The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions
Abstract
:1. Introduction
1.1. The First Phase of Lunar Science
1.2. Post-Apollo Spike in Lunar Research
2. Renaissance in Lunar Science in the Last Decade (2008–2018)
2.1. Volatiles
2.1.1. Volatiles Associated with the Lunar Interior
2.1.2. Volatiles Associated with Topmost Surface
2.1.3. Volatiles Associated with the Lunar Poles
2.2. Lunar Magma Ocean Concept
2.2.1. Global Occurrence of Pure Plagioclase Layer
2.2.2. Global Occurrence of Featureless Spectra—Origin and Associations
2.2.3. Large Spread in Crystallization Ages of Primordial Crust—Conundrum and New Views
2.2.4. KREEP and Proxies—Insights into Primordial Crust Formation
2.3. Lunar Secondary Magmatism
2.3.1. Extrusive Magmatism
2.3.1.1. Evolved Lithologies—Identification and Characterization
2.3.1.2. Young Volcanism on the Moon—New Evidences and Debates
2.3.1.3. Basalt Composition and Ages—New Updates
2.3.1.4. Lunar Pyroclastic Deposits
2.3.1.5. Lava Tube Skylights—Accessibility, Science and Resource Potential
2.3.2. Intrusive Magmatism
2.4. Compositional Trends within Anorthositic Crust—Lateral and Vertical
2.4.1. Primordial Crust Produced (and Modified) Dominantly by Internal Geological Activities
2.4.2. Impact Cratering Produced Components at Local Scale
2.4.3. Impact Cratering Produced Components in Large Impacts
2.5. South-Pole Aitken Basin—New Light on the Lower Crust and Upper Mantle
3. Future Lunar Science and Exploration
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Tera, F.; Papanastassiou, D.A.; Wasserberg, G.J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 1974, 22, 1–21. [Google Scholar] [CrossRef]
- Wood, J.A.; Dickey, J.S., Jr.; Marvin, U.B.; Powell, B.N. Lunar anorthosites and a geophysical model of the Moon. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; pp. 968–988. [Google Scholar]
- Hartmann, W.K. Early lunar cratering. Icarus 1966, 5, 406–418. [Google Scholar] [CrossRef]
- Hartmann, W.K. Lunar crater counts. VI: The young craters Tycho, Aristarchus, and Copernicus. Commun. Lunar Planet. Lab. 1968, 8, 145–156. [Google Scholar]
- Neukum, G.; König, B. Dating of individual lunar craters. In Proceedings of the 7th Lunar Science Conference, Houston, TX, USA, 15–19 March 1976; pp. 2867–2881. [Google Scholar]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Ivanov, B.A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 2001, 96, 87–104. [Google Scholar] [CrossRef]
- Kreslavsky, M.A.; Asphaug, E. Direct Delivery of Lunar Impact Ejecta to the Earth. In Proceedings of the 45th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 17–21 March 2014; p. 2455. [Google Scholar]
- Bottke, W.F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E.R.D.; Weirich, J.R.; Levison, H. Dating the Moon-forming impact event with asteroidal meteorites. Science 2015, 348, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, W.K.; Davis, D.R. Satellite-sized planetesimals and lunar origin. Icarus 1975, 24, 504–515. [Google Scholar] [CrossRef]
- Cameron, A.G.W.; Ward, W.R. The origin of the Moon. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1976; Volume 7, pp. 120–122. [Google Scholar]
- Cameron, A.G.W. Higher resolution simulations of the Giant Impact. In Origin of the Earth and Moon; Righter, K., Canup, R., Eds.; University of Arizona Press: Tucson, AZ, USA, 2000; pp. 133–144. [Google Scholar]
- Canup, R.M.; Asphaug, E. Origin of the Moon in a giant impact near the end of Earth’s formation. Nature 2001, 412, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Ćuk, M.; Stewart, S.T. Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning. Science 2012, 338, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Canup, R.M. Forming a Moon with an Earth-like Composition via a Giant Impact. Science 2012, 338, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Rufu, R.; Aharonson, O.; Perets, H.B. A multiple-impact origin for the Moon. Nat. Geosci. 2017, 10, 89–94. [Google Scholar] [CrossRef]
- Gilbert, G.K. The Moon’s face: A study of the origin of its features. Philos. Soc. Wash. 1893, 12, 241–292. [Google Scholar]
- Marshall, R.K. Origin of the lunar craters, a summary. Pop. Astron. 1943, 51, 415–424. [Google Scholar]
- Kuiper, G.P. On the origin of the lunar surface features. Proc. Natl. Acad. Sci. USA 1954, 40, 1096–1112. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, R.B. The Face of the Moon; University of Chicago Press: Chicago, IL, USA, 1949. [Google Scholar]
- Baldwin, R.B. The Measure of the Moon; University of Chicago Press: Chicago, IL, USA, 1963. [Google Scholar]
- Urey, H.C. Origin and history of the Moon. In Physics and Astronomy of the Moon; Kopal, Z., Ed.; Academic Press: New York, NY, USA, 1962; pp. 481–523. [Google Scholar]
- Goldreich, P. History of lunar orbit. Rev. Geophys. 1966, 4, 411–439. [Google Scholar] [CrossRef]
- Storm, R.G.; Fielder, G. Multiphase development of lunar crater Tycho. Nature 1968, 217, 611–615. [Google Scholar] [CrossRef]
- Green, J. Copernicus as a Lunar Caldera. J. Geophys. Res. 1971, 76, 5719–5731. [Google Scholar] [CrossRef]
- Barricelli, N.A.; Metcalfe, R. The lunar surface and early history of the Earth’s satellite system. Icarus 1969, 10, 144–163. [Google Scholar] [CrossRef]
- Turkevich, A.L.; Franzgrote, F.J.; Patterson, J.H. Chemical compositions of the lunar surface Mare Tranquillitatis. Science 1969, 165, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Hodges, F.N.; Papike, J.J. Mare basalts major element composmon and classification. In Proceedings of the Origins of Mare Basalts and Their Implications for Lunar Evolution, Lunar Science Institute, Houston, TX, USA, 17–19 November 1975; pp. 135–139. [Google Scholar]
- Metzger, A.E.; Parker, R.E. The distribution of titanium on the lunar surface. Earth Planet. Sci. Lett. 1979, 45, 155–171. [Google Scholar] [CrossRef]
- Davis, P.A. Iron and titanium distribution on the Moon from orbital gamma-ray spectrometry with implications for crustal evolutionary models. J. Geophys. Res. 1980, 85, 3209–3224. [Google Scholar] [CrossRef]
- Pieters, C.M.; McCord, T.B. Characterization of lunar mare basalt types: A remote sensing study using reflection spectroscopy of surface soils. In Proceedings of the 7th Lunar Science Conference, Houston, TX, USA, 15–19 March 1976; pp. 2677–2690. [Google Scholar]
- Johnson, T.V.; Saunders, R.S.; Matson, D.L.; Mosher, J.A. A TiO2 abundance map for the northern maria. In Proceedings of the 8th Lunar Science Conference, Houston, TX, USA, 14–18 March 1977; pp. 1029–1036. [Google Scholar]
- Pieters, C.M. Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. In Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; pp. 2825–2849. [Google Scholar]
- Pieters, C.M. Copernicus Crater Central Peak: Lunar Mountain of Unique Composition. Science 1982, 215, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Hapke, B.; Cassidy, W.; Wells, E. Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith. Moon 1975, 13, 339–353. [Google Scholar] [CrossRef]
- Head, J.W. Lunar volcanism in space and time. Rev. Geophys. 1976, 14, 265–300. [Google Scholar] [CrossRef]
- Warren, P.H.; Wasson, J.T. The origin of KREEP. Rev. Geophys. 1979, 17, 73–88. [Google Scholar] [CrossRef]
- May, T.W.; Peeples, W.J.; Maxwell, T.; Sill, W.R.; Ward, S.H.; Phillips, R.J.; Jordan, R.; Abbott, E. Subsurface Layering in Maria Serenitatis and Crisium: Apollo Lunar Sounder Results. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1976; Volume 7, p. 540. [Google Scholar]
- Vaniman, D.; Dietrich, J.; Taylor, G.J.; Heiken, G. Exploration, samples and recent concepts of the Moon. In Lunar Sourcebook; Heiken, G., Vaniman, D., French, B.M., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 5–26, 721. [Google Scholar]
- Taylor, S.R. Planetary Science: A Lunar Perspective; Lunar and Planetary Institute: Houston, TX, USA, 1982; 481p. [Google Scholar]
- Korotev, R.L. Pristine Cataclasite Anorthosite. Available online: http://meteorites.wustl.edu/lunar/apollo/index.htm (accessed on 16 December 2018).
