Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats
Abstract
:1. Introduction
2. Hf-Nd Isotopes in Modern to Cenozoic Aqueous Environments
2.1. Decoupling of Hf-Nd Isotopes in Seawater
2.2. Causes to Decouple Hf and Nd Isotopes in Modern Environments
2.2.1. Hf-Nd Decoupling on the Continents
2.2.2. Hf-Nd Decoupling in Seawater
Riverine Input
Aeolian Input
Benthic Flows
Hydrothermal Input
3. Decoupled Hf-Nd in Suspended and Dissolved Loads of Late Archaean Seawater
4. Implications for the Geodynamical Evolution of Archaean Continents and Their Impact on the Earliest Marine Habitats
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Kamber, B.S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 2015, 258, 48–82. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Zhang, C.; Moyen, J.-F.; Nagel, T. The formation of tonalites-trondjhemites-granodiorites and of the early continental crust. In Earth’s Oldest Rocks, 2nd ed.; van Kranendonk, M., Bennett, V., Hoffmann, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444639011. [Google Scholar]
- Hoffmann, J.E.; Münker, C.; Næraa, T.; Rosing, M.T.; Herwartz, D.; Garbe-Schönberg, D.; Svahnberg, H. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochim. Cosmochim. Acta 2011, 75, 4157–4178. [Google Scholar] [CrossRef]
- Arndt, N.T. Formation and Evolution of the Continental Crust. Geochem. Perspect. Lett. 2013, 2, 405–533. [Google Scholar] [CrossRef] [Green Version]
- Flament, N.; Coltice, N.; Rey, P.F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 2008, 275, 326–336. [Google Scholar] [CrossRef]
- Kamber, B.S. Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry. Chem. Geol. 2010, 274, 19–28. [Google Scholar] [CrossRef]
- Large, R.R.; Mukherjee, I.; Zhukova, I.; Corkrey, R.; Stepanov, A.; Danyushevsky, L.V. Role of upper-most crustal composition in the evolution of the Precambrian ocean–atmosphere system. Earth Planet. Sci. Lett. 2018, 487, 44–53. [Google Scholar] [CrossRef]
- Viehmann, S.; Hoffmann, J.E.; Münker, C.; Bau, M. Decoupled Hf-Nd isotopes in Neoarchean seawater reveal weathering of emerged continents. Geology 2014, 42, 115–118. [Google Scholar] [CrossRef]
- Viehmann, S.; Bau, M.; Hoffmann, J.E.; Münker, C. Decoupled Hf and Nd isotopes in suspended particles and in the dissolved load of Late Archean seawater. Chem. Geol. 2018, 483, 111–118. [Google Scholar] [CrossRef]
- van Kranendonk, M.J.; Hickman, A.H.; Smithes, R.H.; Nelson, D.R. Geology and tectonic evolution of the Archean North Pilbara Terrain, Pilbara Craton, Western Australia. Econ. Geol. 2002, 97, 695–732. [Google Scholar] [CrossRef]
- Heubeck, C.; Engelhardt, J.; Byerly, G.R.; Zeh, A.; Sell, B.; Luber, T.; Lowe, D.R. Timing of deposition and deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): Very-high-resolution of Archaean surface processes. Precambrian Res. 2013, 231, 236–262. [Google Scholar] [CrossRef]
- Smith, A.J.B.; Beukes, N.J.; Gutzmer, J. The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ. Geol. 2013, 108, 111–134. [Google Scholar] [CrossRef]
- Wiemer, D.; Schrank, C.E.; Murphy, D.T.; Wenham, L.; Allen, C.M. Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat. Geosci. 2018. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Hansmeier, C.; Hollis, J.A.; Münker, C.; Viehmann, S.; Kasper, H.U. Sm-Nd and Lu-Hf isotope and trace-element systematics of Mesoarchaean amphibolites, inner Ameralik fjord, southern West Greenland. Mineral. Mag. 2015, 79, 857–876. [Google Scholar] [CrossRef]
