Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Hydrodynamic Model
3.2. Sediment Model
3.3. Bottom Change Model
4. Model Setup
4.1. Initial Condition
4.2. Grid Setup and Input Data
4.3. Observation Points and Cross Section
5. Results and Analysis
5.1. Inundation Map
5.2. Sedimentation and Erosion
5.3. Coastal Profile Changes
5.4. Destroyed Land Barrier
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COMCOT | Cornell Multigrid Coupled Tsunami Model |
EIA | Estimated of Inundation Area |
ETA | Estimated Time of Arrival |
GMT | Generic Mapping Tools |
TDMRC | Tsunami and Disaster Mitigation Research Center |
GEBCO | General Bathymetric Chart of Ocean |
SWE | shallow Water Equations |
RANS | Reynolds-averaged Navier-Stokes |
References
- Sugawara, D.; Goto, K.; Jaffe, B.E. Numerical models of tsunami sediment transport—Current understanding and future directions. Mar. Geol. 2014, 352, 295–320. [Google Scholar] [CrossRef]
- Gusman, A.R.; Goto, T.; Satake, K.; Takahashi, T.; Ishibe, T. Sediment transport modeling of multiple grain sizes for the 2011 Tohoku tsunami on a steep coastal valley of Numanohama, northeast Japan. Mar. Geol. 2018, 405, 77–91. [Google Scholar] [CrossRef]
- Ontowirjo, B.; Paris, R.; Mano, A. Modeling of coastal erosion and sediment deposition during the 2004 Indian Ocean tsunami in Lhok Nga, Sumatra, Indonesia. Nat. Hazards 2013, 65, 1967–1979. [Google Scholar] [CrossRef]
- Richmond, B.; Szczuciński, W.; Chagué-Goff, C.; Goto, K.; Sugawara, D.; Witter, R.; Tappin, D.R.; Jaffe, B.; Fujino, S.; Nishimura, Y.; et al. Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sediment. Geol. 2012, 282, 27–39. [Google Scholar] [CrossRef]
- Tappin, D.R.; Evans, H.M.; Jordan, C.J.; Richmond, B.; Sugawara, D.; Goto, K. Coastal changes in the Sendai area from the impact of the 2011 Tōhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations. Sediment. Geol. 2012, 282, 151–174. [Google Scholar] [CrossRef]
- Tanaka, H.; Tinh, N.X.; Umeda, M.; Hirao, R.; Pradjoko, E.; Mano, A.; Udo, K. Coastal and estuarine morphology changes induced by the 2011 Great East Japan Earthquake Tsunami. Coast. Eng. J. 2012, 54, 1250010. [Google Scholar] [CrossRef]
- Ramalho, I.; Omira, R.; Moussaoui, S.E.; Baptista, M.A.; Zaghloul, M.N. Tsunami-induced morphological change-A model-based impact assessment on the 1755 tsunami in NE Atlantic from the Morocco coast. Geomorphology 2018, 319, 78–91. [Google Scholar] [CrossRef]
- Yamashita, K.; Sugawara, D.; Takahashi, T.; Imamura, F.; Saito, Y.; Imato, Y.; Kai, T.; Uehara, H.; Kato, K.; Saka, R.; et al. Numerical simulations of large-scale sediment transport caused by Tohoku earthquake tsunami in Hirota Bay, Southern Sanriku Coast. Coast. Eng. J. 2016, 58. [Google Scholar] [CrossRef]
- Paris, R.; Wassmer, P.; Sartohadi, J.; Lavigne, F.; Barthomeuf, B.; Desgages, E.; Grancher, D.; Baumert, P.; Vautier, F.; Brunstein, D.; et al. Tsunamis as geomorphic crises: Lessons from the 26 December 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology 2009, 104, 59–72. [Google Scholar] [CrossRef]
- Goto, K.; Takahashi, J.; Oie, T.; Imamura, F. Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology 2011, 127, 107–116. [Google Scholar] [CrossRef]
- Al’ala, M.; Syamsidik; Rasyif, T.M.; Fahmmi, M. Numerical Simulation of Ujong Seudeun Land Separation Caused by the 2004 Indian Ocean Tsunami, Aceh, Indonesia. Sci. Tsunami Hazards 2015, 34, 159–172. [Google Scholar]
- Rasyif, T.M.; Syamsidik; Al’ala, M.; Fahmi, M. Numerical Simulation of the Impacts of Reflected Tsunami Waves on Pulo Raya Island during the 2004 Indian Ocean Tsunami. J. Coast. Conserv. 2016, 20, 489–499. [Google Scholar] [CrossRef]