- Seddio, S.M.; Jolliff, B.L.; Korotev, R.L.; Zeigler, R.A. Petrology and geochemistry of lunar granite 12032,366-19 and implications for lunar granite petrogenesis. Am. Mineral. 2013, 98, 1697–1713. [Google Scholar] [CrossRef]
- Wilhelms, D.E. With Sections by McCauley, and Newell J. Trask The Geological History of the Moon; USGS: Reston, VA, USA, 1987; Volume 1348, pp. 1–302. [CrossRef]
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourcebook; Cambridge University Press: Cambridge, UK, 1993; p. 721. [Google Scholar]
- Nozette, S.; Rustan, P.; Pleasance, L.P.; Kordas, J.F.; Lewis, I.T.; Park, H.S.; Priest, R.E.; Horan, D.M.; Regeon, P.; Lichtenberg, C.L.; et al. The Clementine Mission to the Moon: Scientific Overview. Science 1994, 266, 1835–1839. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.B. Lunar Prospector: Overview. Science 1998, 281, 1475–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.V.; Yeates, C.M.; Young, R. Space Science Reviews volume on Galileo Mission overview. In The Galileo Mission; Russell, C.T., Ed.; Springer: Dordrecht, The Netherlands, 1992; Volume 60, pp. 3–21. [Google Scholar]
- Lucey, P.G.; Taylor, G.J.; Malaret, E. Abundance and distribution of iron on the Moon. Science 1995, 268, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Lucey, P.G.; Blewett, D.T.; Hawke, B.R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. 1998, 103, 3679–3699. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Jolliff, B.L. Lunar iron and titanium abundance algorithms based on final processing Clementine UV–vis images. J. Geophys. Res. 2000, 105, 20297–20305. [Google Scholar] [CrossRef]
- Blewett, D.T.; Lucey, P.G.; Hawke, B.R.; Jolliff, B.L. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J. Geophys. Res. 1997, 102, 16319–16325. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. 2000, 105, 4197–4216. [Google Scholar] [CrossRef] [Green Version]
- Nozette, S.; Lichtenberg, C.L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E.M. The Clementine Bistatic Radar Experiment. Science 1994, 274, 1495–1498. [Google Scholar] [CrossRef]
- Watson, K.; Murray, B.C.; Brown, H. The behavior of volatiles on the lunar surface. J. Geophys. Res. 1961, 66, 3033–3045. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.R. Ice in the lunar polar regions. J. Geophys. Res. 1979, 84, 5659–5668. [Google Scholar] [CrossRef]
- Feldman, W.C.; Maurice, S.; Binder, A.B.; Barraclough, B.L.; Elphic, R.C.; Lawrence, D.J. Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles. Science 1994, 281, 1496–1500. [Google Scholar] [CrossRef]
- Elphic, R.C.; Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Maurice, S.; Binder, A.B.; Lucey, P.G. Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. J. Geophys. Res. 2000, 105, 20333–20345. [Google Scholar] [CrossRef]
- Elphic, R.C.; Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Maurice, S.; Lucey, P.G.; Blewett, D.T.; Binder, A.B. The Lunar Prospector neutron spectrometer constraints on TiO2. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Binder, A.B.; Hood, L.L.; Kucinskas, A.B.; Sjogren, W.L.; Williams, J.G. Improved Gravity Field of the Moon from Lunar Prospector. Science 1998, 281, 1476–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tompkins, S.; Pieters, C. Mineralogy of the lunar crust: Results from Clementine. Meteor. Planet. Science 1999, 34, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Cahill, J.T.S.; Lucey, P.G.; Wieczorek, M.A. Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Schultz, P.H.; Spudis, P.D. The beginning and end of lunar volcanism. Nature 1983, 302, 233–236. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W.; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Schultz, P.H.; Staid, M.I.; Pieters, C.M. Lunar activity from recent gas release. Nature 2006, 444, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Hiesinger, H.; Head, J.W.; Wolf, U.; Neukum, G. Lunar mare basalts: Mineralogical variations with time. In Proceedings of the 32nd Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 2001. Abstract #1826. [Google Scholar]
- Petro, N. More surprises from the Moon. Nat. Geosci. 2011, 4, 499–501. [Google Scholar] [CrossRef]
- Staid, M.I.; Pieters, C.M.; Besse, S.; Boardman, J.; Dhingra, D.; Green, R.; Head, J.W.; Isaacson, P.; Klima, R.; Kramer, G.; et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. 2011, 116, E00G10. [Google Scholar] [CrossRef]
- Saal, A.E.; Hauri, E.H.; Cascio, M.L.; Van Orman, J.A.; Rutherford, M.C.; Cooper, R.F. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 2008, 454, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Hauri, E.H.; Weinreich, T.; Saal, A.E.; Rutherford, M.C.; Van Orman, J.A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 2011, 333, 213–215. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, F.M.; Steele, A.; Hauri, E.H.; Nekvasil, H.; Yamashita, S.; Hemley, R.J. Nominally hydrous magmatism on the Moon. Proc. Natl. Acad. Sci. USA 2010, 7, 11223–11228. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.J.; Tartèse, R.; Anand, M.; McCubbin, F.M.; Franchi, I.A.; Starkey, N.A.; Russell, S.S. The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 2014, 390, 244–252. [Google Scholar] [CrossRef]
- Hauri, E.H.; Saal, A.E.; Rutherford, M.J.; Van Orman, J.A. Water in the Moon’s interior: Truth and consequences. Earth Planet. Sci. Lett. 2015, 409, 252–264. [Google Scholar] [CrossRef]
- Boyce, J.W.; Tomlinson, S.M.; McCubbin, F.M. The lunar apatite paradox. Science 2014, 344, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, K.; Stevenson, D.J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 2007, 262, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, K.; Karato, S.; Fegley, B. Speciation and dissolution of hydrogen in the proto-lunar disk. Earth Planet. Sci. Lett. 2016, 445, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Klima, R.; Cahill, J.; Hagerty, J.; Lawrence, D. Remote detection of magmatic water in Bullialdus Crater on the Moon. Nat. Geosci. 2013, 6, 737–741. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Saran, S.; Dagar, A.; Chauhan, P.; Chauhan, M.; Kumar, K. Endogenicwater on the Moon associated with non-mare silicic volcanism: Implications for hydrated lunar interior. Curr. Sci. 2013, 105, 685–691. [Google Scholar]
- Bhattacharya, S.; Lal, D.; Chauhan, M.; Chauhan, P.; Ajai; Kumar, A.S.K. Detection of hydroxyl-bearing exposures of possible magmatic origin on the central peak of crater Theophilus using Chandrayaan-1 Moon Mineralogy Mapper (M3) data. Icarus 2015, 260, 167–173. [Google Scholar] [CrossRef]
- Li, S.; Milliken, R.E. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Sci. Adv. 2017, 3, e1701471. [Google Scholar] [CrossRef] [PubMed]