- Szilas, K.; Hoffmann, J.E.; Schulz, T.; Hansmeier, C.; Polat, A.; Viehmann, S.; Kasper, H.U.; Münker, C. Combined bulk-rock Hf- and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array caused by crustal recycling. Chemie der Erde Geochemistry 2016, 76, 543–554. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Kröner, A.; Hegner, E.; Viehmann, S.; Xie, H.; Iaccheri, L.M.; Schneider, K.P.; Hofmann, A.; Wong, J.; Geng, H.; et al. Source composition, fractional crystallization and magma mixing processes in the 3.48–3.43 Ga Tsawela tonalite suite (Ancient Gneiss Complex, Swaziland)—Implications for Palaeoarchaean geodynamics. Precambrian Res. 2016, 276, 43–66. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patchett, P.J.; Blichert-Toft, J.; Albarède, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 1999, 168, 79–99. [Google Scholar] [CrossRef]
- Piepgras, D.J.; Wasserburg, G.J. Neodymium isotopic variations in seawater. Earth Planet. Sci. Lett. 1980, 50, 128–138. [Google Scholar] [CrossRef]
- Rickli, J.; Frank, M.; Halliday, A.N. The hafnium-neodymium isotopic composition of Atlantic seawater. Earth Planet. Sci. Lett. 2009, 280, 118–127. [Google Scholar] [CrossRef]
- White, W.M.; Patchett, J.; Ben Othman, D. Hf isotope ratios of marine sediments and Mn nodules: Evidence for a mantle source of Hf in seawater. Earth Planet. Sci. Lett. 1986, 79, 46–54. [Google Scholar] [CrossRef]
- Albarède, F.; Simonetti, A.; Vervoort, J.D.; Blichert-Toft, J.; Abouchami, W. A Hf-Nd isotopic correlation in ferromanganese nodules. Geophys. Res. Lett. 1998, 25, 3895–3898. [Google Scholar] [CrossRef] [Green Version]
- van de Flierdt, T.; Goldstein, S.L.; Hemming, S.R.; Roy, M.; Frank, M.; Halliday, A.N. Global neodymium-hafnium isotope systematics-revisited. Earth Planet. Sci. Lett. 2007, 259, 432–441. [Google Scholar] [CrossRef]
- Godfrey, L.V.; Zimmermann, B.; Lee, D.C.; King, R.L.; Vervoort, J.D.; Sherrell, R.M.; Halliday, A.N. Hafnium and neodymium isotope variations in NE Atlantic seawater. Geochem. Geophys. Geosyst. 2009, 10, 1–13. [Google Scholar] [CrossRef]
- Zimmermann, B.; Porcelli, D.; Frank, M.; Rickli, J.; Lee, D.C.; Halliday, A.N. The hafnium isotope composition of Pacific Ocean water. Geochim. Cosmochim. Acta 2009, 73, 91–101. [Google Scholar] [CrossRef]
- Pettke, T.; Lee, D.C.; Halliday, A.N.; Rea, D.K. Radiogenic Hf isotopic compositions of continental eolian dust from Asia, its variability and its implications for seawater Hf. Earth Planet. Sci. Lett. 2002, 202, 453–464. [Google Scholar] [CrossRef]
- Bayon, G.; Vigier, N.; Burton, K.W.; Brenot, A.; Carignan, J.; Etoubleau, J.; Chu, N.C. The control of weathering processes on riverine and seawater hafnium isotope ratios. Geology 2006, 34, 433–436. [Google Scholar] [CrossRef]
- Rickli, J.; Frank, M.; Stichel, T.; Georg, R.B.; Vance, D.; Halliday, A.N. Controls on the incongruent release of hafnium during weathering of metamorphic and sedimentary catchments. Geochim. Cosmochim. Acta 2013, 101, 263–284. [Google Scholar] [CrossRef]
- Rickli, J.; Gutjahr, M.; Vance, D.; Fischer-Gödde, M.; Hillenbrand, C.D.; Kuhn, G. Neodymium and hafnium boundary contributions to seawater along the West Antarctic continental margin. Earth Planet. Sci. Lett. 2014, 394, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Skonieczny, C.; Delvigne, C.; Toucanne, S.; Bermell, S.; Ponzevera, E.; André, L. Environmental Hf-Nd isotopic decoupling in World river clays. Earth Planet. Sci. Lett. 2016, 438, 25–36. [Google Scholar] [CrossRef]
- Filippova, A.; Frank, M.; Kienast, M.; Rickli, J.; Hathorne, E.; Yashayaev, I.M.; Pahnke, K. Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf–Nd isotope compositions and rare earth element distributions. Geochim. Cosmochim. Acta 2017, 199, 164–184. [Google Scholar] [CrossRef]
