The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars
Abstract
:1. Introduction
2. Stellar Surface Magnetoconvection and Oscillations
3. Noise Reduction Strategies
3.1. Empirically Driven Strategies
3.2. Physically Motivated Strategies
3.2.1. Oscillations
3.2.2. Magnetoconvection
4. Towards the Future
Funding
Acknowledgments
Conflicts of Interest
References
- Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Di Marcantonio, P.; et al. ESPRESSO: The next European exoplanet hunter. arXiv, 2014; arXiv:1401.5918. [Google Scholar] [CrossRef]
- González Hernández, J.I.; Pepe, F.; Molaro, P.; Santos, N. ESPRESSO on VLT: An Instrument for Exoplanet Research. In Handbook of Exoplanets; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F. EXPRES: A next generation RV spectrograph in the search for earth-like worlds. In Ground-Based and Airborne Instrumentation for Astronomy VI; International Society for Optics and Photonics: San Diego, CA, USA, 2016. [Google Scholar] [CrossRef]
- Fischer, D.; Jurgenson, C.; McCracken, T.; Sawyer, D.; Blackman, R.; Szymkowiak, A. E EXPRES: The EXtreme PREcision Spectrograph at the Discovery Channel Telescope. American Astronomical Society Meeting Abstracts #229. 2017. Available online: http://adsabs.harvard.edu/abs/2017AAS...22912604F (accessed on 18 January 2019).
- Figueira, P. Deriving High-Precision Radial Velocities. In Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds; Springer International Publishing AG: Basel, Switzerland, 2018; Volume 49, p. 181. [Google Scholar] [CrossRef]
- Saar, S.H.; Donahue, R.A. Activity-related Radial Velocity Variation in Cool Stars. Astrophys. J. 1997, 485, 319–327. [Google Scholar] [CrossRef]
- Schrijver, C.J.; Zwaan, C. Solar and Stellar Magnetic Activity; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hatzes, A.P. Starspots and exoplanets. Astron. Nachr. 2002, 323, 392–394. [Google Scholar] [CrossRef] [Green Version]
- Bonfils, X.; Mayor, M.; Delfosse, X.; Forveille, T.; Gillon, M.; Perrier, C.; Udry, S.; Bouchy, F.; Lovis, C.; Pepe, F.; et al. The HARPS search for southern extra-solar planets. X. A m sin i = 11 M_⊕ planet around the nearby spotted M dwarf <ASTROBJ>GJ 674</ASTROBJ>. Astron. Astrophys. 2007, 474, 293–299. [Google Scholar] [CrossRef]
- Desort, M.; Lagrange, A.M.; Galland, F.; Udry, S.; Mayor, M. Search for exoplanets with the radial-velocity technique: Quantitative diagnostics of stellar activity. Astron. Astrophys. 2007, 473, 983–993. [Google Scholar] [CrossRef]
- Melo, C.; Santos, N.C.; Gieren, W.; Pietrzynski, G.; Ruiz, M.T.; Sousa, S.G.; Bouchy, F.; Lovis, C.; Mayor, M.; Pepe, F.; et al. A new Neptune-mass planet orbiting HD 219828. Astron. Astrophys. 2007, 467, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Queloz, D.; Bouchy, F.; Moutou, C.; Hatzes, A.; Hébrard, G.; Alonso, R.; Auvergne, M.; Baglin, A.; Barbieri, M.; Barge, P.; et al. The CoRoT-7 planetary system: Two orbiting super-Earths. Astron. Astrophys. 2009, 506, 303–319. [Google Scholar] [CrossRef]
- Dumusque, X.; Santos, N.C.; Udry, S.; Lovis, C.; Bonfils, X. Planetary detection limits taking into account stellar noise. II. Effect of stellar spot groups on radial-velocities. Astron. Astrophys. 2011, 527, A82. [Google Scholar] [CrossRef]
- Aigrain, S.; Pont, F.; Zucker, S. A simple method to estimate radial velocity variations due to stellar activity using photometry. Mon. Not. R. Astron. Soc. 2012, 419, 3147–3158. [Google Scholar] [CrossRef]
