Sequences
3.4. Paleoenvironmental Reconstruction
3.4.1. “Vegetation Source” versus Environmental Control of Detected n-Alkane Signals
3.4.2. Deciduous Trees Refugia during Glacial Periods
3.4.3. Grasses and Herbs as Indicators of Humid Conditions Rather Than of Drier Ones
4. Conclusions
- (1)
- In the same line with recent observations, stressful environments could globally control the production of n-alkane patterns and alter the plant’s chemotaxonomic character. On the one hand, pronounced irradiation or very dry warm summers might boost the production of the n-alkanes chain length nC31 and nC33, even by deciduous trees during interglacial periods. On the other hand, a shortening of the n-alkane chains produced by grasses and herbs might occur due to the enhanced aridity and temperature decrease during glacial/stadial periods.
- (2)
- The study area may have been an important glacial refuge for deciduous trees leading to tree survival even during glacial periods thanks to higher ecologically effective moisture (i.e., including effects of reduced evapotranspiration). However, recent pollen analysis from a wider Caucasian region together with certain soil and sediment features in Armenian LPS challenge such an interpretation.
- (3)
- A transition took place from humid-steppe biome or forest-steppe vegetation that was dominant during periods of soil formation (interglacial/interstadial) towards aridity-adapted semi-desert shrub species during glacial periods. In that case, n-alkane-derived grass signals would not be an indication of dry environmental conditions as widely supposed, but rather of a more humid situation.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasoyan, A.; Harytyunyan, D. Politics of Climate Change in Armenia: Commitments and the International Climate Negotiations; Heinrich Böll Stiftung: TBLISI South Caucasus region, Georgia; Yerevan, Armenia, 2015. [Google Scholar]
- Vardevanyan, A.; Baloyan, S.; Darbinyan, N. National Action Program on Struggle Against Desertification in Armenia; Ministry of Nature Protection: Yerevan, Armenia, 2002; p. 193. ISBN 99930-935-6-4. (In Russian)
- Sayadian, J.V.; Aleshinskaja, Z.V.; Pirumova, L.G.; Rybakova, N.O. On the Age, Interrelations and Conditions of the Formation of Pliocene continental deposits of the Syunik plateau. Probl. Geol. Quat. Period Armen. 1983, 45–59. (In Russian) [Google Scholar]
- Bruch, A.; Gabrielyan, I.G. Quantitative data of the Neogene climatic development in Armenia and Nakhichevan. Acta Univ. Carol. Geol. 2002, 46, 41–48. [Google Scholar]
- Joanin, S.; Cornee, J.; Münch, P.; Fornari, M.; Vasiliev, I.; Krijgsman, W.; Nahapetyan, S.; Gabrielyan, I.; Ollivier, V.; Roiron, P.; et al. Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy and 40Ar/39Ar dating. Earth Planet Sci. Lett. 2010, 291, 149–158. [Google Scholar] [CrossRef]
- Leroyer, C.; Joannin, S.; Aoustin, D.; Ali, A.A.; Peyron, O.; Ollivier, V.; Tozalakyan, A.; Karakhanyan, A.; Jude, F. Mid Holocene vegetation from Vanevan peat (south-eastern shore of Lake Sevan, Armenia). Quat. Int. 2016, 395, 5–18. [Google Scholar] [CrossRef]
- Wolf, D.; Baumgart, P.; Meszner, S.; Fülling, A.; Haubold, F.; Sahakyan, L.; Meliksetian, K.; Faust, D. Loess in Armenia stratigraphic findings and paleoenvironmental indications. Proc. Geol. Assoc. 2016, 127, 29–39. [Google Scholar] [CrossRef]
- Buggle, B.; Wiesenberg, G.L.; Glaser, B. Is there a possibility to correct fossil n-alkane data for post-sedimentary alteration effects? Appl. Geochem. 2010, 25, 947–957. [Google Scholar] [CrossRef]
- Frechen, M. Loess in Eurasia (special issue). Quat. Int. 2011, 234, 1–202. [Google Scholar] [CrossRef]