- Milliken, R.E.; Li, S. Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nat. Geosci. 2017, 10, 561–565. [Google Scholar] [CrossRef]
- Clark, R.N. Detection of adsorbed water and hydroxyl on the Moon. Science 2009, 326, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M.D.; Green, R.; Head, J.W.; et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 2009, 326, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Sunshine, J.M.; Farnham, T.L.; Feaga, L.M.; Groussin, O.; Merlin, F.; Milliken, R.E.; A’Hearn, M.F. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 2009, 326, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, R.; Ahmed, S.M.; Das, T.P.; Sreelatha, P.; Kumar, P.P.; Naik, N.; Supriya, G. ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I. Planet. Space Sci. 2010, 58, 947–950. [Google Scholar] [CrossRef]
- McCord, T.B.; Taylor, L.A.; Combe, J.-P.; Kramer, G.; Pieters, C.M.; Sunshine, J.M.; Clark, R.N. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 2011, 116, E00G05. [Google Scholar] [CrossRef]
- Wöhler, C.; Grumpe, A.; Berezhnoy, A.A.; Shevchenko, V.V. Time-of-day–dependent global distribution of lunar surficial water/hydroxyl. Sci. Adv. 2017, 3, e1701286. [Google Scholar] [CrossRef] [PubMed]
- Bandfield, J.L.; Poston, M.J.; Klima, R.L.; Edwards, C.S. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nat. Geosci. 2018, 11, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, A.S.; Zent, A.P.; Quinn, R.C.; Sanchez, M.R.; Taylor, L.A. Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments. Earth Planet. Sci. Lett. 2012, 345–348, 90–94. [Google Scholar] [CrossRef]
- Spudis, P.D.; Bussey, D.B.J.; Baloga, S.M.; Butler, B.J.; Carl, D.; Carter, L.M.; Chakraborty, M.; Elphic, R.C.; Gillis-Davis, J.J.; Goswami, J.N.; et al. Initial results for the north-pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophys. Res. Lett. 2010, 37, L06204. [Google Scholar] [CrossRef]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of Water in the LCROSS Ejecta Plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Schultz, P.H.; Hermalyn, B.; Colaprete, A.; Ennico, K.; Shirley, M.; Marshall, W.S. The LCROSS Cratering Experiment. Science 2010, 330, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Mitrofanov, I.G.; Sanin, A.B.; Boynton, W.V.; Chin, G.; Garvin, J.B.; Golovin, D.; Evans, L.G.; Harshman, K.; Kozyrev, A.S.; Litvak, M.L.; et al. Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND. Science 2010, 330, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Spudis, P.D.; Bussey, D.B.J.; Baloga, S.M.; Cahill, J.T.S.; Glaze, L.S.; Patterson, G.W.; Raney, R.K.; Thompson, T.W.; Thomson, B.J.; Ustinov, E.A. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res. Planets 2013, 118, 2016–2029. [Google Scholar] [CrossRef] [Green Version]
- Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; et al. Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region. Science 2010, 330, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Zuber, M.T.; Head, J.W.; Smith, D.E.; Neumann, G.A.; Mazarico, E.; Torrence, M.H.; Aharonson, O.; Tye, A.R.; Fassett, C.I.; Rosenburg, M.A.; et al. Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Nature 2012, 486, 378–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladstone, G.R.; Retherford, K.D.; Egan, A.F.; Kaufmann, D.E.; Miles, P.F.; Parker, J.W.; Horvath, D.; Rojas, P.M.; Versteeg, M.H.; Davis, M.W.; et al. Far-ultraviolet reflectance properties of the Moon’s permanently shadowed regions. J. Geophys. Res. 2012, 117, E00H04. [Google Scholar] [CrossRef]
- Lemelin, M.; Lucey, P.G.; Song, E.; Paige, D.A.; Greenhagen, B.T.; Siegler, M.A.; Hayne, P.O.; Mazarico, E.; Neumann, G.; Smith, D.E.; et al. A search for transient water frost at the lunar poles using LOLA. In Proceedings of the American Geophysical Union, Fall Meeting 2014, San Francisco, CA, USA, 15–19 December 2014. abstract id.P13D-3832. [Google Scholar]
- Hayne, P.O.; Hendrix, A.; Sefton-Nash, E.; Siegler, M.A.; Lucey, P.G.; Retherford, K.D.; Williams, J.-P.; Greenhagen, B.T.; Paige, D.A. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 2015, 255, 58–69. [Google Scholar] [CrossRef]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef] [PubMed]
- Amitabh, S.; Suresh, K.; Srinivasan, T.P. Potential Landing Sites for Chandrayaan-2 Lander in Southern Hemisphere of Moon. In Proceedings of the 49th Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2018. Abstract #1975. [Google Scholar]
- Rivkin, A.S.; Howell, E.S.; Emery, J.P.; Sunshine, J. Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed. Icarus 2018, 304, 74–82. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Combe, J.-P.; Ammannito, E.; Palomba, E.; Longobardo, A.; McCord, T.B.; Marchi, S.; Capaccioni, F.; Capria, M.T.; Mittlefehldt, D.W.; et al. Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer onboard the Dawn mission. Astrophys. J. Lett. 2012, 758, L36. [Google Scholar] [CrossRef]
- Siegler, M.A.; Miller, R.S.; Keane, J.T.; Laneuville, M.; Paige, D.A.; Matsuyama, I.; Lawrence, D.J.; Crotts, A.; Poston, M.J. Lunar true polar wander inferred from polar hydrogen. Nature 2016, 531, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Needham, D.H.; Kring, D.A. Lunar volcanism produced a transient atmosphere around the ancient Moon. Earth Planet. Sci. Lett. 2017, 478, 175–178. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Parmentier, E.M.; Hess, P.C. Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteor. Planet. Sci. 2003, 38, 1753–1771. [Google Scholar] [CrossRef] [Green Version]
- Elkins-Tanton, L. Magma Oceans in the Inner Solar System. Annu. Rev. Earth Planet. Sci. 2012, 40, 113–139. [Google Scholar] [CrossRef]
- Shirley, D.N. A partially molten magma ocean model. In Proceedings of the Thirteenth Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1982; pp. A519–A527. [Google Scholar]
- Longhi, J.; Ashwal, L.D. Two-stage models for lunar and terrestrial anorthosites: Petrogenesis without a magma ocean. In Proceedings of the Fifteenth Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 1984; pp. C571–C584. [Google Scholar]
- Ohtake, M.; Matsunaga, T.; Haruyama, J.; Yokota, Y.; Morota, T.; Honda, C.; Ogawa, Y.; Torii, M.; Miyamoto, H.; Arai, T.; et al. The global distribution of pure anorthosite on the Moon. Nature 2009, 461, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Donaldson Hanna, K.L.; Cheek, L.C.; Pieters, C.M.; Mustard, J.F.; Greenhagen, B.T.; Thomas, I.R.; Bowles, N.E. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. J. Geophys. Res. Planets 2014, 119, 1516–1545. [Google Scholar] [CrossRef] [Green Version]
- Conel, J.E.; Nash, D.B. Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; Volume 3, pp. 2013–2024. [Google Scholar]
- Bell, P.M.; Mao, H.K. Optical and chemical analysis of iron in Luna 20 plagioclase. Geochim. Cosmochim. Acta 1973, 37, 755–758. [Google Scholar] [CrossRef]
