Lake Nyos, a Multirisk and Vulnerability Appraisal
Abstract
:1. Introduction
2. The Lake Nyos Area
2.1. Geomorphological Setting
2.2. Geological Setting; Lake Nyos: A Maar
- -
- Volcanic conglomerates including basalt and bombs, lapilli, volcanic ash and scoria of basaltic composition, peridotite nodules (lherzolite facies [29]). Peridotite is a granular rock, mantle-derived [30], with an oily dark yellow or usually blackish green color. The Lake Nyos collected facies features are highly melanocratic, with 90% ferromagnesian rock. Being ultramafic in composition, it contains olivine and pyroxene, spinel and brown amphibole. Peridotite facies of Lake Nyos is a lherzolite, having a dominant composition of clino and orthopyroxene, in enclaves in basalts, very dark gray (2.5 Y 3/0), with green or olive spots (5 Y 5/4).
- -
- Basement rocks: xenoliths of porphyritic granite [31], pegmatite [32] and carbonatites [5] fragments embedded in a matrix of basalt criss crossed by a series of fractures [33]. They are interpreted as hydroclastic deposits due to the initial presence of water before the explosion that sets up the maar;
- -
- An intermediate stratum of lapilli, dark gray to black (7.5 R 4/0), 1.5 cm thick.
- -
- The cemented material shows a breccia-like aspect, and this is interpreted as a hydroclastic deposit mixed with pyroclasts of gray dominant color (7.5 T 5/0) to dark gray (2.5 Y 4/0), with occasional white spots.
3. Methods
3.1. Topographic Maps and Satellite Images
3.2. Risk Management and Assessment
- S is severity
- P1: structural damage
- P2: functional losses
- P3: personal injuries
- P4: Hazard perception
- 4 represents the number of parameters
- -
- The severity of the possible adverse consequences. Potential severity is based on how severe the event would be if no preventative measures are introduced.
- -
- The probability of reoccurrence time (over 1 up to 100 years) of each consequence. Probability of occurrence (frequency) is based on the chances of the event happening if the existing hazards or conditions are not corrected.
4. Results and Interpretation
4.1. Volcanic Hazards
4.1.1. The Lake Nyos Disaster: A Review
4.1.2. Faults and Lineaments and Volcanic Hazards
4.1.3. The Generated DEM
4.1.4. Volcanic Hazards and Mechanism of the Lake Nyos Disaster
- (1)
- SW–NE (0–40° E) which accounts for 35% of tectonic features. This main orientation links Lake Nyos to Lake Monoun southeastwards.
- (2)
- NW–SE (90–180° E/120–180° E) accounting for 30% of the main directions.
4.2. Flood Hazard Processes
4.2.1. Elements of Fragility of Pyroclastic Dam
The Lake Dam
Weak Consolidation of the Pyroclastic Material
4.2.2. Chemical Weathering and Deep Decomposition of Granite
4.2.3. Erosion, Instability and Fragility of the Dam
4.2.4. Floods Caused by Dam Failure
- -
- Seismic events that are accompanied by mass movements. Seismic recordings were carried out for six months [59]; however, there no earthquake was recognizable. There is still some seismic risk [20], since this area is geologically active and belongs to the Pan African mobile area of the Central African belt and is located to the North West (400–500 km) of the Congo Craton [61];
- -
- Phreato magmatic eruption at the current location of the dam;
- -
- Regressive mechanical/linear backward erosion following a major flood affecting the downstream portion of the dam;
- -
- Mass movements (cavity collapse) due to karstic processes, chemical erosion and subsidence.