- Frechen, M. Loess in Europe (special issue). EGQSJ 2011, 60, 3–5. [Google Scholar]
- Markovic, S.B.; Hambach, U.; Stevens, T.; Kulka, G.; Heller, F.; McCoy, W.D.; Oches, E.A.; Buggle, B.; Zöller, L. The last million years recorded at the Stari Slankamen (Northern Serbia) loess-paleosol sequence: Revised chronostratigraphy and long-term environmental trends. Quat. Sci. Rev. 2011, 30, 9–10. [Google Scholar] [CrossRef]
- Zech, R.; Zech, M.; Markovic, S.; Hambach, U.; Huang, Y. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate-based on multiproxy analyses of the loess-paleosol sequence Cervenka, Northern Serbia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 387, 165–175. [Google Scholar] [CrossRef]
- Faust, D.; Yanes, Y.; Willkommen, T.; Roettig, C.; Richter, D.; Richter, D.; Suchodoletz, H.V.; Zöller, L. A contribution to the understanding of late Pleistocene Dune sand-Paleosol-Sequences in Fuerteventura (Canary Islands). Geomorphology 2015, 246, 290–304. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, M.; Eglinton, G.; Lu, H.; Huang, C.Y. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quat. Sci. Rev. 2006, 25, 575–594. [Google Scholar] [CrossRef]
- Bai, Y.; Fang, X.; Nie, J.; Wang, Y.; Wu, F. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 161–169. [Google Scholar] [CrossRef]
- Zech, M.; Buggle, B.; Leiber, K.; Markovic, S.; Glaser, B.; Hambach, U.; Huwe, B.; Stevens, T.; Sümegi, P.; Wiesenberg, G.; et al. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations. Quat. Sci. J. 2009, 2, 150–157. [Google Scholar]
- Zech, M.; Pedentchouk, N.; Buggle, B.; Leiber, K.; Kalbitz, K.; Markovic, S.B.; Glaser, B. Effects of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochim. Cosmochim. Acta 2011, 75, 4917–4928. [Google Scholar] [CrossRef]
- Riederer, M.; Schreiber, L. Protecting against water loss analysis of the barrier properties of plant cuticles. J. Exp. Bot. 2001, 52, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Post-Beittenmiller, D. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Biol. 1996, 47, 405–430. [Google Scholar] [CrossRef]
- Jetter, R.; Kunst, L.; Samuels, A.L. The composition of plant cuticular waxes. In Annual Plant Reviews, Biology of the Plant Cuticle; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bargel, H.; Koch, K.; German, Z.; Neinhuis, C. Structure-function relationships of the plant cuticle and cuticular waxes–a smart material. Funct. Plant Biol. 2006, 33, 893–910. [Google Scholar] [CrossRef]
- Eglinton, G.; Hamilton, R.J. Leaf Epicuticular Waxes. Science 1967, 156, 1322–1335. [Google Scholar] [CrossRef]
- Eglinton, T.I.; Eglinton, G. Molecular proxies for paleoclimatology. EPSL 2008, 275, 1–16. [Google Scholar] [CrossRef]
- Cranwell, P.A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol. 1973, 3, 259–265. [Google Scholar] [CrossRef]
- Schwark, L.; Zink, K.; Lechterbeck, J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 2002, 30, 463–466. [Google Scholar] [CrossRef]
- Zech, M. Evidence for Late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 242, 303–312. [Google Scholar] [CrossRef]
- Schäfer, I.K.; Lanny, V.; Franke, J.; Eglinton, T.I.; Zech, M.; Vysloužilová, B.; Zech, R. Leaf waxes in litter and topsoils along a European transect. SOIL 2016, 2, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Bush, R.T.; Mc Inerney, F.A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 2013, 117, 161–179. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Available online: https://www.britannica.com/place/Armenia (accessed on 23 April 2019).