- Adams, J.B.; Goullaud, L.H. Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote sensing. In Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; pp. 2901–2909. [Google Scholar]
- Piskorz, D.; Stevenson, D.J. The formation of pure anorthosite on the Moon. Icarus 2014, 239, 238–243. [Google Scholar] [CrossRef]
- Nagaoka, H.; Takeda, H.; Karouji, Y.; Ohtake, M.; Yamaguchi, A.; Yoneda, S.; Hasebe, N. Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group. Earth Planets Space 2014, 66, 115. [Google Scholar] [CrossRef]
- Dygert, N.; Lin, J.-F.; Marshall, E.W.; Kono, Y.; Gardner, J.E. A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Massive layer of pure anorthosite on the Moon. Geophys. Res. Lett. 2012, 39, L13201. [Google Scholar] [CrossRef]
- Ohtake, M.; Takeda, H.; Matsunaga, T.; Yokota, Y.; Haruyama, J.; Morota, T.; Yamamoto, S.; Ogawa, Y.; Hiroi, T.; Karouji, Y.; et al. Asymmetric crustal growth on the Moon indicated by primitive farside high materials. Nat. Geosci. 2012, 5, 384–388. [Google Scholar] [CrossRef]
- Cheek, L.C.; Hanna, K.L.D.; Pieters, C.M.; Head, J.W.; Whitten, J.L. The distribution and purity of anorthosite across the Orientale Basin: New perspectives from Moon Mineralogy Mapper Data. J. Geophys. Res. Planets 2013, 118, 1805–1820. [Google Scholar] [CrossRef]
- Adams, J.B.; Horz, F.; Gibbon, R.V. Effects of shock-loading on the reflectance spectra of plagioclase, pyroxene, and glass. In Proceedings of the Lunar and Planetary Science X Conference, Houston, TX, USA, 19–23 March 1979; pp. 1–3. [Google Scholar]
- Johnson, J.R.; Horz, F. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars. J. Geophys. Res. 2003, 108, 5120. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Featureless spectra on the Moon as evidence of residual lunar primordial crust. J. Geophys. Res. Planets 2015, 120, 2190–2205. [Google Scholar] [CrossRef]
- Pieters, C.M.; Hiroi, T.; Milliken, R.; Cheek, L. Abundance and distribution of lunar primary crust anorthosite: The featureless plagioclase challenge. In Proceedings of the 49th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 19–23 March 2018. Abstract #1698. [Google Scholar]
- Borg, L.E.; Connelly, J.N.; Boyet, M.; Carlson, R.W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 2011, 477, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Borg, L.E.; Gaffney, A.M.; Shearer, C.K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteor. Planet. Sci. 2015, 50, 715–732. [Google Scholar] [CrossRef]
- Meyer, J.; Elkins-Tanton, L.T.; Wisdom, J. Coupled thermal-orbital evolution of the early Moon. Icarus 2010, 208, 1–10. [Google Scholar] [CrossRef]
- Perera, V.; Jackson, A.P.; Elkins-Tanton, L.T.; Asphaug, E. Effect of reimpacting debris on the solidification of the lunar magma ocean. J. Geophys. Res. Planets 2018, 123, 1168–1191. [Google Scholar] [CrossRef]
- Russell, S.S.; Joy, K.H.; Jeffries, T.E.; Consolmagno, G.J.; Kearsley, A. Heterogeneity in lunar anorthositemeteorites: Implications for the lunar magma ocean model. Philos. Trans. R. Soc. A 2014, 372, 20130241. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.C.; Maurice, S.; Miller, M.C.; Prettyman, T.H. High resolution measurements of absolute thorium abundance on the lunar surface. Geophys. Res. Lett. 1999, 26, 2681–2683. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.C.; Maurice, S.; Miller, M.C.; Prettyman, T.H. Thorium abundances on the lunar surface. J. Geophys. Res. 2000, 105, 20307–20331. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, N.; Hasebe, N.; Reedy, R.C.; Kobayashi, S.; Karouji, Y.; Hareyama, M.; Shibamura, E.; Kobayashi, M.-N.; Okudaira, O.; d’Uston, C.; et al. Uranium on the Moon: Global distribution and U/Th ratio. Geophys. Res. Lett. 2010, 37, L10201. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Chang, J.; Ma, T.; Ip, W.-H.; Fa, W.; Wu, J.; Cai, M.; Gong, Y.; Hu, Y.; Xu, A.; et al. Potassium Map from Chang’E-2 Constraints the Impact of Crisium and Orientale Basin on the Moon. Sci. Rep. 2013, 3, 1611. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.T.; Lawrence, D.J.; Peplowski, P.N.; Eke, V.R.; Massey, R.J.; Teodoro, L.F.A. Improved resolution lunar prospector neutron and gamma ray data. In Proceedings of the 49th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 19–23 March 2018. Abstract #2103. [Google Scholar]
- Wilson, J.T.; Eke, V.R.; Massey, R.J.; Elphic, R.C.; Jolliff, B.L.; Lawrence, D.J.; Llewellin, E.W.; McElwaine, J.N.; Teodoro, L.F.A. Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex. J. Geophys. Res. Planets 2015, 120, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, M.; Bhattacharya, S.; Saran, S.; Chauhan, P.; Dagar, A. Compton-Belkovich Volcanic Complex (CBVC): An ash flow caldera on the Moon. Icarus 2015, 253, 115–129. [Google Scholar] [CrossRef]
- Glotch, T.; Lucey, P.; Bandfield, J.; Greenhagen, B.; Thomas, I.; Elphic, R.; Bowles, N.; Wyatt, M.; Allen, C.; Hanna, K.; et al. Highly silicic compositions on the Moon. Science 2010, 329, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Glotch, T.D.; Hagerty, J.J.; Lucey, P.G.; Hawke, B.R.; Giguere, T.A.; Arnold, J.A.; Williams, J.-P.; Jolliff, B.L.; Paige, D.A. The Mairan domes: Silicic volcanic constructs on the Moon. Geophys. Res. Lett. 2011, 38, L21204. [Google Scholar] [CrossRef]
- Whitaker, E.A. Lunar color boundaries and their relationship to topographic features: A preliminary survey. Moon 1972, 4, 348–355. [Google Scholar] [CrossRef]
- Malin, M. Lunar red spots: Possible pre-mare materials. Earth Planet. Sci. Lett. 1974, 21, 331–341. [Google Scholar] [CrossRef]
- Head, J.W.; McCord, T.B. Imbrian-age highland volcanism on the Moon: The Gruithuisen and Mairan domes. Science 1978, 199, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Head, J. Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement. J. Geophys. Res. 2003, 108, 5012. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Wiseman, S.A.; Lawrence, S.J.; Tran, T.N.; Robinson, M.S.; Sato, H.; Hawke, B.R.; Scholten, F.; Oberst, J.; Hiesinger, H.; et al. Non-mare silicic volcanism on the lunar farside at Compton-Belkovich. Nat. Geosci. 2011. [Google Scholar] [CrossRef]
- Ashley, J.W.; Robinson, M.S.; Stopar, J.D.; Glotch, T.D.; Hawke, B.R.; van der Bogert, C.H.; Hiesinger, H.; Lawrence, S.J.; Jolliff, B.L.; Greenhagen, B.T.; et al. The Lassell massif—A silicic lunar volcano. Icarus 2016, 273, 248–261. [Google Scholar] [CrossRef]
- Braden, S.E.; Stopar, J.D.; Robinson, M.S.; Lawrence, S.J.; van der Bogert, C.H.; Hiesinger, H. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat. Geosci. 2014. [Google Scholar] [CrossRef]
- El Baz, F.; Worden, A.W. In Apollo 15 Preliminary Science Report 25-1–25-25; NASA SP-289; US Government Printing Office: Washington, DC, USA, 1972.
