Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis
Abstract
:1. Introduction
2. Geological Setting
3. Geology and Mineralization of the Jianchaling Area
4. Sampling and Analytical Methods
5. Isotope Results
5.1. Carbon, Oxygen and Hydrogen Isotopes
5.2. Sulfur Isotopes
5.3. Lead Isotopes of Sulfides and Wall Rocks
5.4. Strontium and Neodymium Isotopes of Sulfides and Wall Rocks
6. Discussion
6.1. Sources of Metals and Mineralising Fluids
6.1.1. Oxygen and Hydrogen Stable Isotopes
6.1.2. Carbon and Oxygen Isotopes
6.1.3. Sulfur Isotopes
6.1.4. Lead Isotopes
6.1.5. Strontium and Neodymium Isotopes
6.2. Mineralisation Type
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.J.; Zhai, M.G.; Jiang, S.Y. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrol. Sin. 2009, 25, 2695–2726. [Google Scholar]
- Chen, Y.J.; Santosh, M.; Somerville, I.; Chen, H.Y. Indosinian tectonics and mineral systems in China: An introduction. Geol. J. 2014, 49, 331–337. [Google Scholar] [CrossRef]
- Chen, Y.J. The development of continental collision metallogeny and its application. Acta Petrol. Sin. 2013, 29, 1–17. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Goldfarb, R.; Baker, T.; Dube, B.; Groves, D.I.; Hart, C.J.R.; Gosselin, P. Distribution, character and genesis of gold deposits in metamorphic terranes. Soc. Econ. Geol. 2005, 407–450. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ni, P.; Fan, H.R.; Pirajno, F.; Lai, Y.; Su, W.C.; Zhang, H. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol. Sin. 2007, 23, 2085–2108. [Google Scholar]
- Mao, J.W.; Qiu, Y.M.; Goldfarb, R.; Zhang, Z.C.; Garwin, S.; Ren, F.S. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Miner. Depos. 2002, 37, 352–377. [Google Scholar] [CrossRef]
- Chen, Y.J.; Santosh, M. Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geol. J. 2014, 49, 338–358. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Chang, Z.; Large, R.R.; Maslennikov, V. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology 2008, 36, 971–974. [Google Scholar] [CrossRef]
- Bierlein, F.P.; Arne, D.C.; Cartwright, I. Stable isotope (C, O, S) systematics in alteration haloes associatedwith orogenic gold mineralization in the Victorian gold province, SE Australia. Geochem. Explor. Environ. Anal. 2004, 4, 191–211. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–417. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Qi, J.P.; Li, J.; Wang, H.H. Ore geology, fluid geochemistry and genesis of the Shanggong gold deposit, Eastern Qinling Orogen, China. Resour. Geol. 2006, 56, 99–116. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Sui, Y.H. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Miner. Depos. 2004, 39, 560–575. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Qi, J.P. The Shanggong gold deposit, Eastern Qinling Orogen, China: Isotope geochemistry and implications for ore genesis. J. Asian Earth Sci. 2008, 33, 252–266. [Google Scholar] [CrossRef]
- Yao, J.M.; Zhao, T.P.; Wei, Q.G.; Yuan, Z.L. Fluid inclusion features and genetic type of the Wangpingxigou Pb-Zn deposit, Henan Province. Acta Petrol. Sin. 2008, 24, 2113–2123. [Google Scholar]
- Li, N.; Chen, Y.J.; Fletcher, I.R.; Zeng, Q.T. Triassic mineralization with Cretaceous overprint in the Dahu Au–Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U–Th–Pb geochronology. Gondwana Res. 2011, 20, 543–552. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.J.; Yang, Y.; Deng, J. Lead isotope systematics of the Weishancheng Au-Ag belt, Tongbai Mountains, central China: Implication for ore genesis. Int. Geol. Rev. 2011, 53, 656–676. [Google Scholar] [CrossRef]
- Ni, Z.Y.; Chen, Y.J.; Li, N.; Zhang, H. Pb–Sr–Nd isotope constraints on the fluid source of the Dahu Au–Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting. Ore Geol. Rev. 2012, 46, 60–67. [Google Scholar] [CrossRef]
- Yue, S.W.; Lin, Z.W.; Deng, X.H.; Li, F.R.; He, H.X.; Feng, A.G. C, H, O, S, Pb isotopic geochemistry of the Jianchaling gold deposit, Shaanxi Province. Geotecton. Metallog. 2013, 37, 653–670. [Google Scholar]
- Deng, X.H.; Santosh, M.; Yao, J.M.; Chen, Y.J. Geology, fluid inclusions and sulphur isotopes of the Zhifang Mo deposit in Qinling Orogen, central China: A case study of orogenic-type Mo deposits. Geol. J. 2014, 49, 515–533. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Yao, J.M.; Sun, Y.L. Re–Os and Sr–Nd–Pb isotope constraints on source of fluids in the Zhifang Mo deposit, Qinling Orogen, China. Gondwana Res. 2016, 30, 132–143. [Google Scholar] [CrossRef]
