Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia’s CO2 Emission
Abstract
:1. Introduction
2. Malaysia’s Position in CO2 Emissions and CCS
- Energy industries: Coal and electrical power industries are the major sources of GHGs emission in Malaysia as well as rest of the world. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tonnes in 2005 to 36 million tonnes in 2020 [9]. Electricity generation, which contributes 43.40% of total emissions, was discovered to be the largest emitting sector among all sectors.
- Transportation sector: This is ranked the second largest GHG emitter among ASEAN countries [23]. This is due to the expansion of conurbation areas such as Kuala Lumpur, where the population is estimated to reach 10 million by 2020 [24]. As a result, motorisation in Malaysia increased five-fold over the past three decades, and proliferation of automobiles is a key contributor towards emission of GHGs [25].
- Manufacturing and construction industries: These sectors come in as third for production of GHGs. Malaysia is one of the major manufacturing hubs in ASEAN countries, and remarkable development in this sector is accompanied by high atmospheric CO2 concentrations [26]. Generally, there are four sources of GHGs emission in manufacturing and construction sectors: (i) Manufacture and transportation of building materials, (ii) Energy consumption of construction equipment, (iii) Energy consumption of processing resources and (iv) Disposal of construction wastes [27]. Figure 1 shows the different sectors for CO2 emission in Malaysia [22].
- K5 Strategic Technology Project: Malaysia is known as the second-biggest oil producer in Southeast Asia, and the country’s national oil company, Petronas, is taking part in CCS development to revive the K5 sour gas project in shallow waters off Sarawak through deployment of carbon capture technologies. The K5 project began in 1970, and contains a gas reservoir of approximately 21 trillion cubic feet. The K5 project gas processing is associated with high CO2 emissions and, therefore, Petronas has introduced ‘K5 Strategic Technology Project’ as a pilot scheme to tackle the issues associated with the reservoir’s CO2 emission using CCS technologies. The company is aiming to manufacture and install the first-ever specially built CO2 processing platform in Malaysia by 2022. The platform will have a hull weighing 11,000 tonnes, and the upper part of offshore, topsides of 9000 tonnes with the attached facilities, are designed to capture CO2 and transport it into the same offshore reservoir below the seabed [29]. The topside of the platform literally consists of the oil production plant, accommodation board, and drilling rig [29].
- TNB Janamanjung Project: One of the initiatives by Malaysia is application of CCS in coal-fired power stations at TNB Janamanjung, built on a man-made island located in Seri Manjung, Perak. By using post-combustion CCS technology, approximately 85%–95% (8.5–9.5 million tonne CO2 year−1) of the CO2 is captured and compressed from the processed plant. Later, the compressed CO2 is transported using an alternative line along the PETRONAS Peninsular Gas Utilization (PGU) project to transfer the captured CO2 offshore in Terengganu [30]. It is estimated that the PGU system extends to over 1700 km, and the compressed CO2 can be transferred to the west coast of Peninsular Malaysia where oil and gas exploration is being conducted for geological storage, especially for enhanced oil recovery (EOR).
3. Pedogenic CO2 Sequestration
3.1. Organic CO2 Sequestration
3.2. Inorganic CO2 Sequestration
4. Industrial Waste in Malaysia
4.1. Demolition Concrete Waste
4.2. Basalt Quarry Fine
4.3. Coal Ash
5. Malaysia’s Capacity for Using Soil Mineral Carbonation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Decoupling of Global Emissions and Economic Growth Confirmed. 2016. Available online: https://www.iea.org/newsroom/news/2016/march/decoupling-of-global-emissions-and-economic-growth-confirmed.html (accessed on 13 November 2018).
- Stern, N. The Economics of Climate Change; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- The Institute of Energy Economics, Japan. IEEJ Outlook 2018. Available online: https://eneken.ieej.or.jp/data/7748.pdf (accessed on 11 September 2018).
- U.S. Energy Information Administration. International Energy Outlook 2011: With Projections to 2035; U.S. Energy Information Administration: Washington, DC, USA, 2011.
- Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P. A Techno-Economic Analysis and Systematic Review of Carbon Capture and Storage (CCS) Applied to the Iron and Steel, Cement, Oil Refining and Pulp and Paper Industries, as Well as Other High Purity Sources. Int. J. Greenh. Gas Control 2017, 61, 71–84. [Google Scholar] [CrossRef]
- Steve, A.L. Implementation of MS1525 & Low Carbon Buildings Strategic & Affordable Way to Reduce CO2 Emissions for Building Sector; Sustainable Energy Development Authority (SEDA): Putrajaya, Malaysia, 2017.
- Safaai, N.S.M.; Noor, Z.Z.; Hashim, H.; Ujang, Z.; Talib, J. Projection of CO2 Emissions in Malaysia. Environ. Prog. Sustain. Energy 2011, 30, 658–665. [Google Scholar] [CrossRef]
- Salahudin, S.N.; Abdullah, M.M.; Newaz, N.A. Emissions: Sources, Policies and Development in Malaysia. Int. J. Educ. Res. 2013, 1, 1–12. [Google Scholar]
- Othman, M.; Zakaria, R.; Fernando, W. Strategic Planning on Carbon Capture from Coal Fired Plants in Malaysia and Indonesia: A Review. Energy Policy 2009, 37, 1718–1735. [Google Scholar] [CrossRef]
- Energy Commission. Energy Malaysia: Towards a World-Class Energy Sector 2017. Available online: https://www.st.gov.my/ms/contents/publications/energyMalaysia/EM12%20Nov%202017%20v2.pdf (accessed on 13 November 2018).