4.3. Landslide Hazard Processes
4.4. Disaster Risk, Governance and Mitigation in Cameroon National Policy
5. Discussion and Perspectives
5.1. Mitigation Measures and Hazards Assessment
5.1.1. Gas Mitigating and Securing Solutions
5.1.2. Landslide and Jet Grouting Solutions
5.2. Social Perception and Civil Protection Inefficiency
5.3. The Future of Lake Nyos and Cameroon Lakes
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Burton, I.; Robert, W.K.; White, G.F. The Environment as Hazard; Oxford University Press: New York, NY, USA, 1978. [Google Scholar]
- Lockwood, J.P.; Rubin, M. Origin and age of the lake Nyos maar, Cameroon. J. Volc. Geoth. Res. Great Br. 1989, 39, 117–124. [Google Scholar] [CrossRef]
- Aka, F.T.; Kusakabe, M.; Nagao, K. New Kar ages for Lake Nyos maar, Cameroon. Implications on hazard evaluation. Géosci. Cameroun. 2001, 1, 25–26. [Google Scholar]
- Barberi, F.; Chelini, W.; Marinelli, G.; Martini, M. The gas cloud of Lake Nyos (Cameroon, 1986): Results of the Italian technical mission. J. Volcanol. Geotherm. Res. 1989, 39, 125–134. [Google Scholar] [CrossRef]
- Tazieff, H.; Faivre-Pierret, R.X.; Le Guern, F. La catastrophe de Nyos, République du Cameroun. Ministère Coopération 1986, 75, 811. [Google Scholar]
- Tazieff, H. Mechanism of the Nyos carbon dioxide disaster of so-called phreatic steam eruption. J. Volc. Geoth. Res. 1989, 39, 109–116. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Devine, J.D.; Tchoua, F.M.; Presser, T.S.; Pringle, M.K.W.; Evans, W.C. Origin of the lethal gas burst from lake Monoun Cameroon. J. Volc. Geoth. Res. Great Br. 1987, 31, 1–16. [Google Scholar] [CrossRef]
- Morin, S.; Pahaï, J. La catastrophe de Nyos (Cameroun). Rev. Géogr. Cameroun. 1986, 6, 81–105. [Google Scholar]
- Kling, G.W.; Clark, M.A.; Compton, H.R.; Devine, J.D.; Evans, W.C.; Humphrey, A.M.; Koenigsberg, E.J.; Lockwood, J.P.; Tuttle, M.L.; Wagner, G.N. The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 1987, 236, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Kling, G.W.; Evans, W.C.; Tanyileke, G.; Kusakabe, M.; Ohba, T.; Yoshida, Y.; Hell, J.V. Degassing Lakes Nyos and Monoun: Defusing certain disaster. Proc. Natl. Acad. Sci. USA 2005, 102, 14185–14190. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, M.; Ohba, T.; Issa Yoshida Satake, H.; Ohizumi, T. Evolution of CO2 in Lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem. J. 2008, 42, 93–118. [Google Scholar] [CrossRef]
- Nagao, K.; Kusakabe, M.; Yoshida, Y.; Tanyileke, G. Noble gases in Lakes Nyos and Monoun, Cameroon. Geochem. J. 2010, 44, 519–554. [Google Scholar] [CrossRef]
- Kling, G.W. Seasonal mixing and catastrophic degassing in tropical lakes, Cameroon, West Africa. Science 1987, 237, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, O. La catastrophe du lac Nyos. Asp. Sci. Géologues Paris 1991, 96, 13–24. [Google Scholar]
- Kusakabe, M. Lakes Nyos and Monoun Gas Disasters (Cameroon)—Limnic Eruptions Caused by Excessive Accumulation of Magmatic CO2 in Crater Lakes. Geochem. Monogr. Ser. 2017, 1, 1–50. [Google Scholar] [CrossRef]
- Pigeon, P. Géographie Critique des Risques; Economica-Anthropos: Paris, France, 2005; p. 217. [Google Scholar]
- Tchindjang, M.; Bizenga, J.F.; Kah, E.F.; Menga, F.V.; Nankam, A.; Mphoweh, J.N.; Nghonda, J.P. The contribution of EO data in the identification and management of hydro-geological risks in the lake Nyos region of West Cameroon. In Application of Satellite Remote Sensing to Support Water Resources Management in Africa: Results from the TIGER Initiative, IHP-VII, N°. 85 (Technical Documents in Hydrology); UNESCO: Paris, France, 2010; pp. 66–76. [Google Scholar]