- Yue, S.W.; Deng, X.H.; Bagas, L. Geology, isotope geochemistry, and ore genesis of the Yindonggou Ag–Au (–Pb–Zn) deposit, Hubei Province, China. Geol. J. 2014, 49, 442–462. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Lin, Z.W.; Qin, Y. Geology, geochemistry and genesis of the Huachanggou gold deposit, western Qinling Orogen, central China. Geol. J. 2014, 49, 424–441. [Google Scholar] [CrossRef]
- Lin, Z.W.; Zhou, Y.Z.; Qin, Y.; Yue, S.W. Fuchsite 40Ar/39Ar Geochronology of the Huachanggou Gold Deposit and its Tectonic Implications. Geotecton. Metallog. 2017, 41, 315–324. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Li, N.; Guo, D.S.; Lai, Y. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geol. Rev. 2009, 35, 245–261. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wang, Y. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: Implications for the nature of the porphyry systems of post-collisional tectonic settings. Int. Geol. Rev. 2011, 53, 635–655. [Google Scholar] [CrossRef]
- Fan, H.R.; Hu, F.F.; Wilde, S.A.; Yang, K.F.; Jin, C.W. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: Fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. Int. Geol. Rev. 2011, 53, 25–45. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Pirajno, F.; Gong, H.J.; Mao, S.D.; Ni, Z.Y. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono-magmatic evolution. Lithos 2012, 142–143, 34–47. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Pirajno, F.; Ni, Z.Y. Timing of the Yuchiling giant porphyry Mo system, and implications for ore genesis. Miner. Depos. 2013, 48, 505–524. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, N.; Chen, Y.J. Fluid inclusion study of the Nannihu giant porphyry Mo–W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geol. Rev. 2012, 46, 83–94. [Google Scholar] [CrossRef]
- Yang, Y.F.; Chen, Y.J.; Li, N.; Mi, M.; Xu, Y.L.; Li, F.L.; Wan, S.Q. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: A case of NaCl-poor, CO2-rich fluid systems. J. Geochem. Explor. 2013, 124, 1–13. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Zhao, G.C.; Yao, J.M. Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo-Cu system in the North China Craton. Ore Geol. Rev. 2013, 51, 43–56. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Yao, J.M. Re-Os geochronology, fluid inclusions and genesis of the 0.85Ga Tumen molybdenite-fluorite deposit in Eastern Qinling, China: Implications for pre-Mesozoic Mo enrichment and tectonic setting. Geol. J. 2013, 48, 484–497. [Google Scholar] [CrossRef]
- Mao, S.D.; Chen, Y.J.; Zhou, Z.J.; Lu, Y.H.; Guo, J.H.; Qin, Y.; Yu, J.Y. Zircon geochronology and Hf isotope geochemistry of the granitoids in the Yangshan gold field, western Qinling, China: Implications for petrogenesis, ore genesis and tectonic setting. Geol. J. 2014, 49, 359–382. [Google Scholar] [CrossRef]
- Zeng, Q.T.; Mccuaig, T.C.; Tohver, E.; Bagas, L.; Lu, Y. Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications. Geol. J. 2014, 49, 402–423. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.S.; Chen, Y.J.; Leng, C.B.; Zhao, C.H. Ore geology, fluid inclusion and isotope geochemistry of the Xunyang Hg-Sb orefield, Qinling Orogen, Central China. Geol. J. 2014, 49, 463–481. [Google Scholar] [CrossRef]
- Yue, S.W.; Deng, X.H.; Bagas, L.; Lin, Z.W.; Fang, J.; Zhu, C.H.; Zhang, W. Fluid inclusion geochemistry and 40Ar/39Ar geochronology constraints on the genesis of the Jianchaling Au deposit, China. Ore Geol. Rev. 2017, 80, 676–690. [Google Scholar] [CrossRef]
- Zhang, F.X.; Wang, J.Y. The genetic relationship between the ultrabasic rock and gold deposit in Jianchaling, Shaanxi. Gold Geol. 1999, 5, 14–20. [Google Scholar]
- Ma, J.Q. Qinling Orogenic Belt Mianluening Gold Deposit Formation Mode and Prospecting Direction; Institute of Geochemistry (Guiyang), Chinese Academy of Sciences: Beijing, China, 1998. [Google Scholar]
- Ren, X.H. Research on Metalliferous Deposit Mineralization and Survey and Prediction of Target Area for Mineral Prospecting Mian-Lue-Ning Region, Shannxi; Chang’an University: Xi’an, China, 2008. [Google Scholar]
- Wang, R.T.; Wang, D.S.; Li, F.R.; Chen, L.X.; Dai, J.Z.; Wang, Y.T.; Yan, Z. Geochemical characteristics, metallogenic geodynamics and prospecting indicator of the Jianchaling Large Gold Ore Deposit. Acta Geol. Sin. 2009, 83, 1739–1751. [Google Scholar]
- Chen, Y.J.; Fu, S.G. Gold Mineralization in West Henan; Seismological Press: Beijing, China, 1992; ISBN 9787502808013. [Google Scholar]
- Zhang, G.W.; Meng, Q.R.; Yu, Z.P.; Sun, Y.; Zhou, D.W.; Guo, A.L. Orogenesis and dynamics of the Qinling orogen. Sci. China Ser. D Earth Sci. 1996, 26, 193–200. [Google Scholar]
- Chen, Y.J. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, central China. Geol. China 2010, 37, 854–865. [Google Scholar]