- Strain, P.; El-Baz, F. The geology and morphology of Ina. In Proceedings of the 11th Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1980; Volume 3, pp. 2437–2446. [Google Scholar]
- Garry, W.; Robinson, M.; Zimbelman, J.; Bleacher, J.; Hawke, B.; Crumpler, L.; Braden, S.; Sato, H. The origin of Ina: Evidence for inflated lava flows on the Moon. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Head, J.W. Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of “irregular mare patches”. J. Volcanol. Geotherm. Res. 2017, 335, 113–127. [Google Scholar] [CrossRef]
- Qiao, L.; Head, J.W.; Xiao, L.; Wilson, L.; Dufek, J.D. The role of substrate characteristics in producing anomalously young crater retention ages in volcanic deposits on the Moon: Morphology, topography, subresolution roughness, and mode of emplacement of the Sosigenes lunar irregular mare patch. Meteor. Planet. Sci. 2018, 53, 778–812. [Google Scholar] [CrossRef]
- Elder, C.M.; Hayne, P.O.; Bandfield, J.L.; Ghent, R.R.; Williams, J.-P.; Donaldson Hanna, K.L.; Paige, D.A. Young lunar volcanic features: Thermophysical properties and formation. Icarus 2017, 290, 224–237. [Google Scholar] [CrossRef]
- Srivastava, N.; Kumar, D.; Gupta, R.P. Young viscous flows in the Lowell crater of Orientale basin, Moon: Impact melts or volcanic eruptions? Planet. Space Sci. 2013, 87, 37–45. [Google Scholar] [CrossRef]
- Gupta, R.P.; Srivastava, N.; Tiwari, R.K. Evidences for relatively new volcanic flows on the Moon. Curr. Sci. 2014, 107, 454–460. [Google Scholar]
- Plescia, J.B.; Spudis, P.D. Impact melt flows at Lowell crater. Planet. Space Sci. 2014, 103, 219–227. [Google Scholar] [CrossRef]
- Srivastava, N.; Varatharajan, I. Geomorphology of Lowell crater region on the Moon. Icarus 2016, 266, 44–56. [Google Scholar] [CrossRef]
- Chauhan, P.; Kaur, P.; Srivastava, N.; Bhattacharya, S.; Ajai; Kumar, A.S.K.; Goswami, J.N. Compositional and morphological analysis of high resolution remote sensing data over central peak of Tycho crater on the Moon: Implications for understanding lunar interior. Curr. Sci. 2012, 102, 1041–1046. [Google Scholar]
- Ling, Z.; Jolliff, B.L.; Wang, A.; Li, C.; Liu, J.; Zhang, J.; Li, B.; Sun, L.; Chen, J.; Xiao, L.; et al. Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat. Commun. 2015, 6, 8880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, W.; Hu, S.; Lin, Y.; Fang, G.; Li, C.; Peng, W.; Zhu, S.; He, Z.; Zhou, B.; et al. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proc. Natl. Acad. Sci. USA 2015, 112, 5342–5347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wöhler, C.; Grumpe, A.; Berezhnoy, A.; Bhatt, M.U.; Mall, U. Integrated topo- graphic, photometric and spectral analysis of the lunar surface: Application to impact melt flows and ponds. Icarus 2014, 235, 86–122. [Google Scholar] [CrossRef]
- Lucey, P.G.; Lemelin, M.; Ohtake, M.; Gaddis, L.R.; Greenhagen, B.T.; Yamamoto, S.; Hare, T.M.; Taylor, J.; Martel, L.; Norman, J. Global High Resolution Mineral Maps of the Moon Using Data from the Kaguya Multiband Imager and LRO Diviner Lunar Radiometer. In Proceedings of the American Geophysical Union, Fall General Assembly 2016, San Francisco, CA, USA, 12–16 December 2016. abstract id.P53A-2169. [Google Scholar]
- Sato, H.; Robinson, M.S.; Lawrence, S.J.; Denevi, B.W.; Hapke, B.; Jolliff, B.L.; Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 2017, 296, 216–238. [Google Scholar] [CrossRef]
- Hapke, B.; Sato, H.; Robinson, M. Lunar Reconnaissance Orbiter Wide Angle Camera Algorithm for TiO2 Abundances on the Lunar Surface, including the Highlands and Low-Ti Maria. Icarus 2019. [Google Scholar] [CrossRef]
- Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. Planets 2011, 116, 1–33. [Google Scholar] [CrossRef]
- Kramer, G.Y.; Jolliff, B.L.; Neal, C.R. Distinguishing high-alumina mare basalts using Clementine UVVIS and Lunar Prospector GRS data: Mare Moscoviense and Mare Nectaris. J. Geophys. Res. Planets 2008, 113, 1002. [Google Scholar] [CrossRef]
- Haruyama, J.; Ohtake, M.; Matsunaga, T.; Morota, T.; Honda, C.; Yokota, Y.; Abe, M.; Ogawa, Y.; Miyamoto, H.; Iwasaki, A.; et al. Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science 2009, 323, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.; Wohler, C.; Dhingra, D.; Thangjam, G.; Rommel, D.; Mall, U.; Bhardwaj, A.; Grumpe, A. Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data. Icarus 2018, 303, 149–165. [Google Scholar] [CrossRef]
- Hackwill, T. Stratigraphy, evolution and volume of basalts in Mare Serenitatis. Meteor. Planet. Sci. 2010, 45, 210–219. [Google Scholar] [CrossRef]
- Kaur, P.; Bhattacharya, S.; Chauhan, P.; Ajai; Kumar, A.S.K. Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations. Icarus 2013, 222, 137–148. [Google Scholar] [CrossRef]
- Dhingra, D.; Giguere, T.; Mouginis-Mark, P.; Boyce, J. Basalt Mineralogy Variations at Tsiolkovskiy Crater: Insights into the Eruption History on the Lunar Far Side. In Proceedings of the Asia Oceania Geoscience Society (AOGS) Meeting, Honolulu, HI, USA, 3–8 June 2018. Abstract# PS11-A017. [Google Scholar]
- Varatharajan, I.; Srivastava, N.; Murty, S.V.S. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus 2014, 236, 56–71. [Google Scholar] [CrossRef]
- Prissel, T.C.; Parman, S.W.; Jackson, C.R.M.; Rutherford, M.J.; Hess, P.C.; Head, J.W.; Cheek, L.; Dhingra, D.; Pieters, C.M. Pink Moon: The petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth Planet. Sci. Lett. 2014, 403, 144–156. [Google Scholar] [CrossRef]
- Prissel, T.C.; Whitten, J.L.; Parman, S.W.; Head, J.W. On the potential for lunar highlands Mg-suite extrusive volcanism and implications concerning crustal evolution. Icarus 2016, 277, 319–329. [Google Scholar] [CrossRef]
- Gaddis, L.R.; Pieters, C.M.; Hawke, B.R. Remote sensing of lunar pyroclastic mantling deposits. Icarus 1985, 61, 461–489. [Google Scholar] [CrossRef]
- Gaddis, L.R.; Staid, M.I.; Tyburczy, J.A.; Hawke, B.R.; Petro, N.E. Compositional analyses of lunar pyroclastic deposits. Icarus 2003, 161, 262–280. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Besse, S.; Petro, N.E.; Pieters, C.M.; Head, J.W.; Taylor, L.A.; Klima, R.L.; Isaacson, P.J.; Boardman, J.W.; Clark, R.C.; et al. Hidden in plain sight: Spinel-rich deposits on the nearside of theMoon as revealed by Moon Mineralogy Mapper (M3). In Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010. Abstract 1508. [Google Scholar]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. A new type of pyroclastic deposit on the Moon containing Fe-spinel and chromite. Geophys. Res. Lett. 2015, 40, 4549–4554. [Google Scholar] [CrossRef]