- Hassert, K. Seenstudien in Nord-Kamerun. Z. Ges. Erdk. Berlin 1912, 7, 135–144. [Google Scholar]
- Kling, G.W. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnol. Oceanogr. 1988, 33, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Tchindjang, M. Paradoxes et Risques Dans les Hautes Terres Camerounaises: Multifonctionnalité Naturelle et Sous Valorisation Humaine; Université de Paris: Paris, France, 2012; p. 266. [Google Scholar]
- Lorenz, V. On the formation of maars. Bull. Volcanol. 1973, 37, 183–204. [Google Scholar] [CrossRef]
- Lorenz, V. Maars and diatrems of phreato-magmatic origin: A review. Trans. Geol. Soc. S. Afr. 1985, 88, 459–470. [Google Scholar]
- Lorenz, V. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull. Volcanol. 1986, 48, 265–274. [Google Scholar] [CrossRef]
- Lorenz, V. Maar-diatreme volcanoes, their formation, and their setting in hard rock or soft rock environments. Geolines 2003, 15, 72–83. [Google Scholar]
- Tchindjang, M. La notion de maar. L’exemple du Laquet Banefo dans les reliefs du Bamiléké central et oriental (Ouest Cameroun). Cah. Géologiques 1993, 121, 1350–1376. [Google Scholar]
- White, J.D.L.; Ross, P.S. Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Chako Tchamabé, B. Volcano-Stratigraphy and Geochemistry of Tephra Deposits and Its Relevance for Understanding the Polygenetic Inheritance and Plumbing System of Maar-Diatreme Volcanoes: Clues for Hazards Prospective, a Case Study for the Barombi Mbo Maar, Cameroon, Central Africa; Tokai University: Tokyo, Japan, 2015. [Google Scholar]
- Chako Tchamabe, B.; Kereszturi, G.; Németh, K.; Carrasco-Núñez, G. How polygenetic are monogenetic volcanoes: Case Studies of Some Complex Maar-Diatreme Volcanoes. In Volcanology—From Volcano Modelling to Volcano Geology; InTech: New York, NY, USA, 2016; pp. 355–389. [Google Scholar]
- Njilah, I.K.; Ajonina, H.N.; Kamgang, K.V.; Tchindjang, M. K-AR ages, mineralogy, major and trace element geochemistry of the Tertiary-Quaternary lavas from Ndu volcanic ridge NW Cameroon. AJST 2004, 5, 47–56. [Google Scholar]
- Foucault, A.; Raoult, J.F. Dictionnaire de Géologie, 4th ed.; Masson: Paris, France, 1995; p. 328. [Google Scholar]
- Temdjim, R.; Tchoua, F.M. Cadre géologique de la région du lac Nyos. Rev. Géogr. Cameroun. 1991, 1, 32–38. [Google Scholar]
- Njilah, I.K.; Tchindjang, M.; Ndikontar, M.K. Lake Nyos natural dam, Northwest Cameroon: An imminent catastrophe in the making. Afr. Geosci. Rev. 2002, 9, 369–375. [Google Scholar]
- Tchindjang, M.; Njilah, I.K. Genèse et études quantitatives des marmites d’érosion du barrage de pyroclastites du lac Nyos Nord-Ouest Cameroun. Cah. Géologiques 2002, 140, 2009–2022. [Google Scholar]
- Wandji, P. Contribution à L’étude Pétrologique et Géochimique des Projections Volcaniques de la Région de Foumbot; Université de Yaoundé: Yaound, Cameroon, 1985. [Google Scholar]
- Léone, F.; Asté, J.P.; Leroi, E. L’évaluation de la vulnérabilité aux mouvements de terrains: Pour une meilleure quantification du risque. Rev. Géogr. Alp. 1996, 84–91, 35–46. [Google Scholar] [CrossRef]
- Guillard, C. Evaluation et cartographie du risque de glissement de terrain d’une zone située au Nord de Lisbonne. In Mémoire Master, Systèmes Territoriaux, Développement Durable et Aide à la Decision; Ecole Nationale Supérieure des Mines St Etienne: Saint-Étienne, France, 2009; p. 59. [Google Scholar]