- Gao, S. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons. Precambrian Res. 1996, 80, 23–48. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost paleo-Tethys. Gondwana Res. 2015, 27, 244–257. [Google Scholar] [CrossRef]
- Jiang, X.D.; Wei, G.F.; Nie, J.T. Jianchaling nickel deposit: Magmatic or hydrothermal origin. Miner. Depos. 2010, 29, 1112–1124. [Google Scholar]
- Hu, J.M.; Dong, G.F. Rule of spatial extention and direction in prospecting of the Jianchaling gold deposit in Lueyang County. Geotecton. Metallog. 2002, 26, 75–80. [Google Scholar]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Yuan, L.X.; Zhang, M.P.; Hou, J.F.; Qin, T.T. Characteristics of mass components and metallogenic fluids of the Maoergou gold deposit in Lueyang County of Shaanxi Province. Geol. Shaanxi 2004, 22, 25–34. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Zheng, Y.F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 1999, 33, 109–126. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Schwarcz, H.P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Mineral. Petrol. 1970, 26, 161–198. [Google Scholar] [CrossRef]
- Chacko, T.; Mayeda, T.K.; Clayton, R.N.; Goldsmith, J.R. Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim. Cosmochim. Acta 1991, 55, 2867–2882. [Google Scholar] [CrossRef]
- Huang, J.J.; Huang, B.; Ren, X.H.; Xu, W.X.; Liao, J.H. The application of Lead isotope tracerlocation for Jianchaling gold deposit. Gold Sci. Technol. 2002, 10, 33–40. [Google Scholar]
- Zhou, Z.J. Comparative Study of the Huachanggou Gold Deposit in Southern Qinling and the Wenyu Gold Deposit in Xiaoqinling Terrane; University of Chinese Academy of Sciences: Beijing, China, 2012. [Google Scholar]
- Li, Y.F.; Lai, S.C.; Qin, J.F.; Liu, X.; Wang, J. Geochemistry and Sr-Nd-Pb isotopic composition of Bikou Group volcanic rocks: Evidence of North Yangtze splitting. Sci. China Ser. D Earth Sci. 2007, 37, 295–306. [Google Scholar]
- Yan, Q.R.; Andrew, D.H.; Wang, Z.Q.; Yan, Z.; Peter, A.D.; Wang, T.; Liu, D.Y.; Song, B.; Jiang, C.F. Geochemistry and tectonic setting of the Bikou volcanic terrane on the northern margin of the Yangtze plate. Acta Petrol. Mineral. 2004, 23, 1–11. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin, Germany, 2009; Volume 6, ISBN 9783540707035. [Google Scholar]
- Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y.F. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. D Earth Sci. 2000, 43, 1–68. [Google Scholar] [CrossRef]
- Pang, J.L.; Qiu, Y.Z.; Liu, Y. Roles played by Ultra-basic rock in metallogeny of Jianchaling Au deposit. J. Chin. Rare Earth Soc. 1994, 9, 59–65. [Google Scholar]
- Zheng, C.Y.; Liu, J.D.; Yuan, B.; Chen, S.J.; Dong, G.F.; Zhang, X.L.; Song, X.H. Geological and geochemical characteristics of rock mass related with gold mineralization in the Jianchaling deposit. Geol. Prospect. 2007, 43, 52–57. [Google Scholar]
- Zhang, J.; Chen, Y.J.; Pirajno, F.; Deng, J.; Chen, H.Y.; Wang, C.M. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, Central China: Implication for ore genesis. Ore Geol. Rev. 2013, 53, 343–356. [Google Scholar] [CrossRef]
- Pang, C.Y.; Chen, M.Y. Isotopic geochronological data and their geological significance in Jianchaling region, Shaanxi Province. Miner. Resour. Geol. 1993, 7, 65–71. [Google Scholar]
- Huang, W.; Ran, H. The Metallogenetic Characteristics of Gold Deposits Related to Carbonatized Ultramafites in Ophiolites. Bull. Mineral. Petrol. Geochem. 1996, 15, 153–156. [Google Scholar]
- Jiang, S.Y.; Dai, B.Z.; Jiang, Y.H.; Zhao, H.X.; Hou, M.L. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings. Acta Petrol. Sin. 2009, 25, 2727–2738. [Google Scholar]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 4th ed.; Springer: Berlin, Germany, 1997; ISBN 3540707034. [Google Scholar]
- Faure, G. Principles of Isotope Geology, 2nd ed.; Wiley: New York, NY, USA, 1986; ISBN 9780471864127. [Google Scholar]
- Guerrera, J.A.; Peacock, S.M.; Knauth, L.P. Large 18O and 13C depletions in greenschist facies carbonate rocks, western Arizona. Geology 1997, 25, 943–946. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons: New York, NY, USA, 1997; Volume 3, pp. 517–611. [Google Scholar]
- Chen, H.Y.; Chen, Y.J.; Baker, M. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration. Chem. Geol. 2012, 310, 1–11. [Google Scholar] [CrossRef]
- Zhao, R. Sulfur isotope study of some endogenic ore deposits in Hebei, Shandong and Anhui Provinces. Acta Petrol. Sin. 1986, 2, 26–32. [Google Scholar]
- Li, W.B.; Huang, Z.L.; Zhang, G. Sources of the ore metals of the Huize ore field in Yunnan Province:constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrol. Sin. 2006, 22, 2567–2580. [Google Scholar]
