Objective Regolith-Landform Mapping in a Regolith Dominated Terrain to Inform Mineral Exploration
Abstract
:1. Introduction
2. Background
2.1. Geological Setting
2.2. Regolith Mapping
3. Materials and Methods
3.1. Clustering of Traditional Regolith Map
3.2. Regolith-Landform Analysis
3.2.1. Spatial Data and Transforms
3.2.2. Gamma-Ray Radiometrics
3.3. Unsupervised Classification
3.4. Relationship between Mapping Methods
4. Results
4.1. Aggregation of Traditional Regolith-Landform Map
4.2. Aggregated Unsupervised Classification
4.3. Composition and Distribution of the Image Mapping Classes
4.4. Spatial Concordance between Mapping Methods
5. Discussion
5.1. Relationship between Maps and Input Variables
5.2. Mapcurves for Comparison of Regolith-Landform Maps
5.3. Regolith-Landform Mapping without Prior Knowledge
5.4. Application for Mineral Exploration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eggleton, R.A.; Anand, R.R.; Butt, C.R.M.; Chen, X.Y.; Craig, M.A.; de Caritat, P.; Field, J.B.; Gibson, D.L.; Greene, R.; Hill, S.M.; et al. Surficial geology, soils and landscapes. In The Regolith Glossary; Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2001; p. 144. ISBN 978-0-731-53343-5. [Google Scholar]
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing disciplines and scales to understand the Critical Zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Brantley, S.L.; Lebedeva, M. Learning to read the Chemistry of Regolith to understand the Critical Zone. Annu. Rev. Earth Planet. Sci. 2011, 39, 387–416. [Google Scholar] [CrossRef]
- Wilford, J.R.; Pain, C.F.; Dohrenwend, J.C. Enhancement and integration of airborne gamma-ray spectrometric and Landsat imagery for regolith mapping—Cape York Peninsula. Explor. Geophys. 1992, 23, 441–446. [Google Scholar] [CrossRef]
- Anand, R.R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Aust. J. Earth Sci. 2002, 49, 3–162. [Google Scholar] [CrossRef]
- Taylor, G.; Eggleton, R.A. Regolith Geology and Geomorphology; John Wiley & Sons: Chichester, UK, 2001; p. 392. ISBN 978-0-471-97454-4. [Google Scholar]
- Anand, R.R.; Butt, C.R.M. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 2010, 57, 1015–1114. [Google Scholar] [CrossRef]
- Pain, C.F.; Pillans, B.J.; Roach, I.C.; Worrall, L.; Wilford, J.R. Old, flat and red—Australia’s distinctive landscape. In Shaping a Nation: A Geology of Australia; Blewett, R.S., Ed.; Geoscience Australia and ANU E Press: Canberra, Australia, 2012; pp. 227–275. ISBN 978-1-921-86282-3. [Google Scholar]
- Smith, R.E. Regolith research in support of mineral exploration in Australia. J. Geochem. Explor. 1996, 57, 159–173. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Robertson, I.D.M.; Scott, K.M.; Cornelius, M. Regolith Expression of Australian Ore Systems; Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2005; p. 431. ISBN 978-1-921-03928-7. [Google Scholar]
- Anand, R.R.; Smith, R.E. Regolith distribution, stratigraphy and evolution in the Yilgarn Craton-implications for exploration. In An International Conference on Crustal Evolution, Metallogeny and Exploration of the Eastern Goldfields; Williams, P.R., Haldane, J.A., Eds.; Australian Geological Survey Organisation: Kalgoolie, Australia, 1993; pp. 187–193. [Google Scholar]
- Craig, M.A.; Wilford, J.R.; Tapley, I.J. Regolith-landform mapping in the Gawler Craton. MESA J. 1999, 12, 17–21. [Google Scholar]
- Lintern, M.J. Calcrete sampling for mineral exploration. In Calcrete: Characteristics, Distribution and Use in Mineral Exploration; Chen, X.Y., Lintern, M.J., Roach, I.C., Eds.; Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2002; pp. 31–109. ISBN 978-0-958-11450-9. [Google Scholar]