- Pigeon, P. Réflexions sur la Géographie des Risques dits Naturels; Université de Nice-Sophia-Antipolis: Nice, France, 2002; p. 598. [Google Scholar]
- Pigeon, P. Réflexions sur les notions et les méthodes en géographie des risques dits naturels. Ann. Géo. 2002, 627–628, 452–470. [Google Scholar] [CrossRef]
- Lockwood, J.P.; Costa, J.E.; Tuttle, M.L.; Nni, J.; Tebor, S.G. The potential for catastrophic Dam failure at Lake Nyos maar, Cameroon. Bull. Volcanol. 1988, 50, 340–349. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters, 2nd ed.; Routledge: London, UK, 2004; p. 464. [Google Scholar]
- Cannon, T. A natural hazards not a disaster make: Vulnerability and the causes of natural disasters. In Natural Disasters: Protecting Vulnerable Communities; Merriman, P.A., Browitt, C.W.A., Eds.; Thomas Telford services Ltd.: London, UK, 1993; pp. 92–105. [Google Scholar]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework. Tyndall Centre for Climate Change Research Working Paper 38. 2003. Available online: http://www.tyndall.ac.uk/publications/working_papers/wp38.pdf (accessed on 28 March 2014).
- Morin, S.; Zogning, J. L’éruption du Monoun (Pays Bamoun) du 16 août 1984. Rev. Géogr. Cam. 1986, 2, 107–119. [Google Scholar]
- Tchindjang, M.; Njilah, I.K. Risques d’inondation dans la vallée de Nyos. AJST 2001, 2, 50–62. [Google Scholar] [CrossRef]
- Freeth, S.J. The lake Nyos gas disaster. In Natural Hazards in West and Central Africa; Vieweg+Teubner Verlag: Berlin/Heidelberg, Germany, 1992; pp. 63–82. [Google Scholar]
- Sigvaldason, G.E. International Conference on Lake Nyos Disaster, Yaoundé, Cameroon 16–20 March 1987: Conclusions and Recommendations. J. Volcanol. Geotherm. Res. 1989, 39, 97–107. [Google Scholar] [CrossRef]
- Gèze, B. Géographie physique et Géologie du Cameroun Occidental. Contribution à L’étude Pétrographique du Cameroun par Élisabeth Jérémine. Mémoire du Muséum d’Histoire Naturelle. Available online: http://sciencepress.mnhn.fr/fr/collections/memoires-du-museum-national-d-histoire-naturelle-nouvelle-serie-1935-1950/geographie-physique-et-geologie-du-cameroun-occidental (accessed on 20 August 2018).
- Kusakabe, M.; Tanyileke, G.Z.; McCord, S.A.; Schladow, S.G. Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: Implications for the degassing strategy and its numerical simulation. J. Volcanol. Geotherm. Res. 2000, 97, 241–260. [Google Scholar] [CrossRef]
- Amin, M.; Manga, J. Final Report on Security and Socio-Economic Reintegration of the Lake Nyos Area, Cameroon Lake Nyos Project. Yaoundé, Cameroon, 2010; p. 76. Available online: https://erc.undp.org/evaluation/evaluations/detail/4944 (accessed on 20 August 2018).
- Freeth, S.J. When the lake Nyos dam fails, there will be serious flooding in Cameroon and Nigeria—But, when will it fail? EOS 1988, 69, 776–777. [Google Scholar] [CrossRef]
- Hallbwachs, M.; Wong, B.; Sabroux, J.C. Degassing the “Killer Lakes” Nyos and Monoun, North West Province of Cameroon. EOS 2004, 85, 281–288. [Google Scholar] [CrossRef]
- Kusakabe, M. Evolution of CO2 Content in Lakes Nyos and Monoun, and Sub-lacustrine CO2-Recharge System at Lake Nyos as Envisaged from CO2/3He Ratios and Noble Gas Signatures; Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., Eds.; Digital Science & Research Solutions Ltd.: London, UK, 2015; Available online: https://app.dimensions.ai/details/publication/pub.1038367057 (accessed on 20 August 2018).
