Petrographic and Petrophysical Characterization of Detrital Reservoir Rocks for CO2 Geological Storage (Utrillas and Escucha Sandstones, Northern Spain)
Abstract
:1. Introduction and Objectives
2. Geological Setting
3. Methodology
- Selection of a study area with real potential for CO2 geological storage.
- Locating surface outcrops of the target reservoir rocks and sampling.
- Sample preparation for laboratory studies.
- Petrographic and geochemical characterization of samples.
- Petrophysical characterization of samples.
- Interpretation of results and correlation of petrographic and petrophysical data.
Applied Techniques and Methods
4. Results
4.1. Heterogeneity and Anisotropy
4.2. Petrographic and Chemical Characterization
4.3. Petrophysical Characterization
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OpM | Optical Microscopy |
SEM | Scanning Electron Microscopy |
OIA | Optical Image Analysis |
XRF | X-ray fluorescence |
XRD | X-ray diffraction |
MICP | Mercury injection capillary pressure |
GPT | Gas permeameter test |
HT | Hydraulic test |
CCS | Carbon Capture and Storage |
DB | Duero basin |
NDT | Non-destuctive technique |
Vp | P-wave velocity |
Ro | Roundness |
As | Aspect |
D | Dimensions |
PI | Positive indicators |
CI | Cautionary indicators |
References
- Bachu, S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Gaus, I. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 2010, 4, 73–89. [Google Scholar] [CrossRef]
- Garía-Lobón, J.L.; Reguera-García, M.I.; Martín-León, J.; Rey-Moral, C.; Berrezueta, E. Plan de Selección y Caracterización de Áreas y Estructuras Favorables para el Almacenamiento Geológico de CO2 en España. Resumen Ejecutivo; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 2010. [Google Scholar]
- Bacci, G.; Korr, A.; Durucan, S. Experimental investigation into salt precipitation during CO2 injection in saline aquifers. Energy Procedia 2011, 4, 4450–4456. [Google Scholar] [CrossRef]
- Benson, S.B.; Cole, D.R. CO2 sequestration in deep sedimentary formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Izeg, O.; Demiral, B.; Bertin, H.; Akin, S. CO2 injection into saline carbonate aquifer formations I: Laboratory investigation. Transp. Porous Media 2008, 72, 1–24. [Google Scholar]
- Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L. Qualitative and quantitative changes in Detrital reservoir rocks caused CO2-brine-rock interactions during first injection phases (Utrillas sandstones, Northern Spain). Solid Earth 2016, 7, 37–53. [Google Scholar] [CrossRef]
- Campos, R.; Barrios, I.; Lillo, J. Experimental CO2 injection: Study of phisycal changes in sandstone porous media using HG Porosimetry and 3D pore network models. Energy Rep. 2015, 1, 71–79. [Google Scholar] [CrossRef]
- Llamas, B.; Álvarez, R.; Mazadiego, L.F.; Loredo, J.; Cámara, A. Estudio de afloramientos de unidades detríticas como posibles almacenes geológicos de CO2 en la Cuenca del Duero (España). Estudios Geológicos 2014, 70, e008. [Google Scholar] [CrossRef]
- Medina, C.; Rupp, J.; Barnes, D. Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer. Int. J. Greenh. Gas. Control 2011, 17, 411–422. [Google Scholar] [CrossRef]
- Suarez-González, A.; Kovács, T.; Herrero-Hernández, F.; Gómez-Fernandez, F. Petrophysical characterization of the Dolomitic member of the Boñar Formation (Upper Cretaceous; Duero basin, Spain) as a potential CO2 reservoir. Estudios Geológicos 2016, 72, e048. [Google Scholar]
- Saeedi, A.; Rezaee, R.; Evans, B.; Clennell, B. Multiphase flow behaviour during CO2 geo-sequestration: Emphasis on the effect of cyclic CO2-brine flooding. J. Pet. Sci. Eng. 2011, 79, 65–85. [Google Scholar] [CrossRef]
