Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy)
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Geomorphological Setting
2.2. Montagna del Morrone Fire—August 2017
2.3. Vegetation Cover
- Meadows, widespread near the crest line between 1700–2000 m a.s.l.;
- Beeches, located next to C.le Affogato and Mt. Mileto (above 1800 m a.s.l.);
- Conifers, along the slope from Roccacasale to Marane village, at altitudes between 500 and 1700 m a.s.l.;
- Shrublands, downstream of Mt. Cimerone at an altitude between 500 and 700 m a.s.l.;
- Absent, in the urban area at the basal-slope and in correspondence of rock outcrops.
3. Methods
4. Results
4.1. Orography and Hydrography
4.2. Rainfall Event
Heavy Rainfall Event of August 2018
4.3. Lithological Data
- Pre-orogenic calcareous bedrock;
- Post-orogenic cemented deposits;
- Post-orogenic uncemented deposits.
4.3.1. Pre-Orogenic Calcareous Bedrock
4.3.2. Post-Orogenic Cemented Deposits
4.3.3. Post-Orogenic Uncemented Deposits
4.4. Tectonic Features
4.5. Geomechanical Investigations
4.6. Geomorphological Data
4.6.1. Structural Landforms
4.6.2. Slope Gravity Landforms
4.6.3. Landforms Due to The Running Waters
4.6.4. Debris Flow Event
5. Discussion
5.1. Post-Wildfire Landslide Hazard Mapping
5.2. Post-Wildfire Debris Flow Hazard Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000. [Google Scholar] [CrossRef]
- Jackson, M.; Roering, J.J. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA. Quat. Sci. Rev. 2009. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 2006. [Google Scholar] [CrossRef]
- Tillery, A.; Darr, M.; Cannon, S.; Michael, J. Postwildfire Preliminary Debris Flow Hazard Assessment for the Area Burned by the 2011 Las Conchas Fire in North-Central New Mexico; U.S. Geological Survey Open-File Report 2011-1308; U.S. Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Crosta, G.B.; Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 2008, 96, 250–269. [Google Scholar] [CrossRef]
- Von Ruette, J.; Lehmann, P.; Or, D. Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization. Water Resour. Res. 2013, 49, 6266–6285. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Sciarra, N.; Di Michele, R. Seismically induced landslides in Abruzzo (Central Italy): Morphostructural control. Landslide Sci. Pract. Complex Environ. 2013, 5. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Torgoev, A.; Braun, A.; Schlögel, R.; Micu, M. A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenviron. Disasters 2016, 3, 6. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E.; Di Michele, R.; Sciarra, N.; Mataloni, G. Geomorphological analysis applied to rock falls in Italy: The case of the San Venanzio gorges (Aterno river, Abruzzo, Italy). Ital. J. Eng. Geol. Environ. 2013. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef]
- Cannon, S.H.; Michael, J.A. Emergency assessment of postwildfire debris-flow hazards for the 2011 Motor Fire, Sierra and Stanislaus National Forests, California. Bull. Geol. Soc. Am. 2011. [Google Scholar] [CrossRef]
- Parise, M.; Cannon, S.H. Wildfire impacts on the processes that generate debris flows in burned watersheds. Nat. Hazards 2012. [Google Scholar] [CrossRef]
- Canuti, P.; Casagni, N. Considerazioni sulla valutazione del rischio di frana. In Proceedings of the Fenomeni Franosi e Centri Abitati, Bologna, Italiy, 27 May 1994. [Google Scholar]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Fell, R.; Whitt, G.; Miner, T.; Flentje, P. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008. [Google Scholar] [CrossRef]
- Melelli, L.; Taramelli, A.; Nucci, G. L’analisi statistica bivariata in ambiente GIS: Un esempio applicato alla valutazione della suscettibilità da frana. Mem. Descr. della Cart. Geol. d’Italia 2008, 78, 169–182. [Google Scholar]