- Yoshida, Y.; Kusakabe, M.; Issa Ohba, T.; Tanyileke, G.; Hell, J. Decreasing capability of the degassing systems at lakes Nyos and Monoun (Cameroon): A new gas removal system applied to Lake Monoun to prevent a future limnic eruption. In Geochemistry and Geophysics of Active Volcanic Lakes. Geological Society; Ohba, T., Capaccioni, B., Caudron, C., Eds.; Special Publications; Geological Society: London, UK, 2015; Available online: http://sp.lyellcollection.org/content/early/2015/12/17/SP437.3 (accessed on 20 August 2018).
- Kozono, T.; Kusakabe, M.; Yoshida, Y.; Ntchantcho, R.; Ohba, T.; Tanyileke, G.; Hell, J. Numerical assessment of the potential for future Limnic eruptions at lakes Nyos and Monoun, Cameroon based on regular monitoring data. In Geochemistry and Geophysics of Active Volcanic Lakes Geological Society; Ohba, T., Capaccioni, B., Caudron, C., Eds.; Special Publications; The Geological Society of London: London, UK, 2016; Available online: http://sp.lyellcollection.org/content/437/1/163 (accessed on 20 August 2018).
- Costa, A.; Macedonio, G.; Chiodini, G. Numerical model of gas dispersion emitted from volcanic sources. Ann. Geophys. 2005, 48, 805–815. [Google Scholar]
- Costa, A.; Chiodini, G. Modelling Air Dispersion of CO2 from Limnic Eruptions, Volcanic Lakes; Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; pp. 451–465. [Google Scholar]
- Abdullah, S. Application of Remote Sensing Data and Hazard Modeling. 2–14 November 2014, Islamabad. International Conference on Space (ICS-2014)-SUPARCO. Available online: suparco.gov.pk/pages/presentations-pdf/day-2/session-1/.../1.pdf (accessed on 25 November 2017).
- Olivry, J.C. Fleuves et Rivières du Cameroun. MESRES—ORSTOM. Collection Monographies Hydrologiques de l’ORSTOM, Paris. 1986. Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/Mon_hydr/25393.pdf (accessed on 20 August 2018).
- HYDROPLAN. Rapport D’études de la Sécurisation du Barrage du Lac Nyos; HYDROPLAN: Worms, Germany, 2008; p. 70. [Google Scholar]
- Hallbwachs, M.; Sabroux, J.-C. Removing CO2 from Lake Nyos in Cameroon. Science 2001, 292, 438. [Google Scholar]
- Bessoles, B.; Trompette, R. La chaîne panafricaine zone mobile d’Afrique centrale (partie sud) et zone mobile soudanaise. BRGM 1980, 92, 396. [Google Scholar]
- UNEP/OCHA Environment Unit. Lake Nyos dam Assessment; UNEP/OCHA Environment Unit: Geneva, Switzerland, 2005; Available online: http://www.reliefweb.int/library/documents/2005/ocha-cmr-30sep.pdf (accessed on 20 September 2008).
- Zogning, A.; Giresse, P.; Maley, J.; Gadel, F. The late Holocene palaeoenvironnement in the lake Njupi area, West Cameroon: Implications regarding the history of lake Nyos. J. Afr. Earth Sci. Great Br. 1997, 24, 285–300. [Google Scholar] [CrossRef]
- Freeth, S.J. Lake Nyos-Can another disaster be avoided? Geochem. J. 1994, 28, 163–172. [Google Scholar] [CrossRef]
- UNDP. Disaster Risk Reduction, Governance and Mainstreaming. 2010. Available online: http://www.undp.org/content/dam/undp/library/crisis%20prevention/disaster/4Disaster%20Risk%20Reduction%20-%20Governance.pdf (accessed on 6 December 2017).