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.; Zweigel, P. Best Practice for the Storage of CO2 in Saline Aquifers. Observations and Guidelines form SACS and CO2STORE Projects; British Geological Survey (BGS): Keyworth, Notthingam, UK, 2008. [Google Scholar]
- Intergovernmental Panel on Climate Change. Special Report on Carbon Dioxide Capture and Storage; Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; p. 442. [Google Scholar]
- Martínez, R.; Suárez, I.; Carneiro, J.; Zarhloule, Y.; Le Nindre, Y.; Boavida, D. Storage capacity evaluation for development of CO2 infrastructure in the west Mediterranean. Energy Procedia 2013, 37, 5209–5219. [Google Scholar] [CrossRef] [Green Version]
- Arenillas, A.; Mediato, J.; García, J.; Molinero, R.; Catalina, R. Atlas de Estructuras del Subsuelo Susceptibles de Almacenamiento Geológico de CO2 en España; Suarez-Díaz, I., Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 2014; p. 211. [Google Scholar]
- Gallastegui, J. Estructura cortical de la cordillera y margen continental cantábricos: Perfiles ESCI-N. Trabajos de Geología 2000, 22, 9–231. [Google Scholar]
- Arnáiz, I.; Robles, S.; Pujalte, V. Correlación entre registros de sondeos y series de superficie del Aptiense-Albiense continental del extremo SW de la Cuenca Vascocantábrica y su aplicación a la identificación de zonas lignitíferas. Geogaceta 1991, 10, 65–68. [Google Scholar]
- Alonso, J.L.; Pulgar, J.A.; García-Ramos, J.C.; Barba, P. Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). In Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics; Friend, P.F., Dabrio, C.J., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 214–227. [Google Scholar]
- López Olmedo, F.; Enrile Alvir, A.; Cabra Gil, P. Mapa Geológico de España. 1: 50.000. Hoja num. 133 (Prádanos de Ojeda) Segunda Serie MAGNA, Primera Edición; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 1997. [Google Scholar]
- Espina, R.G. La Estructura y Evolución Tectonoestratigráfica del Borde Occidental de la Cuenca Vasco Cantábrica (Cordillera Cantábrica, NO de España). Ph.D. Thesis, University Oviedo, Oviedo, Spain, 1996. [Google Scholar]
- Ambrose, T.; Carballeira, J.; López-Rico, J.; Wagner, R.H. Mapa Geológico de España. 1: 50:000, Hoja núm. 107 (Baruelo de Santullan); Segunda Serie MAGNA; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 1978. [Google Scholar]
- Aróstegui, J.; Irabien, M.J.; Sangúesa, J.; Zuluaga, M. La Formación de Utrillas en el borde sur de la cuenca Vasco-Cantábrica: Aspectos estratigráficos, mineralógicos y genéticos. Estudios Geológicos 2000, 56, 251–267. [Google Scholar] [CrossRef]
- Montoto, M. Petrophysics at the Rock Matrix Scale: Hydraulic Properties and Petrographic Interpretation; Publicación técnica 11/2003; ENRESA: Madrid, Spain, 2003; p. 297. [Google Scholar]
- Mateos, F. Caracterización Pertrofísica del Acuífero Costero de Campos (Mallorca). Funcionalidad Hidráulica de su Porosidad. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2011. [Google Scholar]
- Alonso, F.J.; Esbert, R.M.; Ordaz, J. Comportamiento hídrico de calizas y dolomías. Boletín Geológico y Minero 1987, 94, 108–130. [Google Scholar]
- Hilpert, M.; Miller, C.T. Pore morphology simulation of drainage in totally wetting porous media. Adv. Water Resour. 2001, 24, 243–255. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Rivas, T.; Prieto, B.; Silva, B. Capillary rise in granitics rock: Interpretation of kinetics on the basis of pore structure. J. Colloid Interface Sci. 2000, 222, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Tournier, B.; Jeannette, D.; Destrigneville, C. Stone drying: An approach of the effective evaporating surface area. In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, Italy, 19–24 June 2000; pp. 625–635. [Google Scholar]
