Combined Use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies and Geographic Information System for Geological Mapping of Antiparos Island (Greece)
Abstract
:1. Introduction
2. Geological Setting
3. Remote Sensing Data, Processing and Field Sampling
4. Analytical Methods
5. Results and Discussion
Mineralogical Composition and Microstructure
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goetz, A.F.H.; Rowan, L.C. Geologic remote-sensing. Science 1981, 211, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Abrams, M.; Hook, S.J. Simulated ASTER data for geologic studies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 692–699. [Google Scholar] [CrossRef]
- Cudahy, T.; Hewson, R. ASTER geological case histories: Porphyry-skarn-epithermal, iron oxide Cu-Au and Broken Hill Pb-Zn-Ag. In Proceedings of the Annual General Meeting of the Geological Remote Sensing Group (ASTER Unveiled), London, UK, 5–7 December 2002. [Google Scholar]
- Nikolakopoulos, K.G.; Vaiopoulos, D.A.; Skianis, G.A. Use of multitemporal remote sensing data for mapping the Alfios River network changes from 1977 to 2000. Geocarto Int. 2007, 22, 251–271. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Tsombos, P.I.; Skianis Aim, G.; Vaiopoulos, D.A. EO-1 Hyperion and ALI bands simulation to Landat 7 ETM+ bands for mineral mapping in Milos Island. In Proceedings of the SPIE Remote Sensing, Cardiff, Wales, UK, 15–18 September 2008; Volume 7110, p. 711010. [Google Scholar] [CrossRef]
- Deroin, J.P.; Dhont, D.; Jabbour, M.; Chorowicz, J.; Fruneau, B. Geological mapping in the zone of Chotts, Tunisia, using ALOS sensors. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Nikolakopoulos, K.G.; Tsombos, P.I.; Mitropoulos, D.; Zervakou, A.; Grasemann, B.; Iglseder, C.; Petrakakis, K.; Müller, M.; Hugh, A.N.; Voit, K.R.; et al. Updating the 1/50.000 geological maps of IGME with remote sensing data, marine geology data, GPS measurements and GIS techniques: The case of KEA Island. In Proceedings of the SPIE Remote Sensing, Berlin, Germany, 31 August–3 September 2009; Volume 7478, p. 747800. [Google Scholar] [CrossRef]
- Marchesi, S.; Bruzzone, L. ICA and KERNEL ICA for change detection in multispectral remote sensing images. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Nikolakopoulos, K.G.; Gioti, E. Open Quarry Detection Using Multispectral and Hyperspectral Data. In Proceedings of the 31st EARSeL Symposium “Remote Sensing and Geoinformation Not Only for Scientific Cooperation”, Prague, Czech Republic, 30 May–2 June 2011; pp. 152–159. [Google Scholar]
- Leverington, D.W.; Moon, W.M. Landsat-TM-Based Discrimination of Lithological Units Associated with the Purtuniq Ophiolite, Quebec, Canada. Remote Sens. 2012, 4, 1208–1231. [Google Scholar] [CrossRef]
- Brandmeier, M.; Erasmi, S.; Hansen, C.; Höweling, A.; Nitzsche, K.; Ohlendorf, T. Mapping patterns of mineral alteration in volcanic terrains using ASTER data and field spectrometry in Southern Peru. J. S. Am. Earth Sci. 2013, 48, 296–314. [Google Scholar] [CrossRef]
- Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef]
- Van der Werff, H.; van der Meer, F. Sentinel-2 for mapping iron absorption feature parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Deffontaines, B.; Tabyaoui, H.; El Hammichi, F.; Chaouni, A.; Mounadel, A.; Lahsaini, M.; Magalhaes, S.; Fortunato, G. Importance of Geological Map Updates in Engineering Geology, Application to the Rif-Chain and Its Foreland (Northern Morocco). Eng. Geol. 2015, 6, 101–105. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Nikolakopoulos, K.G. Lava age discrimination of Kammenes islands, Santorini volcano, Greece, using remote sensing data. J. Appl. Remote Sens. 2015, 9, 096014. [Google Scholar] [CrossRef]
- Calvin, W.M.; Littlefield, E.F.; Kratt, C. Geothermics remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics 2015, 53, 517–526. [Google Scholar] [CrossRef]
- Gabr, S.S.; Hassan, S.M.; Sadek, M.F. Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol. Rev. 2015, 71, 1–13. [Google Scholar] [CrossRef]
- Mwaniki, M.W.; Moeller, M.S.; Schellmann, G.; Hue, I. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. In Proceedings of the ISPRS 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11–15 May 2015; Volume 40, pp. 897–903. [Google Scholar] [CrossRef]
- Mohebi, A.; Mirnejad, H.; Lentz, D.; Behzadi, M.; Dolati, A.; Kani, A.; Taghizadeh, H. Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geol. Rev. 2015, 69, 187–198. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Papoulis, D. A preliminary comparison between LANDSAT-8 OLI and Sentinel-2 MSI. In Proceedings of the ESA SP-740 ‘Living Planet Symposium 2016’, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Zhang, T.; Yi, G.; Li, H.; Wang, Z.; Tang, J.; Zhong, K. Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit. Remote Sens. 2016, 8, 890. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Ge, J.; Sun, Y. Assessment of WorldView-3 Data for Lithological Mapping. Remote Sens. 2017, 9, 1132. [Google Scholar] [CrossRef]