- Pain, C.F.; Chan, R.; Craig, M.A.; Gibson, D.; Kilgour, P.; Wilford, J. RTMAP Regolith Database Field Book and Users Guide, 2nd ed.; CRC LEME Open File Report 231; Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2007; p. 98. [Google Scholar]
- Worrall, L.; Gray, D.J. Regolith in the central Gawler, through and through. In Gawler Craton: State of Play; Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Adelaide, Australia, 2004. [Google Scholar]
- Saadat, H.; Bonnell, R.; Sharifi, F.; Mehuys, G.; Namdar, M.; Ale-Ebrahim, S. Landform classification from a digital elevation model and satellite imagery. Geomorphology 2008, 100, 453–464. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Dent, D.; Young, A. Soil Survey and Land Evaluation; George Allen & Unwin: London, UK, 1981; p. 278. ISBN 978-0-046-31013-4. [Google Scholar]
- Blaszczynski, J.S. Landform characterization with Geographic Information Systems. Photogramm. Eng. Remote Sens. 1997, 63, 183–191. [Google Scholar]
- Dehn, M.; Gartner, H.; Dikau, R. Principles of semantic modeling of landform structures. Comput. Geosci. 2001, 27, 1005–1010. [Google Scholar] [CrossRef]
- Pain, C.F.; Chan, R.; Craig, M.A.; Hazell, M.; Kamprad, J.; Wilford, J. RTMAP: BMR Regolith Database Field Handbook; Geoscience Australia: Canberra, Australia, 1991. [Google Scholar]
- Irvin, B.J.; Ventura, S.J.; Slater, B.K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 1997, 77, 137–154. [Google Scholar] [CrossRef]
- Seijmonsbergen, A.C.; Hengl, T.; Anders, N.S. Semi-Automated Identification and Extraction of Geomorphological Features Using Digital Elevation Data. In Geomorphological Mapping: Methods and Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier Science: Oxford, UK, 2011; Volume 15, pp. 297–335. ISBN 978-0-444-53446-0. [Google Scholar]
- Burrough, P.A.; Van Gaans, P.F.M.; MacMillan, R.A. High-resolution landform classification using fuzzy k-means. Fuzzy Set Syst. 2000, 113, 37–52. [Google Scholar] [CrossRef]
- Salama, W.; González-Álvarez, I.; Anand, R.R. Significance of weathering and regolith/landscape evolution for mineral exploration in the NE Albany-Fraser Orogen, Western Australia. Ore Geol. Rev. 2016, 73, 500–521. [Google Scholar] [CrossRef]
- Salama, W.; Gazley, M.F.; Bonnett, L.C. Geochemical exploration for supergene copper oxide deposits, Mount Isa Inlier, NW Queensland, Australia. J. Geochem. Explor. 2016, 168, 72–102. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M.; McNeill, A.W. Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer–Mt Charter region, Tasmania, using Random Forests™ and Self-Organising Maps. Aust. J. Earth Sci. 2014, 61, 287–304. [Google Scholar] [CrossRef]
- Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia. Geophysics 2018, 83, B183–B193. [Google Scholar] [CrossRef]
- Metelka, V.; Baratoux, L.; Jessell, M.W.; Barth, A.; Jezek, J.; Naba, S. Automated regolith landform mapping using airborne geophysics and remote sensing data, Burkina Faso, West Africa. Remote Sens. Environ. 2018, 204, 964–978. [Google Scholar] [CrossRef]
- Wilford, J.; de Caritat, P.; Bui, E. Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma 2015, 259, 81–92. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M.; de Caritat, P. Multiple influences on regolith characteristics from continental-scale geophysical and mineralogical remote sensing data using Self-Organizing Maps. Remote Sens. Environ. 2015, 165, 86–99. [Google Scholar] [CrossRef]
- Department of the Environment and Energy. Interim Biogeographic Regionalisation for Australia, Version 7. Available online: https://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf (accessed on 9 February 2018).