- Tsakiroglou, C.D.; Payatakes, A.C. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv. Water Resour. 2000, 23, 773–789. [Google Scholar] [CrossRef]
- Del Ferro, N.; Berti, A.; Francioso, O.; Ferrari, E.; Matthews, G.P.; Morari, F. Investigating the effects of wettability and pore size distribution on aggregate stability: The role of soil organic matter and the humic fraction. Eur. J. Soil Sci. 2012, 63, 152–164. [Google Scholar] [CrossRef]
- Levi, C.L.; Matthews, G.P.; Laudone, G.M.; Gribble, C.M.; Turner, A.; Ridway, C.J.; Gerard, D.E.; Schoelkopf, J.; Gane, P.A.C. Diffusion and Tortuosity in Porous Functionalized Calcium Carbonate. Ind. Eng. Chem. Res. 2015, 54, 9938–9947. [Google Scholar] [CrossRef]
- Berrezueta, E.; González-Menéndez, L.; Ordóñez-Casado, B.; Olaya, P. Pore network quantification of sandstones under experimental CO2 injection using image analysis. Comput. Geosci. 2015, 77, 97–110. [Google Scholar] [CrossRef]
- Buij, O.; Gisbertt, J. Quantification of the porosity on sandstones in digital image analysis. Geogaceta 2007, 41, 35–38. [Google Scholar]
- Wu, H.; Zhang, C.; Ji, Y.; Liu, R.; Wu, H.; Zhang, Y.; Geng, Z.; Zhang, Y.; Yang, J. An improved method of characterizing the pore structure in tight oil reservoirs: Integrated NMR and constant-rate-controlled porosimetry data. J. Pet. Sci. Eng. 2018, 166, 778–796. [Google Scholar] [CrossRef]
- Veloso, F.; Frykman, P.; Nielsen, C.M.; Soria, A.R.; Meléndez-Hevia, N. Outcrop scale reservoir characterisation and flow modelling of CO2 injection in the tsunami and the barrier island-tidal inlet reservoirs of the Camarillas Fm. (Galve Sub-basin, Teruel, NE Spain). Int. J. Greenh. Gas Control 2016, 55, 60–72. [Google Scholar] [CrossRef]
- Kaszuba, J.P.; Janecky, D.R.; Snow, M.G. Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: Implications for geologic sequestration of carbon. Appl. Geochem. 2003, 18, 1065–1080. [Google Scholar] [CrossRef]
- Fischer, S.; Liebscher, A.; De Lucia, M.; Hecht, L. Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site-Laboratory experiments and reactive geochemical modelling. Environ. Earth Sci. 2013, 70, 3687–3708. [Google Scholar] [CrossRef]
- Berrezueta, E.; Kovacs, T. Application of optical image analysis to the assessment of pore space evolution after CO2 injection in sandstones. A case study. J. Pet. Sci. Eng. 2017, 159, 679–690. [Google Scholar] [CrossRef]
- Edlman, K.; Niemi, A.; Bensabat, J.; Haszeldine, R.S.; McDermott, C.I. Mineralogical properties of the caprock and reservoir sandstone of the Heletz field scale experimental CO2 injection site, Israel; and their initial sensitivity to CO2 injection. Int. J. Greenh. Gas. Control 2016, 48, 94–104. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Cole, D.R.; Hovorka, S.D.; Gunter, W.D.; Knauss, K.G.; Freifeld, B.M. Gas–water–rock interactions in Frio formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology 2006, 34–37, 577–580. [Google Scholar] [CrossRef]
Samples | Porosity Average (%) | Ro Average | As Average | |
---|---|---|---|---|
Escucha Sandstone Mave site | 17.35 | 0.52 | 2.31 | |
Utrillas sandstone | Devesa site | 14.65 | 0.56 | 2.11 |
Olleros site | 7.78 | 0.55 | 2.14 |
Sample | SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | MnO (%) | MgO (%) | CaO (%) | Na2O (%) | K2O (%) | TiO2 (%) | P2O5 (%) | L.O.I. (%) | TOTAL (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Escucha sandstone Mave site | 95.64 | 1.39 | 0.58 | 0.00 | 0.04 | 0.01 | 0.03 | 0.13 | 0.32 | 0.02 | 0.92 | 99.08 |