- Rahman, M.S.; Ahmed, B.; Di, L. Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: A combined approach of weights of evidence and spatial multi-criteria. J. Mt. Sci. 2017. [Google Scholar] [CrossRef]
- Lo, C.M.; Feng, Z.Y.; Chang, K.T. Landslide hazard zoning based on numerical simulation and hazard assessment. Geomat. Nat. Hazards Risk 2018, 9, 368–388. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Jaiswal, P.; Ghosh, S.; Martha, T.R.; Kuriakose, S.L. Landslide inventory, hazard and risk assessment in India. In Terrigenous Mass Movements; Pradhan, B., Buchroithner, M., Eds.; Springer: Berlin, Germany, 2012; pp. 239–282. [Google Scholar] [CrossRef]
- Barredo, J.; Benavides, A.; Hervás, J.; van Westen, C.J. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf. 2002. [Google Scholar] [CrossRef]
- Hope, G.; Jordan, P.; Winkler, R.; Giles, T.; Curran, M.; Soneff, K.; Chapman, B.; Welch, K.; Toronto Real Estate Board; Gascoigne, T.; et al. Post-Wildfire Natural Hazards Risk Analysis in British Columbia; Land Management Handbook; Crown Publication: Victoria, BC, Canada, 2015. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Parotto, M.; Cavinato, G.P.; Miccadei, E.; Tozzi, M. Line CROP 11: Central Apennines. In CROP Atlas: Seismic Reflection Profiles of the Italian Crust; Scrocca, D., Doglioni, C., Innocenti, F., Manetti, P., Mazzotti, A., Bertelli, L., Burbi, L., D’Offizi, S., Eds.; Memorie Descrittive della Carta Geologica d’Italia: Rome, Italy, 2004; Volume 6, pp. 145–153. [Google Scholar]
- Patacca, E.; Scandone, P.; Di Luzio, E.; Cavinato, G.P.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphostructural elements of central-eastern Abruzzi: Contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quat. Int. 2003. [Google Scholar] [CrossRef]
- Ascione, A.; Cinque, A.; Miccadei, E.; Villani, F.; Berti, C. The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology 2008. [Google Scholar] [CrossRef]
- Ascione, A.; Miccadei, E.; Villani, F.; Berti, C. Morphostructural setting of the Sangro and Volturno rivers divide area (central-southern Apennines, Italy). Geografia Fisica e Dinamica Quaternaria 2007, 30, 13–29. [Google Scholar]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rendiconti Lincei 2014, 25. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology 2008. [Google Scholar] [CrossRef]
- Gruppo di Lavoro. Gruppo di Lavoro CPTI Catalogo Parametrico dei Terremoti Italiani, 2004 (CPTI04); INGV: Bologna, Italy, 2004. [Google Scholar]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. CPTI15—2015 Version of the Parametric Catalogue of Italian Earthquakes; INGV: Rome, Italy, 2016. [Google Scholar]
- Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.H.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. DBMI15, The 2015 Version of the ItalianMacroseismic Database; INGV: Rome, Italy, 2016. [Google Scholar]
- Gori, S.; Falcucci, E.; Dramis, F.; Galadini, F.; Galli, P.; Giaccio, B.; Messina, P.; Pizzi, A.; Sposato, A.; Cosentino, D. Deep-seated gravitational slope deformation, large-scale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy): Geomorphological and paleoseismological analyses. Geomorphology 2014. [Google Scholar] [CrossRef]
- Pizzi, A.; Di Domenica, A.; Di Federico, P.; Faure Walker, J.P.; Roberts, G. Geological investigation along the Sulmona active normal fault (central Italy) and its effects on the seismic microzoning of the area. In Proceedings of the 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, Pescina, Italy, 19–24 April 2015. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Barberi, R. Uplift and local tectonic subsidence in the evolution of intramontane basin: The example of the Sulmona basin (Central Apennines, Italy). In Proceedings of the International Workshop-Large-Scale Vertical Movements and Related Gravitational Processes, Roma, Italy, 21–26 June 1999; Dramis, F., Farabollini, P., Molin, P., Eds.; pp. 119–134. [Google Scholar]