- Boisse, I.; Moutou, C.; Vidal-Madjar, A.; Bouchy, F.; Pont, F.; Hébrard, G.; Bonfils, X.; Croll, B.; Delfosse, X.; Desort, M.; et al. Stellar activity of planetary host star HD 189 733. Astron. Astrophys. 2009, 495, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Boisse, I.; Bouchy, F.; Hébrard, G.; Bonfils, X.; Santos, N.; Vauclair, S. Disentangling between stellar activity and planetary signals. Astron. Astrophys. 2011, 528, A4. [Google Scholar] [CrossRef] [Green Version]
- Dumusque, X.; Boisse, I.; Santos, N.C. SOAP 2.0: A Tool to Estimate the Photometric and Radial Velocity Variations Induced by Stellar Spots and Plages. Astrophys. J. 2014, 796, 132. [Google Scholar] [CrossRef]
- Hatzes, A.P.; Dvorak, R.; Wuchterl, G.; Guterman, P.; Hartmann, M.; Fridlund, M.; Gandolfi, D.; Guenther, E.; Pätzold, M. An investigation into the radial velocity variations of CoRoT-7. Astron. Astrophys. 2010, 520, A93. [Google Scholar] [CrossRef]
- Haywood, R.D.; Collier Cameron, A.; Queloz, D.; Barros, S.C.C.; Deleuil, M.; Fares, R.; Gillon, M.; Lanza, A.F.; Lovis, C.; Moutou, C.; et al. Planets and stellar activity: Hide and seek in the CoRoT-7 system. Mon. Not. R. Astron. Soc. 2014, 443, 2517–2531. [Google Scholar] [CrossRef]
- Haywood, R.D.; Collier Cameron, A.; Unruh, Y.C.; Lovis, C.; Lanza, A.F.; Llama, J.; Deleuil, M.; Fares, R.; Gillon, M.; Moutou, C.; et al. The Sun as a planet-host star: Proxies from SDO images for HARPS radial-velocity variations. Mon. Not. R. Astron. Soc. 2016, 457, 3637–3651. [Google Scholar] [CrossRef]
- Hébrard, É.M.; Donati, J.F.; Delfosse, X.; Morin, J.; Moutou, C.; Boisse, I. Modelling the RV jitter of early-M dwarfs using tomographic imaging. Mon. Not. R. Astron. Soc. 2016, 461, 1465–1497. [Google Scholar] [CrossRef] [Green Version]
- Herrero, E.; Ribas, I.; Jordi, C.; Morales, J.C.; Perger, M.; Rosich, A. Modelling the photosphere of active stars for planet detection and characterization. Astron. Astrophys. 2016, 586, A131. [Google Scholar] [CrossRef]
- López-Morales, M.; Haywood, R.D.; Coughlin, J.L.; Zeng, L.; Buchhave, L.A.; Giles, H.A.C.; Affer, L.; Bonomo, A.S.; Charbonneau, D.; Collier Cameron, A.; et al. Kepler-21b: A Rocky Planet Around a V = 8.25 Magnitude Star. Astron. J. 2016, 152, 204. [Google Scholar] [CrossRef]
- Meunier, N.; Desort, M.; Lagrange, A.M. Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages. Astron. Astrophys. 2010, 512, A39. [Google Scholar] [CrossRef]
- Meunier, N.; Lagrange, A.M.; Desort, M. Reconstructing the solar integrated radial velocity using MDI/SOHO. Astron. Astrophys. 2010, 519, A66. [Google Scholar] [CrossRef] [Green Version]
- Meunier, N.; Lagrange, A.M.; Borgniet, S. A new method of correcting radial velocity time series for inhomogeneous convection. Astron. Astrophys. 2017, 607, A6. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.F. The Observation and Analysis of Stellar Photospheres; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Meunier, N.; Lagrange, A.M.; Mbemba Kabuiku, L.; Alex, M.; Mignon, L.; Borgniet, S. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars. Astron. Astrophys. 2017, 597, A52. [Google Scholar] [CrossRef]