- Gaddis, L.R.; Hawke, B.R.; Robinson, M.S.; Coombs, C.R. Compositional analyses of small lunar pyroclastic deposits using clementine multispectral data. J. Geophys. Res. 2000, 105, 4245–4262. [Google Scholar] [CrossRef]
- Trang, D.; Gillis-Davis, J.J.; Lemelin, M.; Cahill, J.T.S.; Hawke, B.R.; Giguere, T.A. The compositional and physical properties of localized lunar pyroclastic deposits. Icarus 2017, 283, 232–253. [Google Scholar] [CrossRef]
- Hirschmann, M.M. Fe-carbonyl is a key player in planetary magmas. Proc. Natl. Acad. Sci. USA 2013, 110, 7967–7968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, D.T.; Rutherford, M.J.; Jacobsen, S.D.; Hauri, E.H.; Saal, A.E. Degassing of reduced carbon from planetary basalts. Proc. Natl. Acad. Sci. USA 2013, 110, 8010–8013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruyama, J.; Hioki, K.; Shirao, M.; Morota, T.; Hiesinger, H.; van der Bogert, C.H.; Miyamoto, H.; Iwasaki, A.; Yokota, Y.; Ohtake, M.; et al. Possible lunar lava tube skylight observed by SELENE cameras. Geophys. Res. Lett. 2009, 36, L21206. [Google Scholar] [CrossRef]
- Robinson, M.S.; Ashley, J.W.; Boyd, A.K.; Wagner, R.V.; Speyerer, E.J.; Hawke, B.R.; Hiesinger, H.; van der Bogert, C.H. Confirmation of sublunarean voids and thin layering in mare deposits. Planet. Space Sci. 2012, 69, 18–27. [Google Scholar] [CrossRef]
- Kaku, T.; Haruyama, J.; Miyake, W.; Kumamoto, A.; Ishiyama, K.; Nishibori, T.; Yamamoto, K.; Crites, S.T.; Michikami, T.; Yokota, Y.; et al. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) lunar radar sounder. Geophys. Res. Lett. 2017, 44, 10155–10161. [Google Scholar] [CrossRef]
- Haruyama, J.; Morota, T.; Kobayashi, S.; Sawai, S.; Lucey, P.G.; Shirao, M.; Nishino, M.N. Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration. In Moon; Badescu, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wagner, R.V.; Robinson, M.S. Distribution, Formation Mechanisms, and Significance of Lunar Pits. Icarus 2014, 237, 52–60. [Google Scholar] [CrossRef]
- Robinson, M.S.; Thanga, J.; Wagner, R.V.; Hernandez, V.A. ARNE—Sublunarean Explorer. In Proceedings of the Annual Meeting of the Lunar Exploration Analysis Group, Laurel, MD, USA, 22–24 October 2014. Abstract# 3025. [Google Scholar]
- Hong, I.-S.; Yi, Y.; Yu, J.; Haruyama, J. 3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure. J. Astron. Space Sci. 2015, 32, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.M.; Chappaz, L.; Sood, R.; Milbury, C.; Bobet, A.; Melosh, H.J.; Howell, K.C.; Freed, A.M. The structural stability of lunar lava tubes. Icarus 2017, 282, 47–55. [Google Scholar] [CrossRef]
- Kerber, L.; Nesnas, I.; Keszthelyi, L.; Head, J.W.; Denevi, B.; Hayne, P.O.; Mitchell, K.; Ashley, J.W.; Whitten, J.L.; Stickle, A.M.; et al. Moon Diver: A Discovery Mission Concept for understanding the history of the mare basalts through the exploration of a lunar mare pit. In Proceedings of the 49th LPSC, Fukushima, Japan, 18–20 April 2018. Abstract #1956. [Google Scholar]
- Dorrington, G.E. Rationale and concept for a lunar pit reconnaissance probe. Aeronaut. J. 2018, 122, 666–691. [Google Scholar] [CrossRef]
- Xiao, L.; Zhu, P.; Fang, G.; Xiao, Z.; Zou, Y.; Zhao, J.; Zhao, N.A.; Yuan, Y.; Qiao, L.E.; Zhang, X.; et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 2015, 347, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.C.; Asmar, S.W.; Head, J.W.; Kiefer, W.S.; Konopliv, A.S.; Lemoine, F.G.; Matsuyama, I.; Mazarico, E.; McGovern, P.J.; Melosh, H.J.; et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 2013, 339, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Schultz, P. Floor-fractured lunar craters. Moon 1976, 15, 241–273. [Google Scholar] [CrossRef]
- Pieters, C.M. Bullialdus—Strengthening the case for lunar plutons. Geophys. Res. Lett. 1991, 18, 2129–2132. [Google Scholar] [CrossRef]
- Cadogan, P.H. Oldest and largest lunar basin? Nature 1974, 250, 315–316. [Google Scholar] [CrossRef]
- Whitaker, E.A. The lunar Procellarum basin. In Multi-Ring Basins: Formation and Evolution; Pergamon Press: New York, NY, USA; Oxford, UK, 1981; Volume 12A, pp. 105–111. [Google Scholar]
- Andrews-Hanna, J.C.; Besserer, J.; Head, J.W., III; Howett, C.J.A.; Kiefer, W.S.; Lucey, P.J.; McGovern, P.J.; Melosh, H.J.; Neumann, G.A.; Phillips, R.J.; et al. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 2014, 514, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.C.; Zuber, M.T. Elliptical craters and basins on the terrestrial planets. In Large Meteorite Impacts and Planetary Evolution IV; Gibson, R.L., Reimold, W.U., Eds.; Special Paper 465; Geological Society of America: Boulder, CO, USA, 2010; pp. 1–13. [Google Scholar]
- Hall, J.L.; Solomon, S.C.; Head, J.W. Lunar floor-fractured craters: Evidence of viscous relaxation of crater topography. J. Geophys. Res. 1981, 86, 9537–9552. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W.; Zuber, M.T.; Smith, D.E.; Neumann, G.A. Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res. 2012, 117, E11005. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W.; Wilson, L. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies. Icarus 2015, 248, 424–447. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W., III; Neumann, G.A.; Wilson, L. Observational constraints on the identification of shallow lunar magmatism: Insights from floor-fractured craters. Icarus 2017, 283, 224–231. [Google Scholar] [CrossRef]
- Pieters, C.M.; Besse, S.; Boardman, J.; Buratti, B.; Cheek, L.; Clark, R.N.; Combe, J.P.; Dhingra, D.; Goswami, J.N.; Green, R.O.; et al. Mg-spinel lithology: A new rock type on the lunar farside. J. Geophys. Res. Planet 2011, 116, E00G08. [Google Scholar] [CrossRef]
- Dhingra, D.; Pieters, C.M.; Boardman, J.W.; Head, J.W.; Isaccson, P.J.; Taylor, L.A. Compositional diversity at Theophilus crater: Understanding the geological context of Mg-Spinel bearing central peaks. Geophys. Res. Lett. 2011, 38, L11201. [Google Scholar] [CrossRef]
- Pieters, C.M.; Hanna, K.D.; Cheek, L.; Dhingra, D.; Prissel, T.; Jackson, C.; Moriarty, D.; Parman, S.; Taylor, L.A. The distribution of Mg-spinel across the Moon and constraints on crustal origin. Am. Miner. 2014, 99, 1893–1910. [Google Scholar] [CrossRef]
- Treiman, A.H.; Gross, J.; Glazner, A.F. Lunar rocks rich in Mg-Al Spinel: Enthalpy constraints suggest origins by impact melting. In Proceedings of the 46th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 16–20 March 2015. Abstract #2518. [Google Scholar]
- Treiman, A.H.; Gross, J.; Kulis, M.J.; Glazner, A.F. Lunar Spinel Anorthosites: Updated Constraints from Enthalpy. In Proceedings of the 80th Annual Meeting of the Meteoritical Society, Santa Fe, NM, USA, 23–28 July 2017. Abstract #6226. [Google Scholar]