Utrillas sandstone Devesa site | 97.15 | 0.98 | 0.30 | 0.00 | 0.03 | 0.04 | 0.05 | 0.08 | 0.03 | 0.01 | 0.48 | 99.16 |
Utrillas sandstone Olleros site | 96.95 | 0.90 | 0.32 | 0.00 | 0.02 | 0.04 | 0.05 | 0.08 | 0.03 | 0.01 | 0.52 | 98.92 |
Sample | Quartz | Calcite | Aragonite | Muscovite Illite | Kaolinite | Microcline | Hematite | Pyrite | Amorphous Phase |
---|---|---|---|---|---|---|---|---|---|
Escucha sandstone Mave site | 94.8 | 0 | 0.4 | 0.4 | 0.3 | 3.4 | 0.3 | 0.2 | 0.2 |
Utrillas sandstone Devesa site | 94.3 | 0.7 | 0 | 0.9 | 0.2 | 3.7 | 0.1 | 0 | 0.1 |
Utrillas sandstone Olleros site | 94.1 | 0.4 | 0.1 | 0.9 | 0.2 | 3.9 | 0.2 | 0.1 | 0.1 |
AUTOSORC | Le Chatelier Pycnometer | Gas Permeameter | |||||||
---|---|---|---|---|---|---|---|---|---|
Samples | Bulk Density (Kg/m3) | Open Porosity (%) | Saturated Water Content (%) | Density (Kg/m3) | Porosity (%) | KKlinkenberg (mD) | |||
Bulk | Skeletal | Open | Closed | Total | |||||
Escucha sandstone Mave site | 2006 | 24.18 | 12.05 | 2017 | 2668 | 23.11 | 1.30 | 24.41 | 90 |
Utrillas sandstone Devesa site | 2310 | 14.45 | 6.20 | 2336 | 2687 | 12.69 | 0.38 | 13.07 | 30 |
Utrillas sandstone Olleros site | 2302 | 13.87 | 6.09 | 2440 | 2692 | 12.63 | 0.42 | 13.05 | 40 |
Samples | Bulk Density (Kg/m3) | Skeletal Density (Kg/m3) | Open Porosity (%) | Pore Throat Radius (μm) | Characteristic Length (μm) | Specific Surface (m2/g) | Connectivity | Tortuosity | ||
---|---|---|---|---|---|---|---|---|---|---|
Average | Median | |||||||||
Escucha sandstone (Mave sites) | 1856 | 2693 | 26.25 | 1.54 | 15.92 | 17.51 | 0.15 | 4.63 | 5.76 | |
Utrillas sandstone | Devesa site | 2382 | 2689 | 10.275 | 0.08 | 0.21 | 5.46 | 1.71 | 2.45 | 59.65 |
Olleros site | 2413 | 2689 | 12.27 | 0.06 | 7.00 | 47.42 | 1.65 | 3.06 | 12.96 |
Reservoir Properties | Positive Indicators (PI) | Cautionary Indicators (CI) | Escucha Mave Site | Utrillas Devesa Site | Utrillas Olleros Site |
---|---|---|---|---|---|
Depth | >1000 m <2500 m | >800 m <2500 m | PI | PI | PI |
Reservoir thickness | >50 m | >20 m | PI | PI | PI |
Porosity | >20% | <10% | PI | PI | PI |
Permeability | >500 mD | <200 mD | CI | CI | CI |
Stratigraphy | Uniform | Complex lateral variation and complex connectivity of reservoir facies | PI | PI | PI |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateos-Redondo, F.; Kovács, T.; Berrezueta, E. Petrographic and Petrophysical Characterization of Detrital Reservoir Rocks for CO2 Geological Storage (Utrillas and Escucha Sandstones, Northern Spain). Geosciences 2018, 8, 246. https://doi.org/10.3390/geosciences8070246
Mateos-Redondo F, Kovács T, Berrezueta E. Petrographic and Petrophysical Characterization of Detrital Reservoir Rocks for CO2 Geological Storage (Utrillas and Escucha Sandstones, Northern Spain). Geosciences. 2018; 8(7):246. https://doi.org/10.3390/geosciences8070246
Chicago/Turabian StyleMateos-Redondo, Félix, Timea Kovács, and Edgar Berrezueta. 2018. "Petrographic and Petrophysical Characterization of Detrital Reservoir Rocks for CO2 Geological Storage (Utrillas and Escucha Sandstones, Northern Spain)" Geosciences 8, no. 7: 246. https://doi.org/10.3390/geosciences8070246
APA StyleMateos-Redondo, F., Kovács, T., & Berrezueta, E. (2018). Petrographic and Petrophysical Characterization of Detrital Reservoir Rocks for CO2 Geological Storage (Utrillas and Escucha Sandstones, Northern Spain). Geosciences, 8(7), 246. https://doi.org/10.3390/geosciences8070246