- Gavrielli, I.; Starinsky, A.; Spiro, B.; Aizenshtat, Z.; Nielsen, H. Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel. Geochim. Cosmochim. Acta 1995, 59, 3525–3533. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Newberry, R.J.; Pickthorn, W.J.; Gent, C.A. Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: Constraints on the origin of hydrothermal fluids. Econ. Geol. 1991, 86, 66–80. [Google Scholar] [CrossRef]
- Jia, Y.F.; Kerrich, R.; Goldfarb, R. Metamorphic Origin of Ore-Forming Fluids for Orogenic Gold-Bearing Quartz Vein Systems in the North American Cordillera: Constraints from a Reconnaissance Study of δ15N, δD, and δ18O. Econ. Geol. 2003, 98, 109–123. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Lu, Y.H.; Chen, Y.J.; Wan, S.Q.; Ma, H.W. Geological and geochemical characteristics and genesis of the Poshan silver deposit, Henan Province. Geol. China 2008, 35, 1220–1229. [Google Scholar]
- Zartman, R.E.; Haines, S.M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bi-directional transport. Geochim. Cosmochim. Acta 1988, 52, 1327–1339. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar] [CrossRef]
- Chen, J.; Jahn, B. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, X.H.; Li, W.X.; Li, Z.X.; Liu, Y.; Yang, Y.H.; Liang, X.R.; Tu, X.L. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820-810 Ma continental flood basalts? Bull. Geol. Soc. Am. 2008, 120, 1478–1492. [Google Scholar] [CrossRef]
- Groves, D.I.; Condie, K.C.; Goldfarb, R.J.; Hronsky, J.M.A.; Vielreicher, R.M. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Econ. Geol. 2005, 100, 203–224. [Google Scholar] [CrossRef]
- Chen, Y.J. Orogenic-type deposits and their metallogenic model and exploration potential. Geol. China 2006, 33, 1181–1196. [Google Scholar]
Sample NO. | Mineral | Sample Description | Stage | Analyzed Isotope |
---|---|---|---|---|
800-53-2 | Dolomite | Dolomite veins in the Serpentinite with shear deformation | 1 | C, O |
860-52-7 | Dolomite | Dolomite veins in the Serpentinite with shear deformation | 1 | C, O |
J-6 | Dolomite | Pale green dolomite veins in the cataclastic dolomite | 1 | C, O |
913-32-7 | Calcite | Calcite veins in the cataclastic dolomite with a small number of pyrites | 2 | C, O |
913-32-6 | Calcite | Calcite veins in the cataclastic dolomite with a small number of pyrites | 2 | C, O |
913-1 | Dolomite | Milky white dolomite vein | 3 | C, O |
913-2 | Dolomite | Milky white dolomite vein | 3 | C, O |
960-38-1 | Dolomite | Milky white dolomite vein | 3 | C, O |
860-51-5 | Dolomite | Dolomite veins in the listwanite with a small number of pyrites | 3 | C, O |
860-51-6 | Dolomite | Dolomite veins in the listwanite with a small number of pyrites | 3 | C, O |
hjy-8 | Pyrite | Grain cluster pyrite with shear deformation | 1 | S, Pb |
J3 | Pyrite | Massive sulfide ore | 2 | S, Pb, Sr, Nd |
J3 | Pyrrhotite | Massive sulfide ore | 2 | S |
hjy-1 | Pyrite | Silicified and fuchsite dolomite ore rocks with disseminated pyrites | 2 | S, Pb, Sr, Nd |
hjy-12 | Pyrite | Silicified and fuchsite dolomite ore rocks with disseminated pyrites | 2 | S, Pb, Sr, Nd |
hjy-10 | Pyrite | Intensive silicified and fuchsite dolomite ore rocks with disseminated pyrites | 2 | S, Pb, Sr, Nd |
hjy-20 | Pyrite | Silicified and fuchsite dolomite ore rocks with disseminated pyrites | 2 | S, Pb, Sr, Nd |
hjy-14 | Pyrite | Weak silicified and fuchsite dolomite ore rocks with disseminated pyrites | 2 | S, Pb, Sr, Nd |
H-4 | Whole-rock | Shale (Duantouya Formation) | S, Pb, Sr, Nd | |
960-34-1 | Whole-rock | Dolomite | S, Pb, Nd | |
960-28-1 | Whole-rock | Dolomite | S, Pb, Sr, Nd | |
780-50-3 | Whole-rock | Serpentinite | S, Pb, Sr, Nd | |
800-52-1 | Whole-rock | Listwanite | S, Pb, Sr, Nd |
Sample No. | Sample | Vein Set | Mineral | δ18Omineral (‰) | Average δ18OWater (‰) | δDWater (‰) | δ13C V−PDB (‰) | Average δ13CCO2 (‰) | T# (°C) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
MS-57 | Au mineralisation | 1 | quartz | 17.3 | 10.8 (8.3 to 12.1) | −72 | 310 (250 to 355) | [53] | ||
MS-79 | Au mineralisation | 1 | quartz | 17.0 | 10.5 (8.0 to 11.8) | −85 | 310 (250 to 355) | [53] | ||
MS-52 | Au mineralisation | 1 | quartz | 16.6 | 10.1 (7.6 to 11.4) | −79 | 310 (250 to 355) | [53] | ||
MS-77 | Au mineralisation | 1 | quartz | 14.0 | 7.5 (5.0 to 8.8) | −70 | 310 (250 to 355) | [53] | ||
800-53-2 | Au mineralisation | 1 | dolomite | 23.4 | 17.7 (15.7 to 18.8) | −0.3 | 1.7 (0.7 to 2.2) | 310 (250 to 355) | [53] | |
J6 | Au mineralisation | 1 | dolomite | 18.9 | 13.2 (11.2 to 14.3) | 0.6 | 2.6 (1.6 to 3.1) | 310 (250 to 355) | [53] | |
860-52-7 | Au mineralisation | 1 | dolomite | 19.1 | 13.4 (11.4 to 14.5) | −4.4 | −2.4 (−3.4 to −1.9) | 310 (250 to 355) | [53] | |