- Miccadei, E.; Paron, P.; Piacentini, T. The SW escarpment of Montagna del Morrone (Abruzzi, Central Italy): Geomorphology of a fault-generated mountain front. Geografia Fisica e Dinamica Quaternaria 2004, 27, 55–87. [Google Scholar]
- APAT. Geological Map of Italy, Scale 1:50,000, Sheet 369 “Sulmona”; Servizio Geologico d’Italia: Rome, Italy, 2006. [Google Scholar]
- SGI. Geological Map of Italy, Scale 1:100,000, Sheet 146 “Sulmona”; ISPRA: Rome, Italy, 1942. [Google Scholar]
- Sylos Labini, S.; Bagnaia, R.; D’Epifanio, A. Il Quaternario del Bacino di Sulmona (Italia Centrale). Quat. Nov. 1993, 3, 343–360. [Google Scholar]
- Ciccacci, S.; D’Alessandro, L.; Dramis, F.; Miccadei, E. Geomorphologic evolution and neotectonics of the Sulmona intramontane basin (Abruzzi Apennine, Central Italy). Zeitschrift fur Geomorphol. Suppl. 1999, 118, 27–40. [Google Scholar]
- Miccadei, E.; Barberi, R.; Cavinato, G.P. La geologia quaternaria della conca di Sulmona (Abruzzo, Italia Centrale). Geol. Romana 1998, 34, 59–86. [Google Scholar]
- Vittori, E.; Cavinato, G.P.; Miccadei, E. Active faulting along the Northeastern edge of the Sulmona basin (Central Apennines). Spec. Issue Bull. Am. Ass. Eng. Geol. 1995, 6, 115–126. [Google Scholar]
- Doglioni, C.; D’Agostino, N.; Mariotti, G. Normal faulting vs. regional subsidence and sedimentation rate. Mar. Pet. Geol. 1998, 15, 737–750. [Google Scholar] [CrossRef]
- Majella National Park. Piano di Previsione, Prevenzione e Lotta Agli Incendi nel Parco Nazionale della Majella; Parco Nazionale della Majella: Sulmona, Italy, 2018. [Google Scholar]
- Frate, L.; Fabrizio, M.; Ciaschetti, G.; Spera, M. Analisi spaziale dell’incendio del Morrone nel Parco Nazionale della Majella mediante l’utilizzo di immagini satellitari. Riv. Selvic. Ed. Ecol. For. 2018, 15, 59–64. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. [Google Scholar]
- Abruzzo Region. Carta Tipologico-Forestale, Scale 1:25.000, Sheets “369-E” and “370-W; Regione Abruzzo: L’Aquila, Italy, 2009; Available online: http://opendata.regione.abruzzo.it/content/categorie-e-tipologie-forestali (accessed on 25 November 2018).
- Melton, M.A. An Analysis of the Ralations among Elements of Climate, Surface Properties, and Geomorphology; Office Naval Research Technical Report; Department Geology Columbia University: New York, NY, USA, 1957. [Google Scholar]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004. [Google Scholar] [CrossRef]
- Millard, T.H.; Wilford, D.J.; Oden, M.E. Coastal fan Destabilization and Forest Management; Forest Research Technical Report; British Columbia Ministry of Forests: Nanaimo, BC, USA, 2006. [Google Scholar]
- Welsh, A.; Davies, T. Identification of alluvial fans susceptible to debris-flow hazards. Landslides 2011. [Google Scholar] [CrossRef]
- Strahler, A.N. Dynamic basis of geomorphology. Bull. Geol. Soc. Am. 1952, 63, 923–938. [Google Scholar] [CrossRef]
- Ahnert, F. Local relief and height limits of mountain ranges. Am. J. Sci. 1984, 284, 1035–1055. [Google Scholar] [CrossRef]
- GNGFG. Proposta di legenda geomorfologica ad indirizzo applicativo. Geogr. Fis. Din. Quat. 1993; 16, 129–152. [Google Scholar]
- SGN. Guida al Rilevamento della Carta Geomorfologica D’ITALIA, 1:50.000; Quad. Ser. III del Serv. Geol. Naz.; Servizio Geologico d’IItalia: Rome, Italy, 1994. [Google Scholar]
- ISPRA. Guida alla Rappresentazione Cartografica della Carta Geomorfologica D’ITALIA in Scala 1:50.000; Quad. Ser. III del Serv. Geol. Naz.; Servizio Geologico d’Italia: Rome, Italy, 2007. [Google Scholar]
- ISPRA; AIGEO. Aggiornamento ed Integrazione delle Linee Guida della Carta Geomorfologica D’italia in Scala 1:50.000, Quad. Ser. III del Serv. Geol. Naz.; Servizio Geologico d’Italia: Rome, Italy, 2018.