- Kenny, S.D. A Vegetation Map of the Gawler Craton Region South Australia; Department for Environment and Heritage: Adelaide, Australia, 2008; p. 122. [Google Scholar]
- Daly, S.J.; Fanning, G.M.; Fairclough, M.C. Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSO J. Aust. Geol. Geophys. 1998, 17, 145–168. [Google Scholar]
- Hoek, J.D.; Schaefer, B.F. Palaeoproterozoic Kimban mobile belt, Eyre Peninsula: Timing and significance of felsic and mafic magmatism and deformation. Aust. J. Earth Sci. 1998, 45, 305–313. [Google Scholar] [CrossRef]
- Hand, M.; Reid, A.; Jagodzinski, L. Tectonic framework and evolution of the Gawler Craton, Southern Australia. Econ. Geol. 2007, 102, 1377–1395. [Google Scholar] [CrossRef]
- Jagodzinski, E.A. Compilation of SHRIMP U-Pb Geochronological Data, Olympic Domain, Gawler Craton, South Australia, 2001–2003; Geoscience Australia: Canberra, Australia, 2005; p. 197. [Google Scholar]
- Fanning, C.M.; Reid, A.J.; Teale, G.S. A Geochronological Framework for the Gawler Craton, South Australia; South Australian Department of Primary Industries and Resources: Adelaide, Australia, 2007; p. 258. ISBN 978-0-7590-1392-6. [Google Scholar]
- Jagodzinski, E.A.; Reid, A.J.; Crowley, J.L. Precise Zircon U-Pb Dating of a Mesoproterozoic Silicic Large Igneous Province: The Gawler Range Volcanics and Benagerie Volcanic Suite, South Australia. In AESC 2016—Australian Earth Sciences Convention; Geological Society of Australia: Adelaide, Australia, 2016. [Google Scholar]
- Allen, S.R.; McPhie, J.; Ferris, G.; Simpson, C. Evolution and architecture of a large felsic Igneous Province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. J. Volcanol. Geotherm. Res. 2008, 172, 132–147. [Google Scholar] [CrossRef]
- Krapf, C.B.E. Regolith Map of the Southern Gawler Ranges Margin (YARDEA and PORT AUGUSTA 1:250,000 Map Sheets), 1st ed.; Geological Survey of South Australia: Adelaide, Australia, 2016. [Google Scholar]
- Forbes, C.; Giles, D.; Freeman, H.; Sawyer, M.; Normington, V. Glacial dispersion of hydrothermal monazite in the Prominent Hill deposit: An exploration tool. J. Geochem. Explor. 2015, 156, 10–33. [Google Scholar] [CrossRef]
- Smith, R.E. Regolith evolution and exploration significance. In An International Conference on Crustal Evolution, Metallogeny and Exploration of the Eastern Goldfields: Excursion Guidebook; Williams, P.R., Haldane, J.A., Eds.; Australian Geological Survey Organisation: Canberra, Australia, 1993; pp. 181–186. [Google Scholar]
- Department of State Development. Metadata: Regolith Map of the Southern Gawler Ranges Margin (YARDEA and PORT AUGUSTA 1:250,000 Map Sheets); The Geological Survey of South Australia: Adelaide, Australia, 2016. [Google Scholar]
- Blissett, A.H.; Parker, A.J.; Crooks, A.F.; Allen, S.R.; Simpson, C.J.; McPhie, J.; Daly, S.J.; Benbow, M.C.; Giles, C.W.; Ambrose, G.J.; et al. Yardea, Geological Survey of South Australia; Geological Survey of South Australia: Adelaide, Australia, 2017. [Google Scholar]
- Gallant, J.C.; Dowling, T.I.; Read, A.M.; Wilson, N.; Tickle, P.; Inskeep, C. 1 Second SRTM Derived Digital Elevation Models User Guide; Geoscience Australia: Canberra, Australia, 2011. [Google Scholar]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v 1.2. Available online: http://jennessent.com/arcview/tpi.htm (accessed on 18 November 2016).
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Dilts, T.E. Topography Tools for ArcGis 10.1. Available online: http://arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9 (accessed on 18 November 2016).