- Meunier, N.; Mignon, L.; Lagrange, A.M. Variability in stellar granulation and convective blueshift with spectral type and magnetic activity. II. From young to old main-sequence K-G-F stars. Astron. Astrophys. 2017, 607, A124. [Google Scholar] [CrossRef]
- Meunier, N.; Lagrange, A.M. Using the Sun to estimate Earth-like planets detection capabilities. IV. Correcting for the convective component. Astron. Astrophys. 2013, 551, A101. [Google Scholar] [CrossRef]
- Dravins, D. “Ultimate” information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts. Astron. Astrophys. 2008, 492, 199–213. [Google Scholar] [CrossRef]
- Dravins, D. Photospheric spectrum line asymmetries and wavelength shifts. Ann. Rev. Astron. Astrophys 1982, 20, 61–89. [Google Scholar] [CrossRef]
- Balthasar, H. On the contribution of horizontal granular motions to observed limb-effect curves. Sol. Phys. 1985, 99, 31–38. [Google Scholar] [CrossRef]
- Asplund, M.; Nordlund, Å.; Trampedach, R.; Allende Prieto, C.; Stein, R.F. Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries. Astron. Astrophys. 2000, 359, 729–742. [Google Scholar]
- Cegla, H.M.; Watson, C.A.; Shelyag, S.; Chaplin, W.J.; Davies, G.R.; Mathioudakis, M.; Palumbo, M.L., III; Saar, S.H.; Haywood, R.D. Stellar Surface Magneto-Convection as a Source of Astrophysical Noise II. Center-to-Limb Parameterisation of Absorption Line Profiles and Comparison to Observations. Astrophys. J. 2018, in press. [Google Scholar] [CrossRef]
- Shporer, A.; Brown, T. The Impact of the Convective Blueshift Effect on Spectroscopic Planetary Transits. Astrophys. J. 2011, 733, 30. [Google Scholar] [CrossRef]
- Cegla, H.M.; Oshagh, M.; Watson, C.A.; Figueira, P.; Santos, N.C.; Shelyag, S. Modeling the Rossiter-McLaughlin Effect: Impact of the Convective Center-to-limb Variations in the Stellar Photosphere. Astrophys. J. 2016, 819, 67. [Google Scholar] [CrossRef]
- Apai, D.; Rackham, B.V.; Giampapa, M.S.; Angerhausen, D.; Teske, J.; Barstow, J.; Carone, L.; Cegla, H.; Domagal-Goldman, S.D.; Espinoza, N.; et al. Understanding Stellar Contamination in Exoplanet Transmission Spectra as an Essential Step in Small Planet Characterization. arXiv, 2018; arXiv:1803.08708. [Google Scholar]
- Rieutord, M.; Rincon, F. The Sun’s Supergranulation. Living Rev. Sol. Phys. 2010, 7, 2. [Google Scholar] [CrossRef]
- Rincon, F.; Rieutord, M. The Sun’s supergranulation. Living Rev. Sol. Phys. 2018, 15, 6. [Google Scholar] [CrossRef]
- Roudier, T.; Malherbe, J.M.; Rieutord, M.; Frank, Z. Relation between trees of fragmenting granules and supergranulation evolution. Astron. Astrophys. 2016, 590, A121. [Google Scholar] [CrossRef]
- Malherbe, J.M.; Roudier, T.; Stein, R.; Frank, Z. Dynamics of Trees of Fragmenting Granules in the Quiet Sun: Hinode/SOT Observations Compared to Numerical Simulation. Sol. Phys. 2018, 293, 4. [Google Scholar] [CrossRef]
- Chaplin, W.J.; Miglio, A. Asteroseismology of Solar-Type and Red-Giant Stars. Annu. Rev. Astron. Astrophys. 2013, 51, 353–392. [Google Scholar] [CrossRef] [Green Version]
- Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R. Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å. Astron. Astrophys. 2018, 611, A4. [Google Scholar] [CrossRef]
- Strassmeier, K.G.; Ilyin, I.; Steffen, M. PEPSI deep spectra. I. The Sun-as-a-star. Astron. Astrophys. 2018, 612, A44. [Google Scholar] [CrossRef]
- Stein, R.F. Solar Surface Magneto-Convection. Living Rev. Sol. Phys. 2012, 9, 4. [Google Scholar] [CrossRef]