- Wijettunge, J.J.; Wang, X.; Liu, P.L.F. India Ocean Tsunami on 26 December 2004: Numerical modeling of inundation in three cities on the south coast of Sri Lanka. J. Earthq. Tsunami 2008, 2, 133–155. [Google Scholar] [CrossRef]
- Liu, P.L.F.; Yong-Sik, C.; Briggs, M.J.; Kanoglu, U.; Synolakis, C.E. Runup of solitary waves on a circular island. J. Fluid Mech. 1995, 302, 259–285. [Google Scholar] [CrossRef]
- Wang, X. User Manual for Comcot Version 1.7 (First Draft). 2009. Available online: http://223.4.213.26/archive/tsunami/cornell/comcot_code/comcotv1_7.zip (accessed on 11 November 2018).
- Syamsidik; Rasyif, T.M.; Kato, S. Development of accurate tsunami estimated times of arrival for tsunami-prone cities in Aceh, Indonesia. Int. J. Disaster Risk Reduct. 2015, 14, 403–410. [Google Scholar] [CrossRef]
- Meilianda, E.; Dohmen-Janssen, C.M.; Maathuis, B.H.P.; Hulscher, S.J.M.H.; Mulder, J.P.M. Short-term morphological responses and developments of Banda Aceh coast, Sumatra Island, Indonesia after the tsunami on 26 December 2004. Mar. Geol. 2010, 275, 96–109. [Google Scholar] [CrossRef]
- Griffin, C.; Ellis, D.; Beavis, S.; Zoleta-Nantes, D. Coastal resources, livelihoods and the 2004 Indian Ocean tsunami in Aceh, Indonesia. Ocean Coast. Manag. 2012, 71, 176–186. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Qiu, Q. Numerical Modelling of the Morphological Change in Lhok Nga, West Banda Aceh, during the 2004 Indian Ocean Tsunami: Understanding Tsunami Deposits Using a Forward Modeling Method. Nat. Hazard 2012, 64, 1549–1574. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Qiu, Q. Numerical Simulation of Erosion and Deposition at the Thailand Khao Lak Coast during the 2004 Indian Ocean Tsunami. Nat. Hazard 2014, 74, 2251–2277. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Qiu, Q.; Natawidjaja, D.H.; Sieh, K. Tsunami-induced coastal change: Scenario studies for Painan, West Sumatra, Indonesia. Earth Planet Space 2012, 64. [Google Scholar] [CrossRef]
- Tursina; Syamsidik; Kato, S. Projections of tsunami inundation area coupled with impacts of sea level rise in Banda Aceh, Indonesia. AIP Conf. Proc. 2017, 1892, 100003. [Google Scholar] [CrossRef]
- Syamsidik; Oktari, R.S.; Munadi, K.; Arief, S.; Fajri, I.Z. Changes in Coastal Land Use and the Reason for Selecting Places to Live in Banda Aceh 10 Years after the 2004 Indian Ocean Tsunami. Nat. Hazards 2017, 88, 1503–1521. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual; Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
- Galappatti, G.; Vreugdenhil, C.B. A depth-integrated model for suspended sediment transport. J. Hydraul. Res. 1985, 23, 359–377. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z. Modeling the change of beach profile under tsunami waves: A comparison of selected sediment transport models. J. Earthq. Tsunami 2013, 7. [Google Scholar] [CrossRef]
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford: London, UK, 1997; ISBN 0-7277-2584-X. [Google Scholar]
- Grilli, S.T.; Ioualalen, M.; Asavanant, J.; Shi, F.; Kirby, J.T.; Watts, P. Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 414–428. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation due to Shear and Tensile Faults in a Half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar]
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2015, 2. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. Am. Geophys. Union 2013, 94, 409–420. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. 2009. Open Source Geospatial Foundation. Available online: https://www.qgis.org/en/site/ (accessed on 11 November 2018).