- Kaur, P.; Chauhan, P.; Ajai. Exposures of Mg-Spinel on an evolved silicic lithology Hansteen Alpha on the Moon. In Proceedings of the 44th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 18–22 March 2013. Abstract #1348. [Google Scholar]
- Boyce, J.M.; Giguere, T.A.; Hawke, B.R.; Mouginis-Mark, P.J.; Robinson, M.S.; Lawrence, S.J.; Trang, D.; Clegg-Watkins, R.N. Hansteen Mons: An LROC geological perspective. Icarus 2017, 283, 254–267. [Google Scholar] [CrossRef]
- Dhingra, D.; Glotch, T.D.; Prissel, T.C.; Parman, S.W.; Pieters, C.M.; Greenhagen, B.T. Mg-Spinel Exposures within Silica-rich setting on Hansteen Alpha: Probing the Gologic Context. In Proceedings of the 48th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 20–24 March 2017. Abstract #2104. [Google Scholar]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nat. Geosci. 2010, 3, 533–536. [Google Scholar] [CrossRef]
- Corley, L.M.; McGovern, P.J.; Kramer, G.Y.; Lemelin, M.; Trang, D.; Gillis-Davis, J.J.; Taylor, G.J.; Powell, K.E.; Kiefer, W.S.; Wieczorek, M.; et al. Olivine-bearing lithologies on the Moon: Constraints on origins and transport mechanisms from M3 spectroscopy, radiative transfer modeling, and GRAIL crustal thickness. Icarus 2018, 300, 287–304. [Google Scholar] [CrossRef]
- Arnold, J.A.; Glotch, T.D.; Lucey, P.G.; Song, E.; Thomas, I.R.; Bowles, N.E.; Greenhagen, B.T. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust. J. Geophys. Res. Planets 2016, 121, 1342–1361. [Google Scholar] [CrossRef]
- Miljković, K.; Wieczorek, M.A.; Collins, G.S.; Solomon, S.C.; Smith, D.E.; Zuber, M.T. Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett. 2015, 409, 243–251. [Google Scholar] [CrossRef]
- Klima, R.L.; Pieters, C.M.; Boardman, J.W.; Green, R.O.; Head, J.W., III; Isaacson, P.J.; Mustard, J.F.; Nettles, J.W.; Petro, N.E.; Staid, M.I.; et al. New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 2011, 116, E00G06. [Google Scholar] [CrossRef]
- Ogawa, Y.; Matsunaga, T.; Nakamura, R.; Saiki, K.; Ohtake, M.; Hiroi, T.; Takeda, H.; Arai, T.; Yokota, Y.; Yamamoto, S.; et al. The widespread occurrence of high-calcium pyroxene in bright-ray craters on the Moon and implications for lunar-crust composition. Geophys. Res. Lett. 2011, 38, L17202. [Google Scholar] [CrossRef]
- Cintala, M.J.; Grieve, R.A.F. Scaling impact melting and crater dimensions: Implications for the lunar cratering record. Meteor. Planet. Sci. 1998, 33, 889–912. [Google Scholar] [CrossRef] [Green Version]
- Bray, V.J.; Tornabene, L.L.; Keszthelyi, L.P.; McEwen, A.S.; Hawke, B.R.; Giguere, T.A.; Kattenhorn, S.A.; Garry, W.B.; Rizk, B.; Caudill, C.M.; et al. New insight into lunar impact melt mobility from LRO camera. Geophys. Res. Lett. 2010, 37, L21202. [Google Scholar] [CrossRef]
- Carter, L.M.; Neish, C.D.; Bussey, D.B.J.; Spudis, P.D.; Patterson, G.W.; Cahill, J.T.; Raney, R.K. Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar. J. Geophys. Res. 2012, 117, E00H09. [Google Scholar] [CrossRef]
- Neish, C.D.; Madden, J.; Carter, L.M.; Hawke, B.R.; Giguere, T.; Bray, V.J.; Osinski, G.R.; Cahill, J.T.S. Global distribution of lunar impact melt flows. Icarus 2014, 239, 105–117. [Google Scholar] [CrossRef]
- Stopar, J.D.; Hawke, B.R.; Robinson, M.S.; Denevi, B.W.; Giguere, T.A.; Koeber, S.D. Occurrence and mechanisms of impact melt emplacement at small lunar Craters. Icarus 2014, 243, 337–357. [Google Scholar] [CrossRef]
- Robinson, M.S.; Thomas, P.C.; Plescia, J.B.; Denevi, B.W.; Burns, K.N.; Bowman-Cisneros, E.; Henriksen, M.R.; van der Bogert, C.H.; Hiesinger, H.; Mahanti, P.; et al. An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins. Icarus 2016. [Google Scholar] [CrossRef]
- Dhingra, D.; Head, J.W.; Pieters, C.M. Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process. Icarus 2017, 283, 268–281. [Google Scholar] [CrossRef]
- Smrekar, S.; Pieters, C.M. Near-infrared spectroscopy of probable impact melt from three large lunar highland craters. Icarus 1985, 63, 442–452. [Google Scholar] [CrossRef]
- Tompkins, S.; Pieters, C.M. Spectral characteristics of lunar impact melt and inferred mineralogy. Meteor. Planet. Sci. 2010, 45, 1152–1169. [Google Scholar] [CrossRef]
- Dhingra, D.; Pieters, C. Mineralogical diversity of impact melts on central peak of Tycho and its vicinity. In Proceedings of the Annual Meeting of the Lunar Exploration Analysis Group, Houston, TX, USA, 7–9 November 2011; LPI Contribution No. 1646. p. 11. [Google Scholar]
- Dhingra, D.; Pieters, C.M.; Head, J.W.; Isaacson, P.J. Large mineralogically distinct impact melt feature at Copernicus crater—Evidence for retention of compositional heterogeneity. Geophys. Res. Lett. 2013, 40, 1043–1048. [Google Scholar] [CrossRef]
- Dhingra, D. Integrated Mineralogy and High Resolution Geologic Context of Lunar Impact Melt Deposits: Implications for Crustal Diversity and the Impact Cratering Process. Ph.D. Thesis, Brown University, Providence, RI, USA, 2015; 523p. [Google Scholar]
- Dhingra, D.; Pieters, C.M. Impact melt cover on central peaks of impact craters: Implications for deriving crustal compositions. In Proceedings of the New Views of the Moon 2 Europe, Münster, Germany, 4–5 May 2017. Abstract #6004. [Google Scholar]
- Dhingra, D.; Pieters, C.M.; Head, J.W. Multiple origins for olivine at Copernicus crater. Earth Planet. Sci. Lett. 2015, 420, 95–101. [Google Scholar] [CrossRef]
- Warren, P.H.; Claeys, P.; Cedillo-Pardo, E. Mega-impact melt petrology (Chicxulub, Sudbury, and the Moon): Effects of scale and other factors on potential for fractional crystallization and development of cumulates. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History; Ryder, G., Fastovsky, D.E., Gartner, S., Eds.; Geological Society America: Boulder, CO, USA, 1996; Volume 307, pp. 105–124. [Google Scholar]
- Neal, C.R.; Donohue, P.H.; Fagan, A.; Hui, H.; O’Sullivan, K. Using quantitative petrography to distinguish between pristine basalts and impact melts from the Moon. In Proceedings of the 42nd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2011. Abstract #2668. [Google Scholar]
- Neal, C.R.; Donohue, P.; Fagan, A.L.; O’Sullivan, K.; Oshrin, J.; Roberts, S. Distinguishing between basalts produced by endogenic volcanism and impact processes: A non-destrwuctive method using quantitative petrography of lunar basaltic samples. Geochim. Cosmochim. Acta 2015, 148, 62–80. [Google Scholar] [CrossRef]
- Vaughan, W.M.; Head, J.W.; Wilson, L.; Hess, P.C. Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea. Icarus 2013, 223, 749–765. [Google Scholar] [CrossRef]