- Nordlund, Å.; Stein, R.F.; Asplund, M. Solar Surface Convection. Living Rev. Sol. Phys. 2009, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Gizon, L.; Birch, A.C. Local Helioseismology. Living Rev. Sol. Phys. 2005, 2, 6. [Google Scholar] [CrossRef]
- Basu, S. Global seismology of the Sun. Living Rev. Sol. Phys. 2016, 13, 2. [Google Scholar] [CrossRef]
- Santos, N.C.; Mayor, M.; Naef, D.; Pepe, F.; Queloz, D.; Udry, S.; Blecha, A. The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques. Astron. Astrophys. 2000, 361, 265–272. [Google Scholar]
- Saar, S.H.; Hatzes, A.; Cochran, W.; Paulson, D. Stellar Intrinsic Radial Velocity Noise: Causes and Possible Cures. In The Future of Cool-Star Astrophysics, Proceedings of the 12th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Boulder, CO, USA, 30 July–3 August 2001; Brown, A., Harper, G.M., Ayres, T.R., Eds.; University of Colorado: Boulder, CO, USA, 2003; Volume 12, pp. 694–698. [Google Scholar]
- Wright, J.T. Radial Velocity Jitter in Stars from the California and Carnegie Planet Search at Keck Observatory. Publ. Astron. Soc. Pac. 2005, 117, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Cegla, H.M.; Stassun, K.G.; Watson, C.A.; Bastien, F.A.; Pepper, J. Estimating Stellar Radial Velocity Variability from Kepler and GALEX: Implications for the Radial Velocity Confirmation of Exoplanets. Astrophys. J. 2014, 780, 104. [Google Scholar] [CrossRef]
- Bastien, F.A.; Stassun, K.G.; Pepper, J.; Wright, J.T.; Aigrain, S.; Basri, G.; Johnson, J.A.; Howard, A.W.; Walkowicz, L.M. Radial Velocity Variations of Photometrically Quiet, Chromospherically Inactive Kepler Stars: A Link between RV Jitter and Photometric Flicker. Astron. J. 2014, 147, 29. [Google Scholar] [CrossRef]
- Marchwinski, R.C.; Mahadevan, S.; Robertson, P.; Ramsey, L.; Harder, J. Toward Understanding Stellar Radial Velocity Jitter as a Function of Wavelength: The Sun as a Proxy. Astrophys. J. 2015, 798, 63. [Google Scholar] [CrossRef]
- Yu, J.; Huber, D.; Bedding, T.R.; Stello, D. Predicting radial-velocity jitter induced by stellar oscillations based on Kepler data. Mon. Not. R. Astron. Soc. 2018, 480, L48–L53. [Google Scholar] [CrossRef]
- Dumusque, X.; Udry, S.; Lovis, C.; Santos, N.C.; Monteiro, M.J.P.F.G. Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. Astron. Astrophys. 2011, 525, A140. [Google Scholar] [CrossRef]
- Harvey, J.W. Probing the Depths of a Star: The Study of the Solar Oscillation from the Space; NASA JPL: Pasadena, CA, USA, 1984; Volume 400, p. 327. [Google Scholar]
- Andersen, B.N.; Leifsen, T.E.; Toutain, T. Solar noise simulations in irradiance. Sol. Phys. 1994, 152, 247–252. [Google Scholar] [CrossRef]
- Palle, P.L.; Jimenez, A.; Perez Hernandez, F.; Regulo, C.; Roca Cortes, T.; Sanchez, L. A measurement of the background solar velocity spectrum. Astrophys. J. 1995, 441, 952–959. [Google Scholar] [CrossRef]
- Kjeldsen, H.; Bedding, T.R.; Butler, R.P.; Christensen-Dalsgaard, J.; Kiss, L.L.; McCarthy, C.; Marcy, G.W.; Tinney, C.G.; Wright, J.T. Solar-like Oscillations in α Centauri B. Astrophys. J. 2005, 635, 1281–1290. [Google Scholar] [CrossRef]
- Arentoft, T.; Kjeldsen, H.; Bedding, T.R.; Bazot, M.; Christensen-Dalsgaard, J.; Dall, T.H.; Karoff, C.; Carrier, F.; Eggenberger, P.; Sosnowska, D.; et al. A Multisite Campaign to Measure Solar-like Oscillations in Procyon. I. Observations, Data Reduction, and Slow Variations. Astrophys. J. 2008, 687, 1180–1190. [Google Scholar] [CrossRef]