- Singh, G.; Williard, K.J.; Schoonover, J.E. Spatial relation of apparent soil electrical conductivity with crop yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy 2016, 6, 57. [Google Scholar] [CrossRef]
- Minty, B.; Franklin, R.; Milligan, P.; Richardson, M.; Wilford, J. The Radiometric Map of Australia. Explor. Geophys. 2009, 40, 325–333. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Hargrove, W.W.; Hoffman, F.M.; Hessburg, P.F. Mapcurves: A quantitative method for comparing categorical maps. J. Geogr. Syst. 2006, 8, 187–208. [Google Scholar] [CrossRef]
- Williams, C.L.; Hargrove, W.W.; Liebman, M.; James, D.E. Agro-ecoregionalization of Iowa using multivariate geographical clustering. Agric. Ecosyst. Environ. 2008, 123, 161–174. [Google Scholar] [CrossRef]
- Edler, D.; Guedes, T.; Zizka, A.; Rosvall, M.; Antonelli, A. Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Syst. Biol. 2017, 66, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.; Messina, J. A landscape and climate data logistic model of tsetse distribution in Kenya. PLoS ONE 2010, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, E. Mapcurves Algorithm. Available online: https://staff.fnwi.uva.nl/e.e.vanloon/paco.html (accessed on 11 May 2018).
- Minty, B.R.S. Fundamentals of airborne gamma-ray spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17, 39–50. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, 1st ed.; Rudnik, R.L., Ed.; Pergamon Press: Oxford, UK, 2003; Volume 3, pp. 1–64. ISBN 978-0-080-44847-3. [Google Scholar]
- Antonetti, M.; Buss, R.; Scherrer, S.; Margreth, M.; Zappa, M. Mapping dominant runoff processes: An evaluation of different approaches using similarity measures and synthetic runoff simulations. Hydrol. Earth Syst. Sci. 2016, 20, 2929–2945. [Google Scholar] [CrossRef]
- MacMillan, R.A.; Shary, P.A. Landforms and Landform Elements in Geomorphometry. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Oxford, UK, 2009; Volume 33, pp. 227–254. ISBN 978-0-123-74345-9. [Google Scholar]
- Prima, O.D.A.; Echigo, A.; Yokoyama, R.; Yoshida, T. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology 2006, 78, 373–386. [Google Scholar] [CrossRef]
- Summerell, G.K.; Vaze, J.; Tuteja, N.K.; Grayson, R.B.; Beale, G.; Dowling, T.I. Delineating the major landforms of catchments using an objective hydrological terrain analysis method. Water Resour. Res. 2005, 41, 12. [Google Scholar] [CrossRef]
- Carneiro, C.D.C.; Fraser, S.J.; Crósta, A.P.; Silva, A.M.; Barros, C.E.D.M. Semiautomated geologic mapping using Self-Organizing Maps and airborne geophysics in the Brazilian Amazon. Geophysics 2012, 77, 17–24. [Google Scholar] [CrossRef]
- Craig, M.A. Regolith mapping for geochemical exploration in the Yilgarn Craton, Western Australia. Geochem. Explor. Environ. Anal. 2001, 1, 383–390. [Google Scholar] [CrossRef]
Title | CRMU Regolith Types (Figure 6) | |||||||
---|---|---|---|---|---|---|---|---|
Traditional Regolith Types (Figure 2) | Alluvial Sediments | Colluvial Sediments | Gawler Range Volcanics | Lake/ Palaeochannel Sediments | Non- Gawler Range Volcanics Bedrock | Sandplains/ dunes, mostly aeolian origin | Duricrusts | Undifferentiated Quartz |