- Hurwitz, D.M.; Kring, D.A. Differentiation of the South Pole–Aitken basin impact melt sheet: Implications for lunar exploration. J. Geophys. Res. 2014, 119, 1110–1133. [Google Scholar] [CrossRef]
- Spudis, P.D.; Martin, D.J.P.; Kramer, G. Geology and composition of the Orientale Basin impact melt sheet. J. Geophys. Res. Planets 2014, 119, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, D.P., III; Pieters, C.M. The character of South Pole-Aitken Basin: Patterns of surface and subsurface composition. J. Geophys. Res. Planets 2018, 123. [Google Scholar] [CrossRef]
- Ohtake, M.; Uemoto, K.; Yokota, Y.; Morota, T.; Yamamoto, S.; Nakamura, R.; Haruyama, J.; Iwata, T.; Matsunaga, T.; Ishihara, Y. Geologic structure generated by large-impact basin formation observed at the South Pole-Aitken Basin on the Moon. Geophys. Res. Lett. 2014, 41, 2738–2745. [Google Scholar] [CrossRef]
- Pieters, C.M.; Head, J.W.; Gaddis, L.; Jolliff, B.; Duke, M. Rock types of South Pole-Aitken Basin and extent of basaltic volcanism. J. Geophys. Res. 2001, 106, 28001–28022. [Google Scholar] [CrossRef]
- Moriarty, D.P., III; Pieters, C.M. The nature and origin of Mafic Mound in the South Pole-Aitken Basin. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Melosh, H.J.; Kendall, J.; Horgan, B.; Johnson, B.C.; Bowling, T.; Lucey, P.G.; Taylor, G.J. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle. Geology 2017, 45, 1063–1066. [Google Scholar] [CrossRef]
- Cohen, B.A.; Hayne, P.O.; Greenhagen, B.T.; Paige, D.A. Lunar Flashlight: Exploration and science at the moon with a 6U CubeSat. In Proceedings of the Annual Meeting of the Lunar Exploration Analysis Group, Columbia, MD, USA, 20–22 October 2015. Abstract #2008. [Google Scholar]
- Zhao, J.; Xiao, L.; Qiao, L.; Glotch, T.D.; Huang, Q. The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang’E-5 mission. J. Geophys. Res. Planets 2017, 122, 1419–1442. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Z.; Flahaut, J.; Martinot, M.; Head, J.; Xiao, X.; Xie, M.; Xiao, L. Geological characteristics of Von Kármán crater, northwestern South Pole-Aitken Basin: Chang’E-4 landing site region. J. Geophys. Res. Planets 2018, 123, 1684–1700. [Google Scholar] [CrossRef]
- Garrick-Bethell, I.; Pieters, C.M.; Russell, C.T.; Weiss, B.P.; Halekas, J.; Larson, D.; Poppe, A.R.; Lawrence, D.J.; Elphic, R.C.; Hayne, P.O.; et al. Nanoswarm: A cubesat discovery mission to study space weathering, lunar magnetism, lunar water and small-scale magnetospheres. In Proceedings of the 46th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 16–20 March 2015. Abstract #3000. [Google Scholar]
- Ivanov, M.A.; Hiesinger, H.; Abdrakhimov, A.M.; Basilevsky, A.T.; Head, J.W.; Pasckert, J.-H.; Bauch, K.; van der Bogert, C.H.; Gläser, P.; Kohanov, A. Landing site selection for Luna-Glob mission in crater Boguslawsky. Planet. Space Sci. 2015, 117, 45–63. [Google Scholar] [CrossRef]
- Mathew, J.; Prakash, A.; Sarpotdar, M.; Sreejith, A.G.; Safonova, M.; Murthy, J. An ultraviolet imager to study bright UV sources. In Proceedings of the SPIE Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 18 July 2016; Volume 9905, p. 990532. [Google Scholar] [CrossRef]
- Zacny, K.; Paulsen, G.; Chu, P.; Craft, J.; Mueller, R.; Thornton, J. Lunar Prospecting Rover Utilizing a Lunar Drill, Pneumatic Excavator, and Gas Jet Trencher. In Proceedings of the AIAA SPACE 2012 Conference & Exposition, AIAA SPACE Forum, Pasadena, CA, USA, 11–13 September 2012. [Google Scholar] [CrossRef]
- Spudis, P.; Richards, R.; Burns, J.O. Moon Express: Lander Capabilities and Initial Payload and Mission. In Proceedings of the American Geophysical Union, Fall Meeting 2013, San Francisco, CA, USA, 9–13 December 2013. abstract id.P53F-09. [Google Scholar]
- Huber, S.A.; Hendrickson, D.B.; Jones, H.L.; Thornton, J.P.; Whittaker, W.L.; Wong, U.Y. Astrobotic Technology: Planetary Pits and Caves for Science and Exploration. In Proceedings of the Annual Meeting of the Lunar Exploration Analysis Group, Laurel, MD, USA, 22–24 October 2014. LPI Contribution No. 1820, id.3065. [Google Scholar]
- Kaushal, P.; Wani, S. Thermal Design & Analysis of Space-Craft for Lunar Descent and Operations; SAE Technical Paper 2016-01-0212; SAE 2016 World Congress and Exhibition: Detroit, MI, USA, 2016. [Google Scholar]
- Spudis, P.D.; Richards, R.D. The Robotic Architecture of Moon Express: Exploration, Resources, and Delivery. In Proceedings of the 2017 Annual Meeting of the Lunar Exploration Analysis Group, Columbia, MD, USA, 10–12 October 2017. LPI Contribution No. 2041, id.5035. [Google Scholar]
- Menon, M.S.; Kothandhapani, A.; Sundaram, N.S.; Nagaraj, S.; Raghavan, V. Terrain-based Analysis as a Design and Planning Tool for Operations of a Lunar Exploration Rover for the Team Indus Lunar Mission. In Proceedings of the SpaceOps Conference, Marseille, France, 28 May–1 June 2018. [Google Scholar] [CrossRef]
- Schrunk, D.; Sharpe, B.; Cooper, B.L.; Thangavelu, M. The Moon, Resources, Future Development and Settlement; Praxis Publishing: Chichester, UK, 2008; 261p, ISBN 978-0-387-36055-3. [Google Scholar]
- Captain, J.; Elphic, R.; Colaprete, A.; Zacny, K.; Paz, A. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition, and Processing. In Proceedings of the Earth and Space 2016: Engineering for Extreme Environments, Orlando, FL, USA, 1–15 April 2016. [Google Scholar] [CrossRef]
- Van Susante, P.J.; Metzger, P.T. Design, Test, and Simulation of Lunar and Mars Landing Pad Soil Stabilization Built with In Situ Rock Utilization. In Proceedings of the Earth and Space 2016: Engineering for Extreme Environments, Orlando, FL, USA, 1–15 April 2016. [Google Scholar] [CrossRef]
- Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G. Resource prospector: An update on the lunar volatiles prospecting and ISRU demonstration mission. In Proceedings of the 48th Lunar and Planetary Science Conference (LPSC), Woodlands, TX, USA, 20–24 March 2017. Abstract #1685. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhingra, D. The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences 2018, 8, 498. https://doi.org/10.3390/geosciences8120498
Dhingra D. The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences. 2018; 8(12):498. https://doi.org/10.3390/geosciences8120498
Chicago/Turabian StyleDhingra, Deepak. 2018. "The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions" Geosciences 8, no. 12: 498. https://doi.org/10.3390/geosciences8120498
APA StyleDhingra, D. (2018). The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences, 8(12), 498. https://doi.org/10.3390/geosciences8120498