- Kallinger, T.; De Ridder, J.; Hekker, S.; Mathur, S.; Mosser, B.; Gruberbauer, M.; García, R.A.; Karoff, C.; Ballot, J. The connection between stellar granulation and oscillation as seen by the Kepler mission. Astron. Astrophys. 2014, 570, A41. [Google Scholar] [CrossRef]
- Endl, M.; Kürster, M.; Els, S.; Hatzes, A.P.; Cochran, W.D. The planet search program at the ESO Coudé Echelle spectrometer. II. The alpha Centauri system: Limits for planetary companions. Astron. Astrophys. 2001, 374, 675–681. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap: Chapman & Hall/CRC; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Meunier, N.; Lagrange, A.M.; Borgniet, S.; Rieutord, M. Using the Sun to estimate Earth-like planet detection capabilities. VI. Simulation of granulation and supergranulation radial velocity and photometric time series. Astron. Astrophys. 2015, 583, A118. [Google Scholar] [CrossRef]
- Roudier, T.; Muller, R. Structure of the solar granulation. Sol. Phys. 1986, 107, 11–26. [Google Scholar] [CrossRef]
- Hirzberger, J.; Vázquez, M.; Bonet, J.A.; Hanslmeier, A.; Sobotka, M. Time Series of Solar Granulation Images. I. Differences between Small and Large Granules in Quiet Regions. Astrophys. J. 1997, 480, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Hirzberger, J.; Bonet, J.A.; Vázquez, M.; Hanslmeier, A. Time Series of Solar Granulation Images. II. Evolution of Individual Granules. Astrophys. J. 1999, 515, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Rieutord, M.; Ludwig, H.G.; Roudier, T.; Nordlund, A.; Stein, R. A simulation of solar convection at supergranulation scale. Nuovo Cimento C Geophys. Space Phys. C 2002, 25, 523. [Google Scholar]
- Beeck, B.; Cameron, R.H.; Reiners, A.; Schüssler, M. Three-dimensional simulations of near-surface convection in main-sequence stars. I. Overall structure. Astron. Astrophys. 2013, 558, A48. [Google Scholar] [CrossRef]
- Beeck, B.; Cameron, R.H.; Reiners, A.; Schüssler, M. Three-dimensional simulations of near-surface convection in main-sequence stars. II. Properties of granulation and spectral lines. Astron. Astrophys. 2013, 558, A49. [Google Scholar] [CrossRef]
- Beeck, B.; Schüssler, M.; Cameron, R.H.; Reiners, A. Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations. Astron. Astrophys. 2015, 581, A42. [Google Scholar] [CrossRef]
- Beeck, B.; Schüssler, M.; Cameron, R.H.; Reiners, A. Three-dimensional simulations of near-surface convection in main-sequence stars. IV. Effect of small-scale magnetic flux concentrations on centre-to-limb variation and spectral lines. Astron. Astrophys. 2015, 581, A43. [Google Scholar] [CrossRef]
- Meunier, N.; Tkaczuk, R.; Roudier, T.; Rieutord, M. Velocities and divergences as a function of supergranule size. Astron. Astrophys. 2007, 461, 1141–1147. [Google Scholar] [CrossRef]
- Del Moro, D. Solar granulation properties derived from three different time series. Astron. Astrophys. 2004, 428, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Meunier, N.; Lagrange, A.M.; De Bondt, K. Comparison of different exoplanet mass detection limit methods using a sample of main-sequence intermediate-type stars. Astron. Astrophys. 2012, 545, A87. [Google Scholar] [CrossRef]