- Delft3D. Available online: https://oss.deltares.nl/web/delft3d (accessed on 4 December 2018).
- Syamsidik; Tursina; Meutia, A.; Al’ala, M.; Fahmi, M.; Meilianda, E. Numerical Simulations of Impacts of the 2004 Indian Ocean Tsunami on Coastal Morphological Changes Around the Ulee Lheue Bay of Aceh, Indonesia. J. Earthq. Tsunami 2017, 7, 1740005. [Google Scholar] [CrossRef]
- Iemura, H.; Pradono, M.H.; Sugimoto, M.; Takahasyi, Y.; Husen, A.B. Tsunami Heigh Memorial Poles in Banda Aceh and Recommendations for Disaster Prevention. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012. [Google Scholar]
- Gusman, A.R.; Tanioka, Y.; Takahashi, T. Numerical experiment and a case study of sediment transport simulation of the 2004 Indian Ocean tsunami in Lhok Nga, Banda Aceh, Indonesia. Earth Planet Space 2012, 64, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Adityawan, M.B.; Mitobe, Y.; Widiyanto, W. A new computation method of bottom shear stress under tsunami waves. J. Coast. Res. 2016, 75, 1247–1251. [Google Scholar] [CrossRef]
- Williams, I.A.; Fuhrman, D.R. Numerical simulation of tsunami-scale wave boundary layers. Coast. Eng. 2016, 110, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.E.; Arboll, L.K.; Kristoffersen, S.F.; Carstensen, S.; Fuhrman, D.R. Experimental study of tsunami-induced scour around a monopile foundation. Coast. Eng. 2018, 138, 9–21. [Google Scholar] [CrossRef]
- Griffin, J.; Latief, H.; Kongko, W.; Harig, S.; Horspool, N.; Hanung, R.; Rojali, A.; Maher, N.; Fuchs, A.; Hossen, J.; et al. An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Tsubaki, R.; Kawahara, Y. The uncertainty of local flow parameters during inundation flow over complex topographies with elevation errors. J. Hydrol. 2013, 486, 71–87. [Google Scholar] [CrossRef]
Layer 01 | Layer 02 | Layer 03 | Layer 04 | Layer 05 | |
---|---|---|---|---|---|
Number of grids | 780 × 900 | 1080 × 900 | 810 × 783 | 567 × 405 | 793 × 1032 |
Lati. (degree) | 88–101 | 92–98 | 94.5–96 | 95.15–95.5 | 95.275–95.386 |
Longi. (degree) | 0–15 | 4–9 | 5.25–6.7 | 5.5–5.75 | 5.507–5.646 |
Grid size (m) | 1840 | 613.33 | 204.4 | 68.148 | 17.037 |
Grid size ratio | 3 | 3 | 3 | 4 | |
Coordinate system | Spherical | Spherical | Spherical | Cartesian | Cartesian |
SWE | Linear | Linear | Linear | Non-linear | Non-linear |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasyif, T.M.; Kato, S.; Syamsidik; Okabe, T. Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia. Geosciences 2019, 9, 125. https://doi.org/10.3390/geosciences9030125
Rasyif TM, Kato S, Syamsidik, Okabe T. Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia. Geosciences. 2019; 9(3):125. https://doi.org/10.3390/geosciences9030125
Chicago/Turabian StyleRasyif, Teuku Muhammad, Shigeru Kato, Syamsidik, and Takumi Okabe. 2019. "Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia" Geosciences 9, no. 3: 125. https://doi.org/10.3390/geosciences9030125
APA StyleRasyif, T. M., Kato, S., Syamsidik, & Okabe, T. (2019). Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia. Geosciences, 9(3), 125. https://doi.org/10.3390/geosciences9030125