- Chorbajian, S.A. Deforestration in the Republic of Armenia: A Human and Environmental Crisis; Bard College: New York, NY, USA, 2006. [Google Scholar]
- Hergnyan, Y.; Hovhannisyan, S.; Grigaryan, S.; Sayadyan, H. The Economics of Armenia Forest Industry; Economy and values research center: Yerevan, Armenia, 2007. [Google Scholar]
- Ziroyan, R. Conversation and sustainable use of forest in Armenia. In Proceedings of the XII Word Forestry Congress, Quebec City, QC, Canada, 21–28 September 2003. [Google Scholar]
- Bohn, U.; Zazanashvili, N.; Nakhutsrishvili, G. The Map of the Natural Vegetation of Europe and its application in the Caucasus Ecoregion. Bull. Georgian Natl. Acad. Sci. 2007, 175, 112–121. [Google Scholar]
- Diefendorf, A.F.; Freeman, K.H.; Wing, S.L.; Graham, H.V. Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim. Cosmochim. Acta 2011, 75, 7472–7485. [Google Scholar] [CrossRef]
- Zech, R.; Gao, L.; Tarozo, R.; Huang, Y. Branched glycerol dialkyl glycerol tetraethers in Pleistocene loess-paleosol sequences: Three case studies. Org. Geochem. 2012, 53, 38–44. [Google Scholar] [CrossRef]
- Hoefs, M.J.; Rijpstra, W.C.; Sinninghe Damsté, J.S. The influence of degradation on the sedimentary biomarker record: Evidence from Madeira Abyssal Plain turbidites. Geochim. Cosmochim. Acta 2002, 66, 2719–2735. [Google Scholar] [CrossRef]
- Poynter, J.G.; Farrimond, P.; Robinson, N.; Eglinton, G. Aeolian Derived Higher Plant Lipids in the Marine Sedimentary Record: Links with Palaeoclimate. In Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport; Leinen, M., Sarnthein, M., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 435–462. [Google Scholar]
- Bush, R.T.; McInerney, F.A. Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org. Geochem. 2015, 79, 65–73. [Google Scholar] [CrossRef]
- Feakins, S.J.; Peters, T.; Wu, M.S.; Shenkin, A.; Salinas, N.; Girardin, C.A.; Bentley, L.P.; Blonder, B.; Enquist, B.J.; Martin, R.E.; et al. Production of leaf wax n-alkanes across a tropical forest elevation transect. Org. Geochem. 2016, 100, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.; Wu, Y.; Zhu, Z.; Jia, G.; Henderson, A. Is the maximum carbon number of long-chain n-alkanes an indicator of grassland or forest? Evidence from surface soils and modern plants. Chin. Sci. Bull. 2011, 56, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lockheart, M.J.; Collister, J.W.; Eglinton, G. Molecular and isotopic biogeochemistry of the Miocene Clarkia formation: Hydrocarbons and alcohols. Org. Geochem. 1995, 23, 785–801. [Google Scholar] [CrossRef]
- Tipple, B.J.; Pagani, M. Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochim. Cosmochim. Acta 2013, 111, 64–77. [Google Scholar] [CrossRef]
- Vogts, A.; Schefuß, E.; Badewein, T.; Rullkötter, J. N-Alkane parameters from a deep-sea sediment transect off southwest Africa reflect continental vegetation and climate conditions. Org. Geochem. 2012, 47, 109–119. [Google Scholar] [CrossRef]
- Wang, N.; Zong, Y.; Brodie, C.; Zheng, Z. An examination of the fidelity of n-alkanes as a palaeoclimate proxy from sediments of Palaeolake Tianyang, South China. Quat. Int. 2014, 333, 100–109. [Google Scholar] [CrossRef]
- Kirkels, F.; Jansen, B.; Kalbitz, K. Consistency of plant-specific n-alkane patterns in plaggen ecosystems. Holocene 2013, 23, 1355–1368. [Google Scholar] [CrossRef]
- Janson, B.; Nierop, K.G.J.; Hageman, J.A.; Cleef, A.M.; Verstraten, J.M. The straight lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Org. Geochem. 2006, 37, 1514–1536. [Google Scholar] [CrossRef]