- Jess, D.B.; Mathioudakis, M.; Christian, D.J.; Crockett, P.J.; Keenan, F.P. A Study of Magnetic Bright Points in the Na I D1 Line. Astrophys. J. Lett. 2010, 719, L134–L139. [Google Scholar] [CrossRef]
- Allende Prieto, C.; Garcia Lopez, R.J. Fe i line shifts in the optical spectrum of the Sun. Astron. Astrophys. Suppl. Ser. 1998, 129, 41–44. [Google Scholar] [CrossRef]
- Reiners, A.; Mrotzek, N.; Lemke, U.; Hinrichs, J.; Reinsch, K. The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra. Astron. Astrophys. 2016, 587, A65. [Google Scholar] [CrossRef]
- Dravins, D.; Lindegren, L.; Nordlund, A. Solar granulation—Influence of convection on spectral line asymmetries and wavelength shifts. Astron. Astrophys. 1981, 96, 345–364. [Google Scholar]
- Chaplin, W.J.; Cegla, H.M.; Watson, C.A.; Davies, G.R. Filtering solar-like oscillations for exoplanet detection in radial velocity observations. AAS J. 2019; arXiv:1903.00657. [Google Scholar]
- Christensen-Dalsgaard, J. The effect of rotation on whole-disc Doppler observations of solar oscillations. Mon. Not. R. Astron. Soc. 1989, 239, 977–994. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, H.; Bedding, T.R.; Arentoft, T.; Butler, R.P.; Dall, T.H.; Karoff, C.; Kiss, L.L.; Tinney, C.G.; Chaplin, W.J. The Amplitude of Solar Oscillations Using Stellar Techniques. Astrophys. J. 2008, 682, 1370–1375. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Chaplin, W.J. Asteroseismic Data Analysis: Foundations and Techniques; Princenton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Chaplin, W.J.; Elsworth, Y.; Davies, G.R.; Campante, T.L.; Handberg, R.; Miglio, A.; Basu, S. Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2—Expanding the asteroseismic cohort at the base of the red giant branch. Mon. Not. R. Astron. Soc. 2014, 445, 946–954. [Google Scholar] [CrossRef]
- Medina, A.A.; Johnson, J.A.; Eastman, J.D.; Cargile, P.A. Techniques for Finding Close-in, Low-mass Planets around Evolved Intermediate-mass Stars. Astrophys. J. 2018, 867, 32. [Google Scholar] [CrossRef]
- Cegla, H.M.; Shelyag, S.; Watson, C.A.; Mathioudakis, M. Stellar Surface Magneto-convection as a Source of Astrophysical Noise. I. Multi-component Parameterization of Absorption Line Profiles. Astrophys. J. 2013, 763, 95. [Google Scholar] [CrossRef]
- Cegla, H.M.; Watson, C.A.; Shelyag, S.; Mathioudakis, M. Understanding Astrophysical Noise from Stellar Surface Magneto-Convection. In Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Proceedings of Lowell Observatory, Flagstaff, AZ, USA, 8–14 June 2014; Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. van Belle, G.T., Harris, H.C., Eds.; 2015; Volume 18, pp. 567–574. [Google Scholar]
- Cegla, H.M.; Watson, C.A.; Shelyag, S.; Mathioudakis, M.; Moutari, S. Stellar Surface Magneto-Convection as a Source of Astrophysical Noise III. Sun-as-a-star Simulations and Optimal Noise Diagnostics. Astrophys. J. 2019; arXiv:1903.08446. [Google Scholar]
- Vögler, A.; Shelyag, S.; Schüssler, M.; Cattaneo, F.; Emonet, T.; Linde, T. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 2005, 429, 335–351. [Google Scholar] [CrossRef]
- Socas-Navarro, H. NICOLE: NLTE Stokes Synthesis/Inversion Code. Astrophysics Source Code Library: Record ascl:1508.002. 2015. Available online: http://adsabs.harvard.edu/abs/2015ascl.soft08002S (accessed on 18 January 2019).