Average | 18.0 | 11.9 (9.6 to 13.1) | −77 | −1.4 | 0.6 (−0.4 to 1.1) | |||||
913-32-6 | Au mineralisation | 2 | calcite | 17.0 | 9.1 (7.2 to 11.2) | −2.9 | −1.9 (−3.0 to −0.9) | 240 (200 to 300) | [21] | |
913-32-7 | Au mineralisation | 2 | calcite | 16.5 | 8.6 (6.7 to 10.7) | −1.7 | −0.7 (−1.8 to 0.3) | 240 (200 to 300) | [21] | |
P633-61-I1 | Au mineralisation | 2 | calcite | 19.0 | 11.1 (9.2 to 13.2) | −0.6 | 0.4 (−0.7 to 1.4) | 240 (200 to 300) | [41] | |
J163 | Au mineralisation | 2 | dolomite | 16.4 | 8.3 (6.4 to 10.4) | −1.6 | −0.8 (−1.8 to 0.3) | 240 (200 to 300) | [41] | |
J170 | Au mineralisation | 2 | dolomite | 13.8 | 5.7 (3.8 to 7.8) | −0.4 | 0.4 (−0.6 to 1.5) | 240 (200 to 300) | [41] | |
J180 | Au mineralisation | 2 | dolomite | 14.6 | 6.5 (4.6 to 8.6) | −1.2 | −0.4 (−1.4 to 0.7) | 240 (200 to 300) | [41] | |
J14 | Au mineralisation | 2 | ferrocalcite | 17.5 | 9.6 (7.7 to 11.7) | −1.1 | −0.1 (−1.2 to 0.9) | 240 (200 to 300) | [41] | |
Average | 16.4 | 8.4 (6.5 to 10.5) | −1.4 | −0.4 (−1.5 to 0.6) | ||||||
913-1 | Au mineralisation | 3 | dolomite | 13.8 | 3.2 (0.4 to 4.8) | 1.6 | 1.0 (−0.5 to 1.9) | 190 (150 to 220) | [21] | |
913-2 | Au mineralisation | 3 | dolomite | 11.9 | 1.3 (−1.5 to 2.9) | 2.2 | 1.6 (0.1 to 2.5) | 190 (150 to 220) | [21] | |
960-38-1 | Au mineralisation | 3 | dolomite | 13.1 | 2.5 (−0.3 to 4.1) | 0.6 | 0 (−1.5 to 0.9) | 190 (150 to 220) | [21] | |
860-51-5 | Au mineralisation | 3 | dolomite | 14.8 | 4.2 (1.4 to 5.8) | −4.4 | −5.0 (−6.5 to −4.1) | 190 (150 to 220) | [21] | |
860-51-6 | Au mineralisation | 3 | dolomite | 14.9 | 4.3 (1.5 to 5.9) | −4.1 | −4.7 (−6.2 to −3.8) | 190 (150 to 220) | [21] | |
MS-69 | Au mineralisation | 3 | quartz | 16.3 | 3.9 (0.8 to 5.8) | −81 | 190 (150 to 220) | [41] | ||
Average | 3 | 14.1 | 3.2(0.4 to 4.9) | −0.8 | −0.7(−2.9 to −0.5) | |||||
P404-44B-2 | Mineralized dolostone | dolomite | 22.9 | 0.0 | [41] | |||||
P404-43B | Altered dolostone | dolomite | 18.0 | 0.1 | [41] | |||||
P406-Y-43w | Altered dolostone | dolomite | 16.9 | 0.7 | [41] | |||||
J142 | Dolostone | dolomite | 22.5 | 2.3 | [41] | |||||
J171 | Dolostone | dolomite | 23.1 | 2.3 | [41] | |||||
J25 | Dolostone | dolomite | 22.3 | −0.4 | [41] | |||||
Average | 21.0 | 0.8 | [41] | |||||||
J167 | Serpentinite | dolomite | 15.0 | −3.8 | [41] | |||||
J42-1 | Listwanite | magnesite | 14.3 | −2.7 | [41] | |||||
J59 | Listwanite | magnesite | 16.3 | −3 | [41] | |||||
Y-Mg | Listwanite | listwanite | 13.8 | −3.2 | [41] | |||||
Y-Mg | Listwanite | listwanite | 13.8 | −3.2 | [41] | |||||
G-Mg | Listwanite | listwanite | 13.4 | −2.2 | [41] | |||||
Average | 14.5 | −3.0 |
Sample | Mineral | δ34Sv-CDT (‰) | Sample | Mineral | δ34Sv-CDT (‰) |
---|---|---|---|---|---|
hjy-1 (second vein set)c | Py | 11.3 | Carbonate (Duantouya Fm) a | Py | 16.4 |
hjy-12 (second vein set) c | Py | 10.0 | Carbonaceous shale (Duantouya Fm) a | Py | 5.4 |
hjy-10 (second vein set) c | Py | 10.8 | Carbonaceous shale (Duantouya Fm) a | Py | 10.6 |
J3 (second vein set) c | Po | 8.2 | Carbonate (Duantouya Fm) a | Py | 12.5 |
J3 (second vein set) c | Py | 8.7 | Hc-Py1 (serpentinite) a | Cpy | 12.0 |
hjy-20 (second vein set) c | Py | 13.2 | L-Py-Mt (listwanite) a | Po | 10.5 |
hjy-14 (second vein set) c | Py | 14.3 | Ni-bearing ultramafics a | Py | 9.3 |
hjy-8 (first vein set) c | Py | 14.3 | Ni-bearing ultramafics a | Py | 11.3 |
H-4 Shale (Duantouya Formation) c | Whole rock | 16.6 | Ni-bearing ultramafics a | Py | 13.2 |
800-52-1 (listwanite) c | Whole rock | 6.1 | Ni-bearing ultramafics a | Py | 10.9 |
780-50-3 (serpentinite) c | Whole rock | 8.6 | Ni-bearing ultramafics a | Py | 11.1 |
965-Y-45-46 II | Py | 8.5 | Ni-bearing ultramafics a | Py | 9.5 |
PD503-Y-Py1-2 II | Py | 15.4 | Ni-bearing ultramafics a | Py | 11.7 |
PD404-cm43-Py a | Py | 13.9 | Ni-bearing ultramafics a | Py | 10.5 |
PD406-cm45N-Py a | Py | 14.2 | Ni-bearing ultramafics a | Py | 12.3 |
PD404-cm45S-Py a | Py | 18.5 | Ni-bearing ultramafics a | Py | 14.1 |
PD503-Ym-Py3 a | Py | 17.3 | Ni-bearing ultramafics a | Py | 12.1 |
PD404-cm43B-Py1 a | Py | 12.8 | Ni-bearing ultramafics a | Py | 11.7 |
965-47E-Ym a | Rea, Orp | 10.9 | Ni-bearing ultramafics a | Py | 11.7 |
PD383-cm58-H1 a | Rea, Orp | 10.5 | Ni-bearing ultramafics a | Py | 11.4 |
PD633-cm43B-Py1 a | Py | 12.6 | Ni-bearing ultramafics a | Py | 10.0 |
G-E-1 a | Py | 17.0 | Ni-bearing ultramafics a | Py | 10.9 |
PD383-Y-Py1 a | Py | 12.6 | Ni-bearing ultramafics a | Py | 6.1 |
PD633-Ym-59 a | Py | 12.0 | Ni-bearing ultramafics a | Py | 12.9 |
97-ZHE-H1 a | Py | 11.2 | Ni-bearing ultramafics a | Po | 7.8 |
Au mineralisation | Py | 6.3 | Ni-bearing ultramafics a | Po | 10.6 |