- Merschel, G.; Bau, M.; Schmidt, K.; Münker, C.; Dantas, E.L. Hafnium and neodymium isotopes and REY distribution in the truly dissolved, nanoparticulate/colloidal and suspended loads of rivers in the Amazon Basin, Brazil. Geochim. Cosmochim. Acta 2017, 213, 383–399. [Google Scholar] [CrossRef]
- Patchett, P.J.; White, W.M.; Feldmann, H.; Kielinczuk, S.; Hofmann, A.W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 1984, 69, 365–378. [Google Scholar] [CrossRef]
- Garçon, M.; Chauvel, C. Where is basalt in river sediments, and why does it matter? Earth Planet. Sci. Lett. 2014, 407, 61–69. [Google Scholar] [CrossRef]
- Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 2015, 170, 17–38. [Google Scholar] [CrossRef]
- Gutjahr, M.; Frank, M.; Lippold, J.; Halliday, A.N. Peak Last Glacial weathering intensity on the North American continent recorded by the authigenic Hf isotope composition of North Atlantic deep-sea sediments. Quat. Sci. Rev. 2014, 99, 97–117. [Google Scholar] [CrossRef] [Green Version]
- Rickli, J.; Hindshaw, R.S.; Leuthold, J.; Wadham, J.L.; Burton, K.W.; Vance, D. Impact of glacial activity on the weathering of Hf isotopes—Observations from Southwest Greenland. Geochim. Cosmochim. Acta 2017, 215, 295–316. [Google Scholar] [CrossRef]
- Chen, T.Y.; Ling, H.F.; Frank, M.; Zhao, K.D.; Jiang, S.Y. Zircon effect alone insufficient to generate seawater Nd-Hf isotope relationships. Geochem. Geophys. Geosyst. 2011, 12, 1–9. [Google Scholar] [CrossRef]
- Garçon, M.; Chauvel, C.; France-Lanord, C.; Huyghe, P.; Lavé, J.Ô. Continental sedimentary processes decouple Nd and Hf isotopes. Geochim. Cosmochim. Acta 2013, 121, 177–195. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Plank, T.; Prytulak, J. The Hf-Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 2011, 75, 5903–5926. [Google Scholar] [CrossRef]
- Broecker, W.S.; Peng, T.H. Tracers in the Sea; Eldigio Press: New York, NY, USA, 1982. [Google Scholar]
- Tachikawa, K.; Athias, V.; Jeandel, C. Neodymium budget in the modern ocean and paleo-oceanographic implications. J. Geophys. Res. 2003, 108, 3254. [Google Scholar] [CrossRef]
- Rempfer, J.; Stocker, T.F.; Joos, F.; Dutay, J.C.; Siddall, M. Modelling Nd-isotopes with a coarse resolution ocean circulation model: Sensitivities to model parameters and source/sink distributions. Geochim. Cosmochim. Acta 2011, 75, 5927–5950. [Google Scholar] [CrossRef]
- Godfrey, L.V.; White, W.M.; Salters, V.J.M. Dissolved zirconium and hafnium distributions across a shelf break in the northeastern Atlantic Ocean. Geochim. Cosmochim. Acta 1996, 60, 3995–4006. [Google Scholar] [CrossRef]
- Rickli, J.; Frank, M.; Baker, A.R.; Aciego, S.; de Souza, G.; Georg, R.B.; Halliday, A.N. Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean. Geochim. Cosmochim. Acta 2010, 74, 540–557. [Google Scholar] [CrossRef]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Tepe, N.; Bau, M. Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-)particles. Chem. Geol. 2016, 438, 134–145. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The geochemistry of rare earth elements in the Amazon River estuary. Geochim. Cosmochim. Acta 1993, 57, 2181–2190. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Kamber, B.S. The behaviour of the rare earth elements during estuarine mixing-revisited. Mar. Chem. 2006, 100, 147–161. [Google Scholar] [CrossRef]
- Boyle, E.A.; Edmond, J.M.; Sholkovitz, E.R. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 1977, 41, 1313–1324. [Google Scholar] [CrossRef]