- Socas-Navarro, H.; de la Cruz Rodríguez, J.; Asensio Ramos, A.; Trujillo Bueno, J.; Ruiz Cobo, B. An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles. Astron. Astrophys. 2015, 577, A7. [Google Scholar] [CrossRef]
- Elsworth, Y.; Howe, R.; Isaak, G.R.; McLeod, C.P.; Miller, B.A.; New, R.; Speake, C.C.; Wheeler, S.J. Solar Seismology—The Velocity Continuum Spectrum. Mon. Not. R. Astron. Soc. 1994, 269, 529. [Google Scholar] [CrossRef]
- Pallé, P.L.; Roca Cortés, T.; Jiménez, A.; GOLF Team; Virgo Team. The Sun as a Star: Background, Intensity and Velocity, Power Spectra and Convection. In Stellar Structure: Theory and Test of Connective Energy Transport; Astronomical Society of the Pacific Conference Series; Gimenez, A., Guinan, E.F., Montesinos, B., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1999; Volume 173, p. 297. [Google Scholar]
- Queloz, D.; Henry, G.W.; Sivan, J.P.; Baliunas, S.L.; Beuzit, J.L.; Donahue, R.A.; Mayor, M.; Naef, D.; Perrier, C.; Udry, S. No planet for HD 166435. Astron. Astrophys. 2001, 379, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Povich, M.S.; Giampapa, M.S.; Valenti, J.A.; Tilleman, T.; Barden, S.; Deming, D.; Livingston, W.C.; Pilachowski, C. Limits on Line Bisector Variability for Stars with Extrasolar Planets. Astron. J. 2001, 121, 1136–1146. [Google Scholar] [CrossRef] [Green Version]
- Dall, T.H.; Santos, N.C.; Arentoft, T.; Bedding, T.R.; Kjeldsen, H. Bisectors of the cross-correlation function applied to stellar spectra. Discriminating stellar activity, oscillations and planets. Astron. Astrophys. 2006, 454, 341–348. [Google Scholar] [CrossRef]
- Figueira, P.; Santos, N.C.; Pepe, F.; Lovis, C.; Nardetto, N. Line-profile variations in radial-velocity measurements (Corrigendum). Two alternative indicators for planetary searches. Astron. Astrophys. 2015, 582, C2. [Google Scholar] [CrossRef]
- Lanza, A.F.; Malavolta, L.; Benatti, S.; Desidera, S.; Bignamini, A.; Bonomo, A.S.; Esposito, M.; Figueira, P.; Gratton, R.; Scandariato, G.; et al. The GAPS Programme with HARPS-N at TNG. XVII. Line profile indicators and kernel regression as diagnostics of radial-velocity variations due to stellar activity in solar-like stars. Astron. Astrophys. 2018, 616, A155. [Google Scholar] [CrossRef]
- Sulis, S.; Mary, D.; Bigot, L. A Study of Periodograms Standardized Using Training Datasets and Application to Exoplanet Detection. IEEE Trans. Signal Proc. 2017, 65, 2136–2150. [Google Scholar] [CrossRef] [Green Version]
- Sulis, S.; Mary, D.; Bigot, L. A Bootstrap Method for Sinusoid Detection in Colored Noise and Uneven Sampling. Application to Exoplanet Detection. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 1095–1099. [Google Scholar]
- Beckers, J.M. Can variable meridional flows lead to false exoplanet detections? Astron. Nachr. 2007, 328, 1084. [Google Scholar] [CrossRef]
- Makarov, V.V. Variability of Surface Flows on the Sun and the Implications for Exoplanet Detection. Astrophys. J. 2010, 715, 500–505. [Google Scholar] [CrossRef]
- Cegla, H.M.; Watson, C.A.; Marsh, T.R.; Shelyag, S.; Moulds, V.; Littlefair, S.; Mathioudakis, M.; Pollacco, D.; Bonfils, X. Stellar jitter from variable gravitational redshift: Implications for radial velocity confirmation of habitable exoplanets. Mon. Not. R. Astron. Soc. 2012, 421, L54–L58. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegla, H.M. The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars. Geosciences 2019, 9, 114. https://doi.org/10.3390/geosciences9030114
Cegla HM. The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars. Geosciences. 2019; 9(3):114. https://doi.org/10.3390/geosciences9030114
Chicago/Turabian StyleCegla, H. M. 2019. "The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars" Geosciences 9, no. 3: 114. https://doi.org/10.3390/geosciences9030114
APA StyleCegla, H. M. (2019). The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars. Geosciences, 9(3), 114. https://doi.org/10.3390/geosciences9030114