Au mineralisation | Py | 15.3 | Ni-bearing ultramafics a | Po | 9.1 |
Sm-P (albite porphyry) a | Py | 11.0 | Ni-bearing ultramafics a | Po | 10.0 |
N124 (albite porphyry) a | Py | 14.6 | Ni-bearing ultramafics a | Po | 12.5 |
L-Py (albite porphyry) a | Py | 12.9 | Ni-bearing ultramafics a | Po | 10.7 |
Porphyritic granite a | Py | 11.8 | Ni-bearing ultramafics a | Po | 12.3 |
Porphyritic granite a | Py | 12.8 | Ni-bearing ultramafics a | Po | 11.4 |
Porphyritic granite a | Py | 17.5 | Ni-bearing ultramafics a | Po | 10.9 |
Porphyritic granite a | Po | 11.6 | Ni-bearing ultramafics a | Po | 11.4 |
Porphyritic granite a | Po | 13.7 | Ni-bearing ultramafics a | Po | 11.8 |
Porphyritic granite a | Py | 9.0 | Ni-bearing ultramafics a | Po | 11.1 |
Porphyritic granite a | Py | 15.2 | Ni-bearing ultramafics a | Po | 8.2 |
Porphyritic granite a | Py | 15.2 | Ni-bearing ultramafics a | Po | 10.5 |
Porphyritic granite a | Py | 15.2 | Ni-bearing ultramafics a | Po | 11.6 |
Porphyritic granite a | Py | 8.3 | Ni-bearing ultramafics a | Po | 10.2 |
Porphyritic granite a | Py | 10.6 | Ni-bearing ultramafics a | Py | 10.3 |
Porphyritic granite a | Py | 9.5 | Ni-bearing ultramafics a | Py | 12.1 |
Porphyritic granite a | Py | 9.9 | Ni-bearing ultramafics a | Py | 9.9 |
Carbonate (Duantouya Fm) a | Py | 15.0 | Ni-bearing ultramafics a | Py | 11.4 |
Carbonate (Duantouya Fm) a | Py | 18.5 | Ni-bearing ultramafics a | Py | 11.5 |
Carbonate (Duantouya Fm) a | Po | 18.6 | Ni-bearing ultramafics a | Py | 13.3 |
Carbonate (Duantouya Fm) a | Po | 16.5 | Ni-bearing ultramafics a | Py | 12.3 |
Carbonate (Duantouya Fm) a | Py | 10.3 | Porphyritic granite b | Py | 10.0 |
Sample No. | Sample | Pb | Th | U | 208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb | (208Pb/204Pb)i | (207Pb/204Pb)i | (206Pb/204Pb)i | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Au mineralised-rocks | |||||||||||
hjy-1 | pyrite | 905.000 | 0.333 | 0.216 | 38.757 | 15.704 | 18.477 | 38.757 | 15.704 | 18.477 | This study |
hjy-12 | pyrite | 170.000 | 0.070 | 0.158 | 37.996 | 15.539 | 18.126 | 37.996 | 15.539 | 18.124 | This study |
hjy-10 | pyrite | 50.000 | 0.035 | 0.539 | 37.088 | 15.550 | 17.600 | 37.088 | 15.549 | 17.579 | This study |
hjy-20 | pyrite | 60.900 | 0.266 | 0.047 | 37.180 | 15.566 | 17.522 | 37.177 | 15.566 | 17.521 | This study |
hjy-14 | pyrite | 53.800 | 0.041 | 0.193 | 37.135 | 15.577 | 17.683 | 37.135 | 15.577 | 17.676 | This study |
hjy-8 | pyrite | 352.000 | 0.019 | 0.068 | 37.275 | 15.549 | 17.811 | 37.275 | 15.549 | 17.811 | This study |
J3 | pyrite | 395.000 | 0.064 | 0.226 | 38.547 | 15.611 | 18.381 | 38.547 | 15.611 | 18.380 | This study |
pyrrhotite | 37.493 | 15.579 | 17.931 | [41] | |||||||
pyrite | 37.055 | 15.553 | 17.863 | [41] | |||||||
pyrite | 36.927 | 15.530 | 17.257 | [41] | |||||||
Average | 37.545 | 15.576 | 17.865 | 37.711 | 15.585 | 17.938 | |||||
Meta-ultramafic rocks | |||||||||||
listwanite | 36.029 | 15.520 | 17.952 | [41] | |||||||
listwanite | 38.591 | 15.521 | 18.599 | [41] | |||||||
listwanite | 38.604 | 15.785 | 19.193 | [41] | |||||||
800-52-1 | listwanite | 21.500 | 0.016 | 0.062 | 38.069 | 15.641 | 18.723 | 38.069 | 15.641 | 18.717 | This study |
listwanite | 38.150 | 15.597 | 18.260 | [41] | |||||||
antigorite | 38.118 | 15.632 | 18.390 | [41] | |||||||
antigorite | 38.489 | 15.616 | 18.633 | [41] | |||||||
780-50-3 | serpentinite | 31.500 | 0.041 | 0.052 | 37.748 | 15.615 | 18.327 | 37.747 | 15.615 | 18.324 | This study |
serpentinite | 38.920 | 15.657 | 18.553 | [41] | |||||||
serpentinite | 38.032 | 15.570 | 18.833 | [41] | |||||||
meta-ultramafic | 38.533 | 15.536 | 18.281 | [58] | |||||||
Average | 38.117 | 15.608 | 18.522 | 37.908 | 15.628 | 18.521 | |||||
Yudongzi Fm | |||||||||||
Sericite-quartz-schist | 38.204 | 15.663 | 18.432 | [41] | |||||||
leptynite | 39.161 | 15.481 | 17.863 | [41] | |||||||
Average | 38.683 | 15.572 | 18.148 | ||||||||
Porphyritic granite | |||||||||||
magnetite | 40.359 | 15.805 | 21.881 | [41] | |||||||
pyrrhotite | 39.265 | 15.771 | 20.922 | [41] | |||||||
pyrite | 38.338 | 15.765 | 21.637 | [41] | |||||||
Average | 39.321 | 15.780 | 21.480 | ||||||||
Duantouya Fm | |||||||||||
H4 | shale | 115.000 | 9.120 | 4.580 | 39.156 | 15.768 | 19.819 | 39.103 | 15.764 | 19.737 | This study |
960-34-1 | dolostone | 15.600 | 0.064 | 0.250 | 37.518 | 15.667 | 19.164 | 37.515 | 15.665 | 19.132 | This study |
960-28-1 | dolostone | 31.800 | 0.016 | 0.217 | 38.170 | 15.828 | 22.364 | 38.170 | 15.827 | 22.350 | This study |
limestone | 38.172 | 15.601 | 18.365 | [41] | |||||||
dolomite | 38.783 | 15.560 | 18.931 | [58] | |||||||
Average | 38.360 | 15.685 | 19.729 | 38.263 | 15.752 | 20.406 | |||||