- Naafs, D.F.; Van Bergen, P.F.; Boogert, S.J.; De Leeuw, J.W. Solvent extractable lipids in an acid andic forest soil; variation with depth and season. Soil Biol. Biochem. 2004, 36, 297–308. [Google Scholar] [CrossRef]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Bliedtner, M.; Schäfer, I.; Zech, R.; Von Suchodoletz, H. Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) implications for reconstructing regional paleo-vegetation. Biogeosciences 2017, 15, 3927–3936. [Google Scholar] [CrossRef]
- Dodd, R.S.; Poveda, M.M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem. Syst. Ecol. 2003, 31, 1257–1270. [Google Scholar] [CrossRef]
- Vogts, A.; Moossen, H.; Rommerskirchen, F.; Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkaloids from plant waxes of the African rain forest and savanna C3 species. Org. Geochem. 2009, 40, 1037–1054. [Google Scholar] [CrossRef]
- Shepherd, T.; Wynne Griffiths, D. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef] [PubMed]
- Gülz, P.G. Epicuticular leaf waxes in the evolution of the plant. Kingdom. Plant Physiol. 1994, 143, 453–464. [Google Scholar] [CrossRef]
- Lockheart, M.J.; Van Bergen, P.F.; Everhard, R.P. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: Implications for the study of higher land-plant derived sedimentary organic matter. Org. Geochem. 1997, 26, 137–153. [Google Scholar] [CrossRef]
- Tu, T.T.N.; Egasse, C.; Zeller, B.; Bardoux, G.; Biron, P.; Ponge, J.F.; David, B.; Derenne, S. Early degradation of plant alkanes in soils: A little bag experience using 13C-labelled leaves. Soil Biol. Biochem. 2011, 43, 2222–2228. [Google Scholar]
- Sachse, D.; Radke, J.; Gleixner, G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient. Implications for the sedimentary biomarker record. Org. Geochem. 2006, 37, 469–483. [Google Scholar] [CrossRef]
- Guo, N.; Gao, J.; He, Y.; Zhang, Z.; Guo, Y. Variations in leaf epicuticular n-alkanes in some Broussonetia, Ficus and Humulus species. Biochem. Syst. Ecol. 2014, 54, 150–156. [Google Scholar] [CrossRef]
- Schulz, S.; Giebler, J.; Chatzinotas, A.; Wick, L.Y.; Fetzer, I.; Welzl, G.; Harms, H.; Schloter, M. Plant litter and soil type drive abundance, activity and community structure of alkB harbouring microbes in different soil compartments. ISME J. 2012, 6, 1763–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zech, M.; Krause, T.; Meszner, S.; Faust, D. Incorrect when incorrect: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences- A case study from the Saxonian loess region, German. Quat. Int. 2013, 296, 108–116. [Google Scholar] [CrossRef]
- Schatz, A.K.; Zech, M.; Buggle, B.; Gulyás, S.; Hambach, U.; Markovic, S.B.; Sümegi, P.; Scholten, T. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quat. Int. 2011, 240, 52–61. [Google Scholar] [CrossRef]
- Rinna, J.; Gunter, U.; Hinrichs, K.U.; Mangelsdorf, K.; Van der Smissen, J.H.; Rullkotter, J. Temperature related molecular proxies: Degree of alkenone unsaturation and average chain length of n-alkanes. In Proceedings of the Sixteenth Annual Pacific Climate Workshop; The Wrigley Institute for Environmental Studies: Two Harbors, Santa Catalina Island, CA, USA, 1999. [Google Scholar]
- Obreht, I.; Zeeden, C.; Hambach, U.F.; Markovic, S. A critical reevaluation of Paleoclimate proxy records from Loess in the Carpathian basin. Earth Sci. Rev. 2019, 190, 498–520. [Google Scholar] [CrossRef]
- Panagiotopoulos, K.; Aufgebauer, A.; Schäbitz, F.; Wagner, B. Vegetation and climate history of the Lake Prespa region since the Late glacial. Quat. Int. 2013, 293, 157–169. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; Hooghiemstra, H.; Pälike, H. The last 1.35 million years at Tenaghi Philippon: Revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 2006, 25, 3416–3430. [Google Scholar] [CrossRef]