- Tchinda Ngoumela Ben, T. Le Système de Prévention et de Gestion des Ctastrophes Environnementales au Cameroun et le Droit International de l’Environnement. Mémoire de Master en Droit de l’Environnement. Université de Limoges, 2010. Available online: https://www.memoireonline.com/10/10/4030/m_Le-systeme-de-prevention-et-de-gestion-des-catastrophes-environnementales-au-Cameroun-et-le-droit-i0.html (accessed on 20 September 2008).
- Ndille, R.; Belle, A.J. Managing the Limbe Floods: Considerations for Disaster Risk Reduction in Cameroon. Int. J. Disaster Risk Sci. 2014, 5, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Bang, H.N. Governance of disaster risk reduction in Cameroon: The need to empower local government. Jàmbá. J. Disaster Risk Stud. 2013, 5, 10. [Google Scholar] [CrossRef]
- Buh-Wung, G.; Aka, F.; Tongwa Burnley, C.; Zouh Tem, I. Local governance in disaster risk reduction in Cameroon. Jàmbá. J. Disaster Stud. 2012, 4, 52–60. [Google Scholar]
- MINATD/DCP. Rapport sur l’état de la Protection Civile au Cameroun. A L’école de la Protection Civile, MINATD, Yaoundé, 2006. Available online: http://crd.ensosp.fr/index.php?lvl=notice_display&id=12257 (accessed on 20 September 2008).
- MINATD/DCP. Cameroon Civil Protection Report, 2008–2009, Civil Defence through Lifesaving Actions, MINATD, Yaoundé. Available online: https://www.preventionweb.net/english/policies/v.php?id=10253&cid=30 (accessed on 20 September 2008).
- Sher, S.A. Hydropower References 2010–2016. Available online: https://www.sher.be/medias/ (accessed on 20 August 2018).
- Le Guern, F.; Tazieff, H.; Faivre Pierret, R. An example of health hazard: People killed by gas during a phreatic eruption: Dieng Plateau (Java, Indonesia), 20 February 1979. Bull. Volcanol. 1982, 45, 153–156. [Google Scholar] [CrossRef]
- Issa Fantong, W.Y.; Aka, F.T.; Ohba, T.; Chako Tchamabé, B.; Rouwet, D.; Yoshida, Y.; Gbetnkom Mouliom, A.; Sighomnoun, D.; Sigha, N.; Kusakabe, M.; et al. d18O and dD variation in some volcanic lakes along the Cameroon Volcanic Line (West-Africa): Generating an isotopic baseline data for volcanoes monitoring/surveillance in Cameroon. J. Limnol. 2014, 74, 95–113. [Google Scholar] [CrossRef]
- Kusakabe, M.; Ohsumi, T.; Aramaki, S. The Lake Nyos gas disaster: Chemical and isotopic evidence in waters and dissolved gases from three Cameroonian crater lakes, Nyos, Monoun and Wum. J. Volcano Geotherm. Res. 1989, 39, 167–185. [Google Scholar] [CrossRef]
Rank * | Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) |
---|---|---|---|---|
1 | Non-structural or light damage, Stability unaffected | No resettlement, no unavoidable change | No injury, no death, no homeless, undisturbed road traffic, very low density travelers | Hazard well perceived and well known |
2 | Cracking of walls unaffected stability, non-urgent repair | 1–10 resettlements, no road deviation | Slight injury, no homeless, no traffic disruption, low density travelers | Hazard well perceived and known |
3 | Major deformations, walls cracked, structural cracking, evacuation required | More than 10 resettlements, without deviation or deviation of less than 20 km | Serious injury or illness, with or without shelter, large number of travelers | Hazard perceived and poorly known |
4 | Fracturing of structures, separation of parts, partial collapse, breach, evacuation, rehabilitation compromised | More than 10 resettlements with road deviation of less than 50 km | Serious injury requiring hospitalization, many homeless, travelers blocked, deviation needed | Hazard weakly perceived and unknown |
5 | Partial or total collapse, evacuation, rehabilitation | More than 10 resettlements, with road deviation of more than 50 km | Death, resettlement, deviation for long-term | Hazard not perceived and unknown |