Bikou Group | |||||||||||
spilite | 37.621 | 15.491 | 17.661 | [59] | |||||||
phyllite | 35.328 | 15.383 | 16.308 | [59] | |||||||
phyllite | 36.951 | 15.447 | 17.076 | [59] | |||||||
quartz schist | 37.866 | 15.486 | 17.677 | [59] | |||||||
phyllite | 3.2 | 1.3 | 0.4 | 38.128 | 15.471 | 17.644 | 37.869 | 15.459 | 17.399 | [59] | |
siltstone | 3.2 | 1.3 | 0.4 | 38.394 | 15.552 | 18.126 | 38.132 | 15.540 | 17.879 | [59] | |
phyllite | 3.2 | 1.3 | 0.4 | 38.064 | 15.553 | 18.016 | 37.803 | 15.541 | 17.770 | [59] | |
metadolerite | 11.8 | 7.58 | 1.99 | 40.069 | 15.928 | 18.763 | 39.639 | 15.911 | 18.417 | [60] | |
metadolerite | 1.14 | 0.34 | 0.12 | 39.157 | 15.833 | 18.017 | 38.962 | 15.822 | 17.806 | [60] | |
metadolerite | 1.39 | 0.26 | 0.09 | 38.945 | 15.814 | 17.910 | 38.823 | 15.808 | 17.781 | [60] | |
Average | 38.052 | 15.596 | 17.720 | 38.538 | 15.680 | 17.842 |
No. | Material | Vein Set | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | 2σ | Isr | References |
---|---|---|---|---|---|---|---|---|---|
Mineralised rock | |||||||||
hjy-1 | Pyrite | 2 | 1.15 | 2.48 | - | This study | |||
hjy-10 | Pyrite | 2 | 0.561 | 2.92 | 0.556233 | 0.714179 | 0.001222 | 0.712613 | This study |
hjy-12 | Pyrite | 2 | 0.671 | 3.37 | 0.576465 | 0.714265 | 0.001260 | 0.712642 | This study |
hjy-14 | Pyrite | 2 | 0.885 | 6.72 | - | This study | |||
hjy-20 | Pyrite | 2 | 0.405 | 2.87 | 0.408670 | 0.717080 | 0.000961 | 0.715929 | This study |
J3 | Pyrite | 2 | 0.531 | 1.58 | 0.972553 | 0.709447 | 0.002004 | 0.706709 | This study |
Average | N = 4 | 0.711973 | |||||||
PD404-43B | Altered dolostone | 2 | 36.20 | 89.60 | 13.164780 | 0.713400 | 0.002401 | 0.710107 | [41] |
PD404-44B-2 | Mineralised rock | 2 | 4.20 | 7.83 | 19.593624 | 0.718400 | 0.003180 | 0.714026 | [41] |
PD633-61-11 | Quartz | 2 | 0.720900 | [41] | |||||
PD633-Y-57 | Calcite | 3 | 0.717300 | [41] | |||||
Average | N = 2 | 0.712066 | |||||||
Wall rocks | |||||||||
J-15 | Porphyritic granite | 77.56 | 36.67 | 6.136344 | 0.735543 | 0.012494 | 0.718266 | [41] | |
J-16 | Porphyritic granite | 83.39 | 48.79 | 4.959944 | 0.738159 | 0.010187 | 0.724194 | [41] | |
J-18 | Porphyritic granite | 83.68 | 31.21 | 7.789501 | 0.749689 | 0.016065 | 0.727757 | [41] | |
J-19 | Porphyritic granite | 64.78 | 30.82 | 6.100934 | 0.740388 | 0.012508 | 0.723210 | [41] | |
J-60 | Porphyritic granite | 58.00 | 220.70 | 0.760528 | 0.709768 | 0.001597 | 0.707627 | [41] | |
J-66 | Porphyritic granite | 75.03 | 79.03 | 2.754493 | 0.735919 | 0.005704 | 0.728164 | [41] | |
J-69 | Porphyritic granite | 86.94 | 35.30 | 7.143593 | 0.732922 | 0.014431 | 0.712809 | [41] | |
L-Py1 | Albite-rich intrusive | 21.20 | 58.80 | 1.044631 | 0.721900 | 0.002184 | 0.718959 | [41] | |
Average | N = 8 | 0.720123 | |||||||
J-17 | Meta-ultramafics | 0.27 | 17.16 | 0.045573 | 0.718455 | 0.000498 | 0.718327 | [41] | |
J-55 | Meta-ultramafics | 1.59 | 13.47 | 0.341431 | 0.704674 | 0.000827 | 0.703713 | [41] | |
J-102 | Meta-ultramafics | 1.33 | 5.58 | 0.689301 | 0.702761 | 0.001446 | 0.700820 | [41] | |
J-118 | Meta-ultramafics | 0.25 | 35.27 | 0.020501 | 0.703870 | 0.000472 | 0.703812 | [41] | |
G-E-Mt | Meta-ultramafics | 2.92 | 64.30 | 0.131452 | 0.712300 | 0.000549 | 0.711930 | [41] | |
Hc-Fe-1(1) | Meta-ultramafics | 0.46 | 6.59 | 0.202065 | 0.712800 | 0.000631 | 0.712231 | [41] | |
Hg-N-1 | Meta-ultramafics | 0.33 | 3.92 | 0.243695 | 0.712800 | 0.000688 | 0.712114 | [41] | |
97-Hw-1 | Meta-ultramafics | 1.11 | 1.01 | 5.358452 | 0.729600 | 0.006523 | 0.720628 | [41] | |
J-45 | Meta-ultramafics | 1.90 | 4.58 | 2.842641 | 0.725862 | 0.002510 | 0.722476 | [41] | |
J-50 | Meta-ultramafics | 0.53 | 2.11 | 2.218363 | 0.717723 | 0.001553 | 0.715675 | [41] | |
J-42-3 | Meta-ultramafics | 0.28 | 0.69 | 4.384971 | 0.726283 | 0.002460 | 0.722971 | [41] | |
Y-Mg | Meta-ultramafics | 0.33 | 3.66 | 1.153334 | 0.713400 | 0.000714 | 0.712665 | [41] | |
G-Mg | Meta-ultramafics | 0.29 | 2.57 | 1.666748 | 0.713400 | 0.000817 | 0.712480 | [41] | |
780-50-3 | Meta-ultramafics | 1.57 | 2.97 | 1.531251 | 0.719517 | 0.003140 | 0.715206 | This study | |
800-52-1 | Meta-ultramafics | 0.10 | 0.80 | 0.376258 | 0.711025 | 0.000895 | 0.709965 | This study | |
Average | N = 15 | 0.713001 | |||||||
PX406-Y-43W | Duantouya Fm | 1.69 | 108.00 | 0.447747 | 0.719000 | 0.000499 | 0.718872 | [41] | |
G-E-1 | Duantouya Fm | 8.89 | 101.00 | 2.691745 | 0.723300 | 0.000720 | 0.722582 | [41] | |
H4 | Duantouya Fm | 105.00 | 57.20 | 5.312134 | 0.734027 | 0.010856 | 0.719034 | This study | |
960-28-1 | Duantouya Fm | 0.03 | 17.90 | 0.004370 | 0.720582 | 0.000493 | 0.720570 | This study | |
Average | N = 4 | 0.720265 | |||||||