Alluvial deposits | ||||||||
Colluvial deposits associated with Archean to Palaeoproterozoic undifferentiated bedrock | ||||||||
Colluvial deposits associated with Mesoproterozoic felsic volcanic bedrock | ||||||||
Older ferruginous colluvial deposits | ||||||||
Mesoproterozoic felsic volcanic bedrock | ||||||||
Palaeochannel deposits (Garford Formation) | ||||||||
Playa lake deposits | ||||||||
Archean Palaeoproterozoic bedrock | ||||||||
Mesoproterozoic granitic bedrock | ||||||||
Aeolian sand capping dune and sand sheet deposits | ||||||||
Aeolian sand sheet deposits | ||||||||
Depositional plain deposits | ||||||||
Longitudinal sief dune field deposits | ||||||||
Sandplain deposits | ||||||||
Source bordering dune deposits | ||||||||
Calcrete | ||||||||
Ferricrete | ||||||||
Silcrete | ||||||||
Undifferentiated quartz veins and quartz bodies |
Class | Description | Breakpoints (Standard Deviation Units) | Slope (Degrees) |
---|---|---|---|
1 | Ridge | > 1 | N/A |
2 | Upper slope | > 0.5 ≤ 1 | N/A |
3 | Middle slope | > −0.5 < 0.5 | > 5 |
4 | Flats slope | ≥ −0.5 ≤ 0.5 | ≤ 5 |
5 | Lower slopes | ≥ −1 < 0.5 | N/A |
6 | Valleys | < −1 | N/A |
Class | Average Values | 1 | 3 | 6 | 13 | 16 | 18 | 26 | 28 |
---|---|---|---|---|---|---|---|---|---|
DEM (m) | NA | 202.73 | 177.13 | 250.03 | 346.91 | 165.14 | 229.41 | 293.46 | 306.80 |
K (%) | 1.90 | 0.59 | 1.08 | 1.26 | 0.93 | 2.20 | 3.17 | 3.69 | 3.67 |
Th (ppm) | 8.50 | 1.08 | 7.38 | 10.41 | 10.46 | 13.22 | 21.44 | 26.36 | 26.86 |
U (ppm) | 2.70 | 1.26 | 1.01 | 1.31 | 1.20 | 1.81 | 2.90 | 3.99 | 3.87 |
CRMU Regolith Type | Image Mapping Class | |||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 6 | 13 | 16 | 18 | 26 | 28 | |
Alluvial sediments | 0 | 0 | 0.21 | 0 | 1.21 | 2.29 | 0 | 0 |
Colluvial sediments | 0 | 0 | 3.57 | 0.93 | 0.37 | 31.8 | 0.14 | 0 |
Gawler Range Volcanics | 0 | 0 | 0.07 | 0.03 | 0.01 | 23.3 | 35.98 | 25.71 |
Lake/Palaeochannel sediments | 0 | 1.61 | 0.01 | 0 | 2.37 | 0.04 | 0 | 0 |
Non-Gawler Ranges Volcanics | 0.03 | 0.23 | 2.90 | 11.66 | 0.07 | 0 | 0 | 0.11 |
Sandplains/dunes | 9.24 | 35.98 | 30.41 | 0.03 | 5.97 | 1.04 | 0 | 0 |
Duricrusts | 0 | 0.03 | 1.17 | 1.59 | 0 | 0.03 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, A.S.; Clarke, K.D.; Tiddy, C.J.; Delean, S.; Lewis, M.M. Objective Regolith-Landform Mapping in a Regolith Dominated Terrain to Inform Mineral Exploration. Geosciences 2018, 8, 318. https://doi.org/10.3390/geosciences8090318
Caruso AS, Clarke KD, Tiddy CJ, Delean S, Lewis MM. Objective Regolith-Landform Mapping in a Regolith Dominated Terrain to Inform Mineral Exploration. Geosciences. 2018; 8(9):318. https://doi.org/10.3390/geosciences8090318
Chicago/Turabian StyleCaruso, Alicia S., Kenneth D. Clarke, Caroline J. Tiddy, Steven Delean, and Megan M. Lewis. 2018. "Objective Regolith-Landform Mapping in a Regolith Dominated Terrain to Inform Mineral Exploration" Geosciences 8, no. 9: 318. https://doi.org/10.3390/geosciences8090318
APA StyleCaruso, A. S., Clarke, K. D., Tiddy, C. J., Delean, S., & Lewis, M. M. (2018). Objective Regolith-Landform Mapping in a Regolith Dominated Terrain to Inform Mineral Exploration. Geosciences, 8(9), 318. https://doi.org/10.3390/geosciences8090318