- Paul, F.; Anthony, A.O.C.; Hisashi, I.; William, M.; Jose, M. Chapter 1: Introduction. In IPCC Special Report on Carbon Dioxide Capture and Storage 2011. Available online: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ (accessed on 13 November 2018).
- Nor, N.H.M.; Selamat, S.N.; Rashid, M.H.A.; Ahmad, M.F.; Jamian, S.; Kiong, S.C.; Yokoyama, S. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia. J. Phys. Conf. Ser. 2016, 725, 012010. [Google Scholar] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/chapter/summary-for-policy-makers/ (accessed on 13 November 2018).
- Jorat, M.E.; Kolosz, B.W.; Goddard, M.A.; Sohi, S.P.; Akgun, N.; Dissanayake, D.; Manning, D.A. Geotechnical Requirements for Capturing CO2 through Highways Land. Int. J. GEOMATE 2017, 13, 22–27. [Google Scholar] [CrossRef]
- Manning, D. Biological Enhancement of Soil Carbonate Precipitation: Passive Removal of Atmospheric CO2. Mineral. Mag. 2008, 72. [Google Scholar] [CrossRef]
- Manning, D.A.; Renforth, P. Passive Sequestration of Atmospheric CO2 through Coupled Plant-Mineral Reactions in Urban Soils. Environ. Sci. Technol. 2012, 47, 135–141. [Google Scholar] [CrossRef]
- Renforth, P.; Leake, J.R.; Edmondson, J.; Manning, D.A.; Gaston, K.J. Designing a Carbon Capture Function into Urban Soils. Proc. ICE-Urban Des. Plan. 2011, 164, 121–128. [Google Scholar] [CrossRef]
- Renforth, P.; Manning, D.; Lopez-Capel, E. Carbonate Precipitation in Artificial Soils as a Sink for Atmospheric Carbon Dioxide. Appl. Geochem. 2009, 24, 1757–1764. [Google Scholar] [CrossRef]
- Washbourne, C.-L.; Lopez-Capel, E.; Renforth, P.; Ascough, P.L.; Manning, D.A. Rapid Removal of Atmospheric CO2 by Urban Soils. Environ. Sci. Technol. 2015, 49, 5434–5440. [Google Scholar] [CrossRef] [PubMed]
- Washbourne, C.-L.; Renforth, P.; Manning, D. Investigating Carbonate Formation in Urban Soils as a Method for Capture and Storage of Atmospheric Carbon. Sci. Total Environ. 2012, 431, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Kolosz, B.; Goddard, M.; Jorat, M.E.; Aumonier, J.; Sohi, S.; Manning, D.A.C. A Sustainability Framework for Engineering Carbon Capture Soil in Transport Infrastructure. Int. J. Transp. Dev. Integr. 2017, 1, 74–83. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment Malaysia. Malaysian Biennial Update Report to the UNFCCC. 2015. Available online: https://unfccc.int/files/national_reports/non-annex_i_parties/biennial_update_reports/application/pdf/malbur1.pdf (accessed on 13 November 2018).
- Ghadimzadeh, A.; Makmom, A.A.; Hosea, M.K.; Asgari, N.; Shamsipour, R.; Askari, A.; Narany, T.S. Review on CO2 Emission from Transportation Sector in Malaysia. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 61–70. [Google Scholar]
- Kwan, S.C.; Tainio, M.; Woodcock, J.; Sutan, R.; Hashim, J.H. The Carbon Savings and Health Co-Benefits from the Introduction of Mass Rapid Transit System in Greater Kuala Lumpur, Malaysia. J. Transp. Health 2017, 6, 187–200. [Google Scholar] [CrossRef]
- Shahid, S.; Minhans, A.; Puan, O.C. Assessment of Greenhouse Gas Emission Reduction Measures in Transportation Sector of Malaysia. J. Teknol. 2014, 70, 1–8. [Google Scholar] [CrossRef]
- Chin, M.-Y.; Puah, C.-H.; Teo, C.-L.; Joseph, J. The Determinants of CO2 Emissions in Malaysia: A New Aspect. Int. J. Energy Econ. Policy 2018, 8, 190–194. [Google Scholar]
- Klufallah, M.M.; Nuruddin, M.F.; Khamidi, M.F.; Jamaludin, N. Assessment of Carbon Emission Reduction for Buildings Projects in Malaysia—A Comparative Analysis. E3S Web Conf. 2014, 3, 01016. [Google Scholar] [CrossRef]
- Government of Malaysia. Intended Nationally Determined Contribution of the Government of Malaysia. Available online: https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/Malaysia/1/INDC%20Malaysia%20Final%2027%20November%202015%20Revised%20Final%20UNFCCC.pdf (accessed on 13 November 2018).