2000224 | Bikou Group | 19.55 | 594.59 | 1.463281 | 0.704471 | 0.000507 | 0.704203 | [61] | |
2000225 | Bikou Group | 5.33 | 118.58 | 2.088492 | 0.704899 | 0.000538 | 0.704533 | [61] | |
2000226 | Bikou Group | 3.95 | 41.58 | 4.601666 | 0.703211 | 0.000720 | 0.702438 | [61] | |
2000228 | Bikou Group | 3.87 | 18.15 | 10.756975 | 0.703534 | 0.001312 | 0.701797 | [61] | |
2000230 | Bikou Group | 3.73 | 39.70 | 4.931685 | 0.702650 | 0.000715 | 0.701884 | [61] | |
2000231 | Bikou Group | 23.01 | 243.96 | 5.126925 | 0.713325 | 0.000732 | 0.712556 | [61] | |
BK1 | Bikou Group | 23.40 | 563.00 | 2.342130 | 0.710419 | 0.000536 | 0.710080 | [60] | |
BK2 | Bikou Group | 0.21 | 111.00 | 0.110386 | 0.707353 | 0.000475 | 0.707338 | [60] | |
BK3 | Bikou Group | 0.13 | 143.00 | 0.054847 | 0.706668 | 0.000474 | 0.706661 | [60] | |
Average | N = 9 | 0.705721 |
No. | Sample | Stage | Sm | Nd | 143Nd/144Nd | 147Sm/144Nd | (143Nd/144Nd)i | fSm/Nd | εNd(198) |
---|---|---|---|---|---|---|---|---|---|
Sulfides | |||||||||
hjy-1 | Pyrite | 2 | 0.052 | 0.167 | 0.512426 | 0.1883 | 0.512182 | –0.04 | –3.9 |
hjy-10 | Pyrite | 2 | 0.018 | ||||||
hjy-12 | Pyrite | 2 | 0.085 | 0.747 | 0.513300 | 0.0688 | 0.512453 | –0.65 | 1.4 |
hjy-14 | Pyrite | 2 | 0.012 | 0.041 | 0.511941 | 0.1769 | 0.511712 | –0.10 | –13.1 |
hjy-20 | Pyrite | 2 | 0.06 | 0.425 | 0.511500 | 0.0853 | 0.511389 | –0.57 | –19.4 |
J3 | Pyrite | 2 | 0.026 | 0.194 | 0.511481 | 0.0810 | 0.511376 | –0.59 | –19.6 |
Average | N = 5 | 0.511823 | –10.9 | ||||||
Wallrocks | |||||||||
H4 | Duantouya Fm | 3.79 | 16 | 0.512051 | 0.1432 | 0.511865 | –0.27 | –10.1 | |
960-34-1 | Duantouya Fm | 0.216 | 1.29 | 0.512012 | 0.1012 | 0.511881 | –0.49 | –9.8 | |
960-28-1 | Duantouya Fm | 0.039 | 0.129 | 0.512350 | 0.1828 | 0.512114 | –0.07 | –5.3 | |
Average | N = 3 | 0.511953 | –0.28 | –8.4 | |||||
780-50-3 | Meta-ultramafic rock | 0.058 | 0.242 | 0.512325 | 0.1449 | 0.512137 | –0.26 | –4.8 | |
800-52-1 | Meta-ultramafic rock | 0.004 | 0.013 | 0.512393 | 0.1860 | 0.512152 | –0.05 | –4.5 | |
Average | N = 2 | 0.512144 | –0.16 | –4.7 |
Orogenic Gold Deposit a | Jianchaling Gold Deposit b | |
---|---|---|
Tectonic setting | Subduction hyperplasia, continental collision, intracontinental strike-slip and intracontinental compressional orogenic belt | Continental collision |
Ore-bearing terrane | Metamorphic terrane | Metamorphic and sedimentary terrane |
Ore-controlling lithology | Ultramafic volcanic rocks, intrusive rocks, miscellaneous sandstones, slate | Ultramafic and dolomite |
Metamorphism of the host rock | Greenschist facies (low green schist to low granulite) | Greenschist to low amphibolite facies |
Ore-controlling structures | In the secondary or lower faults of the super-lithospheric fracture zone, the ore-forming structures is mainly the high angle oblique slip belt, the reverse overthrust belt, and also the transverse fracture, the ductile-brittle zone | In the brittle fracture of the ductile shear zone (high angle thrust belt) in the basement fault zone |
Ore and gangue minerals | Mostly pyrite | Arsenic pyrite, marcasite, arsenopyrite, orpiment, realgar, quartz and calcite |
Ore type | Quartz vein and altered rock | Altered rock |
Metallogenic hydrothermal fluids characteristics | Aqueous solution with low salinity and low density, containing CO2 ± CH4 ± N2 ± H2S. The fluids inclusion type has H2O-CO2, rich CO2 (with an unquantifiable CH4 and a small amount of H2O) and gas-liquid two-phase H2O inclusions | Aqueous solution with low salinity and low density, containing CO2 ± CH4 ± H2S. The fluids inclusion type has NaCl-H2O, CO2-H2O-NaCl ± CH4 and pure CO2-CH4 |
Metallogenic fluids salinity | 3–12 wt % NaCl equiv. | 0.4–15.6 wt % NaCl. equiv. |
Main metallogenic temperature | 350 ± 50 °C | 200–320 °C |
Mineralization pressure | 50–400 MPa | 117–354 MPa |
Initial metallogenic fluids feature | Metamorphic fluids | Metamorphic fluids |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.-W.; Li, D.-F.; Bagas, L.; Fang, J.; Lin, Z.-W. Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis. Geosciences 2018, 8, 120. https://doi.org/10.3390/geosciences8040120
Yue S-W, Li D-F, Bagas L, Fang J, Lin Z-W. Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis. Geosciences. 2018; 8(4):120. https://doi.org/10.3390/geosciences8040120
Chicago/Turabian StyleYue, Su-Wei, Deng-Feng Li, Leon Bagas, Jing Fang, and Zhen-Wen Lin. 2018. "Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis" Geosciences 8, no. 4: 120. https://doi.org/10.3390/geosciences8040120
APA StyleYue, S. -W., Li, D. -F., Bagas, L., Fang, J., & Lin, Z. -W. (2018). Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis. Geosciences, 8(4), 120. https://doi.org/10.3390/geosciences8040120