- Pakhomov, M.M. Glacial-Interglacial cycles in arid regions of northern Eurasia. Quat. Int. 2006, 152, 70–77. [Google Scholar] [CrossRef]
- Messager, E.; Lordkipanidze, D.; Ferring, C.R.; Deniaux, B. Fossil fruit identification by SEM investigations, a tool for palaeoenvironmental reconstruction of Dmanisi site, Georgia. J. Archaeol. Sci. 2008, 35, 2715–2725. [Google Scholar] [CrossRef]
- Djamali, M.; De Beaulieu, J.-L.; Shah-hosseini, M.; Andrieu-Ponel, V.; Ponel, P.; Amini, A.; Akhani, H.; Leroy, S.A.G.; Stevens, L.; Lahijani, H.; et al. A Late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat. Res. 2008, 69, 413–420. [Google Scholar] [CrossRef]
- Pickarski, N.; Kwiecien, O.; Djamali, M.; Litt, T. Vegetation and environmental changes during the last interglacial in eastern Anatolia (Turkey): A new high-resolution pollen record from Lake Van. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 145–158. [Google Scholar] [CrossRef]
- Pickarski, N.; Litt, T. A new high resolution pollen sequence at Lake Van, Turkey: Insight into penultimate interglacial- glacial climate change on vegetation history. Clim. Past 2017, 13, 689–710. [Google Scholar] [CrossRef]
- Archer, S.; Schimel, D.S.; Holland, E.A. Mechanisms of shrubland expansion: Land use, climate or CO2. Clim. Chang. 1995, 29, 91–99. [Google Scholar] [CrossRef]
- Van Auken, O.W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 197–215. [Google Scholar] [CrossRef]
- Ravi, S.; D’Odorico, P.; Collins, S.L.; Huxman, T.E. Can biological invasions induce desertification? New Phytol. 2009, 181, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Gile, L.H.; Gibbens, R.P.; Lenz, J.M. The near-ubiquitous pedogenic world of mesquite roots in an arid basin floor. J. Arid Environ. 1997, 35, 39–58. [Google Scholar] [CrossRef]
- He, Y.F.; D’Odorico, P.; De Wekker, S.F.J.; Fuentes, J.D.; Litvak, M. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J. Geophys. Res. Atmos. 2010, 115, D21120. [Google Scholar] [CrossRef]
- Huenneke, L.F.; Anderson, J.P.; Remmenga, M.; Schlesinger, W.H. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Chang. Biol. 2002, 8, 247–264. [Google Scholar] [CrossRef]
- D’odorico, P.; Okin, G.S.; Bestelmeyer, B.T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grassland. Ecohydrology 2012, 5, 520–530. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigui, Y.; Wolf, D.; Sahakyan, L.; Hovakimyan, H.; Sahakyan, K.; Zech, R.; Fuchs, M.; Wolpert, T.; Zech, M.; Faust, D. First Calibration and Application of Leaf Wax n-Alkane Biomarkers in Loess-Paleosol Sequences and Modern Plants and Soils in Armenia. Geosciences 2019, 9, 263. https://doi.org/10.3390/geosciences9060263
Trigui Y, Wolf D, Sahakyan L, Hovakimyan H, Sahakyan K, Zech R, Fuchs M, Wolpert T, Zech M, Faust D. First Calibration and Application of Leaf Wax n-Alkane Biomarkers in Loess-Paleosol Sequences and Modern Plants and Soils in Armenia. Geosciences. 2019; 9(6):263. https://doi.org/10.3390/geosciences9060263
Chicago/Turabian StyleTrigui, Yesmine, Daniel Wolf, Lilit Sahakyan, Hayk Hovakimyan, Kristina Sahakyan, Roland Zech, Markus Fuchs, Tilmann Wolpert, Michael Zech, and Dominik Faust. 2019. "First Calibration and Application of Leaf Wax n-Alkane Biomarkers in Loess-Paleosol Sequences and Modern Plants and Soils in Armenia" Geosciences 9, no. 6: 263. https://doi.org/10.3390/geosciences9060263
APA StyleTrigui, Y., Wolf, D., Sahakyan, L., Hovakimyan, H., Sahakyan, K., Zech, R., Fuchs, M., Wolpert, T., Zech, M., & Faust, D. (2019). First Calibration and Application of Leaf Wax n-Alkane Biomarkers in Loess-Paleosol Sequences and Modern Plants and Soils in Armenia. Geosciences, 9(6), 263. https://doi.org/10.3390/geosciences9060263