- Rousseau, T.C.C.; Sonke, J.E.; Chmeleff, J.; Van Beek, P.; Souhaut, M.; Boaventura, G.; Seyler, P.; Jeandel, C. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary. Nat. Commun. 2015, 6, 7592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokrovsky, O.S.; Shirokova, L.S.; Viers, J.; Gordeev, V.V.; Shevchenko, V.P.; Chupakov, A.V.; Vorobieva, T.Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; et al. Fate of colloids during estuarine mixing in the Arctic. Ocean Sci. 2014, 10, 107–125. [Google Scholar] [CrossRef] [Green Version]
- Bau, M.; Koschinsky, A. Hafnium and neodymium isotopes in seawater and in ferromanganese crusts: The “element perspective”. Earth Planet. Sci. Lett. 2006, 241, 952–961. [Google Scholar] [CrossRef]
- Ingri, J.; Widerlund, A.; Land, M.; Gustafsson, Ö.; Andersson, P.; Öhlander, B. Temporal variations in the fractionation of the rare earth elements in a Boreal river; the role of colloidal particles. Chem. Geol. 2000, 166, 23–45. [Google Scholar] [CrossRef]
- Chen, T.Y.; Li, G.; Frank, M.; Ling, H.F. Hafnium isotope fractionation during continental weathering: Implications for the generation of the seawater Nd-Hf isotope relationships. Geophys. Res. Lett. 2013, 40, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, K.; Jeandel, C.; Roy-Barman, M. A new approach to the Nd residence time in the ocean: The role of atmospheric inputs. Earth Planet. Sci. Lett. 1999, 170, 433–446. [Google Scholar] [CrossRef]
- Greaves, M.; Elderfield, H.; Sholkovitz, E. Aeolian sources of rare earth elements to the Western Pacific Ocean. Mar. Chem. 1999, 68, 31–38. [Google Scholar] [CrossRef]
- Goldstein, S.; Hemming, S. Long-lived isotopic tracers in oceanography, paleooceanography, and ice-sheet dynamics. In Treatise of Geochemistry; Elderfield, H., Holland, H.D., Turekian, K.K., Eds.; Elsevier: New York, NY, USA, 2003; Volume 6, ISBN 0-08-043751-6. [Google Scholar]
- Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M. Neodymium isotopic variations in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth Planet. Sci. Lett. 1994, 127, 55–66. [Google Scholar] [CrossRef]
- Bayon, G.; German, C.R.; Burton, K.W.; Nesbitt, R.W.; Rogers, N. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth Planet. Sci. Lett. 2004, 224, 477–492. [Google Scholar] [CrossRef]
- Elderfield, H.; Sholkovitz, E.R.R. Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet. Sci. Lett. 1987, 82, 280–288. [Google Scholar] [CrossRef]
- Haley, B.A.; Klinkhammer, G.P.; McManus, J. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 2004, 68, 1265–1279. [Google Scholar] [CrossRef]
- Jeandel, C.; Arsouze, T.; Lacan, F.; Téchiné, P.; Dutay, J.C. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins. Chem. Geol. 2007, 239, 156–164. [Google Scholar] [CrossRef]
- Arsouze, T.; Dutay, J.C.; Lacan, F.; Jeandel, C. Modeling the neodymium isotopic composition with a global ocean circulation model. Chem. Geol. 2007, 239, 165–177. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Palmore, C.D.; Fackrell, J.; Prouty, N.G.; Swarzenski, P.W.; Chevis, D.A.; Telfeyan, K.; White, C.D.; Burdige, D.J. ScienceDirect Rare earth element behavior during groundwater—Seawater mixing along the Kona Coast of Hawaii. Geochim. Cosmochim. Acta 2017, 198, 229–258. [Google Scholar] [CrossRef]
- Chen, T.Y.; Stumpf, R.; Frank, M.; Bełdowski, J.; Staubwasser, M. Contrasting geochemical cycling of hafnium and neodymium in the central Baltic Sea. Geochim. Cosmochim. Acta 2013, 123, 166–180. [Google Scholar] [CrossRef]
- German, C.R.; Klinkhammer, G.P.; Edmond, J.M.; Mitra, A.; Elderfield, H. Hydrothermal scavenging of rare earth elements in the ocean. Nature 1990, 345, 516–518. [Google Scholar] [CrossRef]