- Santo, A.; Ascione, A.; Di Crescenzo, G.; Miccadei, E.; Piacentini, T.; Valente, E. Tectonic—Geomorphological map of the middle Aterno River valley (Abruzzo, Central Italy). J. Maps 2014. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Piacentini, T. Quaternary geomorphological evolution of the Tremiti Islands (Puglia, Italy). Quat. Int. 2011, 233, 3–15. [Google Scholar] [CrossRef]
- Miccadei, E.; Carabella, C.; Paglia, G.; Piacentini, T. Paleo-drainage network, morphotectonics, and fluvial terraces: Clues from the Verde Stream in the middle Sangro river (Central Italy). Geoscience 2018, 8. [Google Scholar] [CrossRef]
- Calista, M.; Miccadei, E.; Pasculli, A.; Piacentini, T.; Sciarra, M.; Sciarra, N. Geomorphological features of the Montebello sul Sangro large landslide (Abruzzo, Central Italy). J. Maps 2016, 12, 882–891. [Google Scholar] [CrossRef]
- I.S.R.M. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. 1978, 15, 319–368. [Google Scholar]
- Markland, J.T. A Useful Technique for Estimating the Stability of Rock Slope when the Rigid Wedge Sliding Type of Failure Is Expected; Interdepartmental Rock Mechanics Project; Imperial College of Science and Technology: London, UK, 1972; p. 19. [Google Scholar]
- Hoek, E.; Bray, J. Rock Slope Engineering; The Institution of Mining and Metallurgy: London, UK, 1974; 309p. [Google Scholar]
- Carrara, A.; Guzzetti, F.; Cardinali, M.; Reichenbach, P. Use of GIS technology in the prediction and monitoring of landslide hazard. Nat. Hazards 1999, 20, 117–135. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide hazard assessment and risk evaluation: Limits and prospectives. In Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, 2–4 October 2002. [Google Scholar] [CrossRef]
- Cardinali, M.; Reichenbach, P.; Guzzetti, F.; Ardizzone, F.; Antonini, G.; Galli, M.; Cacciano, M.; Castellani, M.; Salvati, P. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2002, 2, 57–72. [Google Scholar] [CrossRef]
- Micu, M.; Bălteanu, D. Landslide hazard assessment in the Curvature Carpathians and Subcarpathians, Romania. Z. Geomorphol. Suppl. Issues 2009, 53, 31–47. [Google Scholar] [CrossRef]
- Abruzzo–Sangro Basin Authority. Landslide Susceptibility Map; Autorità dei Bacini di rilievo regionale dell’Abruzzo e del Bacino Interregionale del fiume Sangro: L’Aquila, Italy, 2012. [Google Scholar]
- Roslee, R.; Mickey, A.C.; Simon, N.; Norhisham, M.N. Landslide susceptibility analysis (LSA) using weighted overlay method (WOM) along the Genting Sempah to Bentong highway, Pahang. Malays. J. Geosci. 2018. [Google Scholar] [CrossRef]
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan. Arab. J. Geosci. 2016. [Google Scholar] [CrossRef]
- Gurugnanam, B.; Bagyaraj, M.; Kumaravel, S.; Vinoth, S.; Vasudevan, S. GIS based weighted overlay analysis in landslide hazard zonation for decision makers using spatial query builder in parts of Kodaikanal taluk, South India. J. Geomat. 2012, 6, 49–54. [Google Scholar]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS supported landslide susceptibility modeling at regional scale: An Expert-based fuzzy weighting method. ISPRS Int. J. Geo Inf. 2014. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Fantappié, M.; L’Abate, G. Climate and pedoclimate of Italy. In The Soils of Italy. World Soils Book Series; Costantini, E., Dazzi, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-5642-7. [Google Scholar]
- Di Lena, B.; Antenucci, F.; Mariani, L. Space and time evolution of the Abruzzo precipitation. Ital. J. Agrometeorol. 2012, 1, 5–20. [Google Scholar]
- Cannon, S.H.; Gartner, J.E. Wildfire-related debris flow from a hazards perspective. In Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-20726-0. [Google Scholar]
- Wondzell, S.M.; King, J.G. Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. For. Ecol. Manage. 2003. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Bull. Geol. Soc. Am. 2010. [Google Scholar] [CrossRef]