Level | Frequency | Indicators |
---|---|---|
1 | Extremely rare | <1 event every century |
2 | Rare | 1 event between 10 and 100 years |
3 | Nearly frequent | 1 event between 1 and 10 years |
4 | Frequent | 1 event every 3 years |
5 | More frequent | 1 event each year |
Frequency | ||||||
---|---|---|---|---|---|---|
Severity | More Frequent | Frequent | Nearly Frequent | Rare | Extremely Rare | |
Very low | 1 | 2 | 3 | 4 | 5 | |
Low | 2 | 4 | 6 | 8 | 10 | |
Moderate | 3 | 6 | 9 | 12 | 15 | |
High | 4 | 8 | 12 | 16 | 20 | |
Extreme | 5 | 10 | 15 | 20 | 25 |
Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) | |
---|---|---|---|---|
Observed elements | 20 houses destroyed and abandoned | 4434 homeless resettled 3000 cattle killed | 1746 killed 874 survivors with trauma | Hazard fully misperceived and unknown |
Score | 5 | 5 | 5 | 5 |
Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) | |
---|---|---|---|---|
Observed elements | Many houses should be destroyed, buildings | Thousands of homeless would need to be resettled, destruction of crops, livestock, wildlife, pasture lands | 10,000 to 15,000 death [33] and many traumas, physical stress | Hazard fully misperceived and unknown |
Score | 5 | 5 | 5 | 5 |
Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) | |
---|---|---|---|---|
Observed elements | Some houses exposed could be affected or destroyed, no infrastructure to be destroyed by topple or landslide on slope | No homeless, nobody or few people need to be resettled. Possible destruction of crops, road cutting | No injury, no wounded, no trauma, fear, no death | Hazard perceived and poorly known |
Score | 2 | 4 | 2 | 3 |
Type of Hazards | Area | Severity | Frequency | Total (Severity × Frequency) | Final Results |
---|---|---|---|---|---|
Landslide | Lake Nyos cliff | 2.75 | 3 | 8.25 | Tolerable |
Floods | Nyos and Kimbi valley | 5 | 5 | 25 | Catastrophic |
Volcanic, limnic eruption | Nyos valley and surrounding settlements | 5 | 5 | 25 | Catastrophic |
Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) | |
---|---|---|---|---|
Observed elements | No house destroyed or abandoned | No homeless no resettlement Possible destruction of cattle | No killed No injury, no trauma | Hazard perceived and poorly known |
Score | 1 | 1 | 1 | 3 |
Structural Damages (P1) | Functional Losses (P2) | Personal Injuries (P3) | Hazard Perception (P4) | |
---|---|---|---|---|
Observed elements | No house, no building to be destroyed | No homeless, no resettlement, no destruction of crops, livestock, wildlife, pasture lands | No death, no injury, no trauma | Hazard weakly perceived and unknown |
Score | 1 | 1 | 1 | 4 |
Type of Hazards | Area | Severity | Frequency | Total (Severity × Frequency) | Final Results |
---|---|---|---|---|---|
Landslide | Lake Nyos cliff | 2.75 | 3 | 8.25 | Tolerable |
Floods | Nyos and Kimbi valley | 1.75 | 4 | 7 | Acceptable |
Volcanic, limnic eruption | Nyos valley and surrounding settlements | 1.5 | 4 | 6 | Acceptable |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchindjang, M. Lake Nyos, a Multirisk and Vulnerability Appraisal. Geosciences 2018, 8, 312. https://doi.org/10.3390/geosciences8090312
Tchindjang M. Lake Nyos, a Multirisk and Vulnerability Appraisal. Geosciences. 2018; 8(9):312. https://doi.org/10.3390/geosciences8090312
Chicago/Turabian StyleTchindjang, Mesmin. 2018. "Lake Nyos, a Multirisk and Vulnerability Appraisal" Geosciences 8, no. 9: 312. https://doi.org/10.3390/geosciences8090312
APA StyleTchindjang, M. (2018). Lake Nyos, a Multirisk and Vulnerability Appraisal. Geosciences, 8(9), 312. https://doi.org/10.3390/geosciences8090312