- Blake, M.C.; Bonneau, M.; Geyssant, J.; Kienast, J.R.; Lepvrier, C.; Maluski, H.; Papanikolaou, D. A geological reconnaissance of the Cycladic blueschist belt. Geol. Soc. Am. Bull. 1981, 92, 247–254. [Google Scholar] [CrossRef]
- Anastopoulos, J. Geological study of the Antiparos island group. Geol. Geophys. Res. 1963, 7, 231–375. [Google Scholar]
- Pe, G.G.; Piper, D.J.W. Volcanism at subduction zones; The Aegean area. Bull. Geol. Soc. Greece 1972, 9, 133–144. [Google Scholar]
- Papanikolaou, D.J. On the structural geology and tectonics of Paros Island (Aegean Sea). Ann. Geol. Pays Hell. 1977, 28, 450–464. [Google Scholar]
- Cann, J.; Dixon, J.; Renfrew, C. The sources of Saliagos Obsidian. In Excavations at Saliagos near Antiparos; Evans, J.D., Renfrew, C., Eds.; British School of Archaeology at Athens; Thames & Hudson: London, UK, 1968. [Google Scholar]
- Innoncenti, F.; Kolios, N.; Manetti, P.; Villari, L. Acid and basic Late Neogene volcanism in Central Aegean Sea: Its nature and geotectonic significance. Bull. Volcanol. 1982, 45, 87–97. [Google Scholar] [CrossRef]
- Clapsopoulos, I. Origin of the Antiparos island rhyolites, Greece, by subduction-related anataxis of a granulitic source possibly located in the middle to lower continental crust. Bull. Geol. Soc. Greece 1998, 8, 355–366. [Google Scholar]
- Hannappel, A.; Reischemann, T. Rhyolitic dykes of Paros Island, Cyclades. In The Southern Aegean Active Volcanic Arc; Fytikas, M., Vougioukalakis, G.E., Eds.; Elsevier: San Diego, CA, USA, 2005; pp. 305–327. [Google Scholar]
- Carter, T.; Contreras, D.A. The character and use of the Soros Hill Obsidian source, Antiparos (Grecce). Comtes Rendus Palevol 2012, 11, 595–602. [Google Scholar] [CrossRef]
- Mavridis, F. Salvage excavation in the Cave of Antiparos, Cyclades: Prehistoric pottery and miscellaneous finds. A preliminary report. Aegean Archaeol. 2011, 9, 7–34. [Google Scholar]
- Kevrekidis, E.; Seymour, K.; Tombros, S.; Zhai, D.; Liu, J.; Zouzias, D. The Agios Georgios argentiferous galena deposit on Antiparos Island, Cyclades, Hellas and its relationship to the Paros leucogranite. J. Mineral. Geochem. 2015, 192, 239–261. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G. Spatial resolution enhancement of EO-1 ALI bands. In Proceedings of the SPIE Remote Sensing, Stockholm, Sweden, 11–14 September 2006. [Google Scholar]
- Nikolakopoulos, K.G.; Tsombos, P. Updating the 1/50.000 geological maps of IGME with Remote Sensing data, GPS measurements and GIS techniques. The case of Antiparos Island. In Proceedings of the 30th EARSeL Symposium: Remote Sensing for Science, Education and Culture, Paris, France, 31 May–4 June 2010; pp. 281–288. [Google Scholar]
- Ninomiya, Y.; Fu, B. Regional Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef]
- Rajendran, S.; Nasir, S.; Kusky, T.M.; Ghulam, A.; Gabr, S.; El-Ghali, M.A.K. Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geol. Rev. 2013, 53, 470–488. [Google Scholar] [CrossRef]
- Amer, R.; Mezayen, A.E.; Hasanein, M. ASTER spectral analysis for alteration minerals associated with gold mineralization. Ore Geol. Rev. 2016, 75, 239–251. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolakopoulos, K.G.; Lampropoulou, P.; Papoulis, D.; Rogkala, A.; Giannakopoulou, P.P.; Petrounias, P. Combined Use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies and Geographic Information System for Geological Mapping of Antiparos Island (Greece). Geosciences 2018, 8, 96. https://doi.org/10.3390/geosciences8030096
Nikolakopoulos KG, Lampropoulou P, Papoulis D, Rogkala A, Giannakopoulou PP, Petrounias P. Combined Use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies and Geographic Information System for Geological Mapping of Antiparos Island (Greece). Geosciences. 2018; 8(3):96. https://doi.org/10.3390/geosciences8030096
Chicago/Turabian StyleNikolakopoulos, Konstantinos G., Paraskevi Lampropoulou, Dimitrios Papoulis, Aikaterini Rogkala, Panagiota P. Giannakopoulou, and Petros Petrounias. 2018. "Combined Use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies and Geographic Information System for Geological Mapping of Antiparos Island (Greece)" Geosciences 8, no. 3: 96. https://doi.org/10.3390/geosciences8030096
APA StyleNikolakopoulos, K. G., Lampropoulou, P., Papoulis, D., Rogkala, A., Giannakopoulou, P. P., & Petrounias, P. (2018). Combined Use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies and Geographic Information System for Geological Mapping of Antiparos Island (Greece). Geosciences, 8(3), 96. https://doi.org/10.3390/geosciences8030096