- Cannon, S.H. Debris-flow generation from recently burned watersheds. Environ. Eng. Geosci. 2001. [Google Scholar] [CrossRef]
- Hyde, K.D.; Riley, K.; Stoof, C. Uncertainties in predicting debris flow hazards following wildfire. In Natural Hazard Uncertainty Assessment: Modeling and Decision Support; Riley, K., Webley, P., Thompson, M., Eds.; American Geophysical Union: Washington, DC, USA, 2016; ISBN 9781119028116. [Google Scholar]
Basin | Area (km2) | Perimeter (km) | Max. Relief (m a.s.l.) | Min. Relief (m a.s.l.) | Relief (m) | Melton Ratio | Length (km) |
---|---|---|---|---|---|---|---|
1 | 3.900 | 11.541 | 1886 | 374 | 1511 | 0.766 | 4.458 |
2 | 3.164 | 8.101 | 1060 | 307 | 753 | 0.423 | 1.735 |
3 | 0.377 | 3.793 | 1860 | 1053 | 806 | 1.314 | 2.803 |
4 | 7.277 | 14.196 | 2059 | 323 | 1736 | 0.644 | 5.581 |
5 | 4.651 | 13.600 | 1995 | 356 | 1639 | 0.760 | 5.028 |
6 | 0.634 | 4.758 | 1376 | 365 | 1010 | 1.270 | 2.210 |
7 | 2.003 | 6.887 | 1431 | 351 | 1080 | 0.763 | 2.655 |
8 | 0.311 | 2.415 | 2000 | 1825 | 174 | 0.314 | 0.529 |
9 | 2.465 | 10.166 | 1998 | 431 | 1567 | 0.998 | 4.155 |
10 | 0.533 | 4.369 | 1225 | 373 | 851 | 1.167 | 1.986 |
11 | 0.947 | 5.818 | 1578 | 385 | 1192 | 1.226 | 2.538 |
12 | 2.644 | 8.733 | 1846 | 424 | 1422 | 0.875 | 3.613 |
13 | 0.369 | 2.943 | 1885 | 1720 | 165 | 0.272 | 0.522 |
14 | 4.253 | 10.770 | 1884 | 563 | 1321 | 0.641 | 3.794 |
15 | 0.912 | 5.840 | 1799 | 512 | 1286 | 1.348 | 2.623 |
16 | 0.785 | 4.803 | 1755 | 446 | 1309 | 1.477 | 2.181 |
17 | 0.211 | 2.338 | 1207 | 526 | 680 | 1.483 | 1.058 |
18 | 0.578 | 4.476 | 1799 | 532 | 1266 | 1.667 | 1.854 |
19 | 0.952 | 4.575 | 1919 | 1653 | 266 | 0.273 | 1.466 |
20 | 2.294 | 6.223 | 1731 | 524 | 1207 | 0.797 | 2.035 |
21 | 3.787 | 8.520 | 1905 | 654 | 1251 | 0.643 | 2.648 |
Site | Slope | S0 | J1 | J2 | J3 | J4 | Jv | |
---|---|---|---|---|---|---|---|---|
1 | Pacentro | N88E 65SE | N81W 32NE | N08W 59SW | N02W 65E | N24W 59SW | N72E 80SE | 8 |
2 | Marane | N06W 75SW | N60W 21SW | N86E 65SE | N11E 70SE | - | - | 2.5 |
3 | St. Onofrio Hermitage | N80W 80SW | N40W 09SW | N12W 80SW | N33E 81SE | - | - | 9 |
4 | Roccacasale | N57E 77SE | N40W 53NE | N51W 64SW | N08E 63SE | N60E 65NW | N30E 68SE | 5 |
Factors | Attribute | Wt |
Slope(%) | <18 | 1 |
18–45 | 3 | |
45–85 | 6 | |
>85 | 10 | |
Geological features (lithology and fracturing) | Slope deposits | 7 |
Alluvial fan deposits | 6 | |
Paleo-landslide deposits | 2 | |
Cataclastic bedrock | 10 | |
Fractured bedrock | 7 | |
Unfractured bedrock | 1 | |
Geomorphological features (slope gravity landforms and landforms due to running waters) | Active landforms | 9 |
Inactive landforms | 6 | |
Relict landforms | 2 | |
Post-wildfire vegetation cover | Meadow | 5 |
Arboreal | 3 | |
Shrubby or absent | 7 |
Basin Area (km2) | Pre-Wildfire Contributing Area (km2) | Post-Wildfire Contributing Area (km2) | Area Increased (%) |
---|---|---|---|
0.947 | 0.184 | 0.804 | 77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabella, C.; Miccadei, E.; Paglia, G.; Sciarra, N. Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy). Geosciences 2019, 9, 175. https://doi.org/10.3390/geosciences9040175
Carabella C, Miccadei E, Paglia G, Sciarra N. Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy). Geosciences. 2019; 9(4):175. https://doi.org/10.3390/geosciences9040175
Chicago/Turabian StyleCarabella, Cristiano, Enrico Miccadei, Giorgio Paglia, and Nicola Sciarra. 2019. "Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy)" Geosciences 9, no. 4: 175. https://doi.org/10.3390/geosciences9040175
APA StyleCarabella, C., Miccadei, E., Paglia, G., & Sciarra, N. (2019). Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy). Geosciences, 9(4), 175. https://doi.org/10.3390/geosciences9040175