- Danielson, A.; Möller, P.; Dulski, P. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol. 1992, 97, 89–100. [Google Scholar] [CrossRef]
- Viehmann, S.; Bau, M.; Hoffmann, J.E.; Münker, C. Geochemistry of the Krivoy Rog Banded Iron Formation, Ukraine, and the impact of peak episodes of increased global magmatic activity on the trace element composition of Precambrian seawater. Precambrian Res. 2015, 270. [Google Scholar] [CrossRef]
- Garçon, M.; Carlson, R.W.; Shirey, S.B.; Arndt, N.T.; Horan, M.F.; Mock, T.D. Erosion of Archean continents: The Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks. Geochim. Cosmochim. Acta 2017, 206, 216–235. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Arndt, N.T.; Wilson, A.; Coetzee, G. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa. Am. Mineral. 2015, 100, 2396–2411. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F.; Rosing, M.; Frei, R.; Bridgwater, D. The Nd and Hf isotopic evolution of the mantle through the Archean. results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochim. Cosmochim. Acta 1999, 63, 3901–3914. [Google Scholar] [CrossRef]
- Shimizu, H.; Umemoto, N.; Masuda, A.; Appel, P.W.U. Sources of iron-formations in the archean isua and malene supracrustals, West Greenland: Evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim. Cosmochim. Acta 1990, 54, 1147–1154. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Lugmair, G.W.; Marti, K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 1978, 39, 349–357. [Google Scholar] [CrossRef]
- Scherer, E.; Münker, C.; Mezger, K. Calibration of the Lutetium-Hafnium Clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
Location | Age 1 | Sample | Type | εHf(t) 2 | ±2σ | εNd(t) 2 | ±2σ | Source |
---|---|---|---|---|---|---|---|---|
Isua Greenstone Belt | ~3.7 Ga | 810403 | BIF | +68.4 | 0.5 | −15.9 | 0.2 | [71] |
810446 | BIF | +34.1 | 0.4 | −4.5 | 0.2 | |||
Barberton Greenstone Belt | 3.42 Ga | 227.34 m | Black chert | +2.9 | 0.2 | +0.4 | 0.1 | [69] |
227.34 m | Translucent chert | +29.6 | 0.3 | −2.5 | 0.1 | |||
402.9 m | Chert breccia | −98.3 | 0.4 | +0.0 | 0.1 | |||
Temagami BIF | 2.7 Ga | FUM23 | Magnetite | +9.6 | 0.4 | +1.0 | 0.1 | [8] |
FUM24 | Magnetite | +8.4 | 0.4 | +1.0 | 0.2 | |||
FUM25 | Magnetite | +24.1 | 0.5 | +1.1 | 0.2 | |||
FUM27 | Magnetite | +6.7 | 0.5 | +0.94 | 0.3 | |||
FUM28 | Magnetite | +16.5 | 0.8 | +1.3 | 0.2 | |||
FUM26 | Chert | +9.6 | 0.7 | +0.71 | 0.3 | |||
FUM29 | Chert | +6.8 | 0.3 | +1.1 | 0.2 | |||
FUM30 | Chert | +6.8 | 0.4 | +3.0 | 0.2 | |||
FUM31 | Chert | +7.1 | 0.5 | +0.22 | 0.2 | |||
Krivoy Rog BIF | 2.6 Ga | FUM57 | Pure Fe-band | +9.5 | 1.1 | −2.3 | 0.4 | [9] |
FUM54 | A. pure Fe-band | −0.9 | 1.2 | −1.3 | 0.4 | |||
FUM53 | Impure Fe-band | +1.0 | 0.7 | +0.0 | 0.4 | |||
FUM55 | Impure Fe-band | +10.9 | 0.5 | −1.6 | 0.4 | |||
FUM56 | Impure Fe-band | +25.9 | 0.9 | −0.4 | 0.4 | |||
FUM58 | Impure chert | +0.1 | 0.3 | −2.3 | 0.4 | |||
FUM59 | Impure chert | +9.1 | 0.5 | −0.8 | 0.4 | |||
FUM60 | Impure chert | +60.6 | 1.0 | −0.9 | 0.4 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viehmann, S. Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats. Geosciences 2018, 8, 263. https://doi.org/10.3390/geosciences8070263
Viehmann S. Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats. Geosciences. 2018; 8(7):263. https://doi.org/10.3390/geosciences8070263
Chicago/Turabian StyleViehmann, Sebastian. 2018. "Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats" Geosciences 8, no. 7: 263. https://doi.org/10.3390/geosciences8070263
APA StyleViehmann, S. (2018). Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats. Geosciences, 8(7), 263. https://doi.org/10.3390/geosciences8070263