- Russel, S.W. Petronas to Revive K5 as Part of CCS Development. 2018. Available online: https://www.upstreamonline.com/hardcopy/1459531/petronas-to-revive-k5-as-part-of-ccs-development (accessed on 13 November 2018).
- Oh, T.H. Carbon Capture and Storage Potential in Coal-Fired Plant in Malaysia—A Review. Renew. Sustain. Energy Rev. 2010, 14, 2697–2709. [Google Scholar] [CrossRef]
- Rubin, E.S.; Rao, A.B. Uncertainties in CO2 Capture and Sequestration Costs. In Greenhouse Gas Control Technologies—6th International Conference; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Simbeck, D. The 10-50 Solution: Technologies and Policiesfor a Low-Carbon Future. Energy Policy 2004, 57, 2266–2278. [Google Scholar]
- Gibson, A. Successful Introduction of Ccs 101 Course into Malaysian Universities. 2016. Available online: https://www.globalccsinstitute.com/insights/authors/AliceGibson/2016/01/14/successful-introduction-ccs-101-course-malaysian-universities (accessed on 18 October 2018).
- Smith, P. Carbon Sequestration in Croplands: The Potential in Europe and the Global Context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Schlesinger, W.H. The Formation of Caliche in Soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 1985, 49, 57–66. [Google Scholar] [CrossRef]
- Jorat, M.; Goddard, M.; Kolosz, B.; Sohi, S.; Manning, D. Sustainable Urban Carbon Capture: Engineering Soils for Climate Change (Success). In Proceedings of the 16th European Conference on Soil Mechanics and Geotechnical Engineering (XVI ECSMGE), Edinburgh, UK, 13–17 September 2015. [Google Scholar]
- Landi, A.; Mermut, A.; Anderson, D. Origin and Rate of Pedogenic Carbonate Accumulation in Saskatchewan Soils, Canada. Geoderma 2003, 117, 143–156. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving Mitigation and Adaptation to Climate Change through Sustainable Agroforestry Practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W. Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-Examination to Identify the True and the False. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Manning, D.A. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Singh, K. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Wutzler, T.; Reichstein, M. Soils Apart from Equilibrium? Consequences for Soil Carbon Balance Modelling. Biogeosci. Discuss. 2006, 3, 1679–1714. [Google Scholar]
- Crowther, T.W.; Todd-Brown, K.E.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Allison, S.D. Quantifying Global Soil Carbon Losses in Response to Warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef]
- He, Y.; Trumbore, S.E.; Torn, M.S.; Harden, J.W.; Vaughn, L.J.; Allison, S.D.; Randerson, J.T. Radiocarbon Constraints Imply Reduced Carbon Uptake by Soils During the 21st Century. Science 2016, 353, 1419–1424. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Das, B.S. Soil Carbon 4 Per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49. [Google Scholar] [CrossRef] [PubMed]
- Pries, C.E.H.; Castanha, C.; Porras, R.; Torn, M. The Whole-Soil Carbon Flux in Response to Warming. Science 2017, 355, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
- Van Groenigen, J.W.; Van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; Van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Deng, H.; Wang, W.; Han, F.; Li, C.; Zhang, H.; Dai, Z. Impact of Naturally Leaking Carbon Dioxide on Soil Properties and Ecosystems in the Qinghai-Tibet Plateau. Sci. Rep. 2017, 7, 3001. [Google Scholar] [CrossRef] [PubMed]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Hangen, E. Projected Loss of Soil Organic Carbon in Temperate Agricultural Soils in the 21 St Century: Effects of Climate Change and Carbon Input Trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef]
- Kolosz, B.; Goddard, M.; Jorat, M.E.; Sohi, S.; Manning, D.A.C. Developing Lifecycle Inventory Indices for Estimating the Carbon Sequestration of Artificially Engineered Soils and Plants. In Proceedings of the 5th Asian Conference on Sustainability, Energy, and the Environment, Kobe, Japan, 11–14 June 2015. [Google Scholar]
- Montes-Hernandez, G.; Pérez-López, R.; Renard, F.; Nieto, J.M.; Charlet, L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 2008, 161, 1347–1354. [Google Scholar] [CrossRef]
- Jorat, M.; Kolosz, B.; Sohi, S.; Lopez-Capel, E.; Manning, D.A. Changes in Geotechnical Properties of Urban Soils During Carbonation. In Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Ares, Argentina, 15–18 November 2015. [Google Scholar]
- Power, I.M.; McCutcheon, J.; Harrison, A.L.; Wilson, S.A.; Dipple, G.M.; Kelly, S.; Southam, G. Strategizing Carbon-Neutral Mines: A Case for Pilot Projects. Minerals 2014, 4, 399–436. [Google Scholar] [CrossRef] [Green Version]
- Syed Hasan, S.; Mohd Kusin, F.; Jusop, S.; Mohamat Yusuff, F. Potential of Soil, Sludge and Sediment for Mineral Carbonation Process in Selinsing Gold Mine, Malaysia. Minerals 2018, 8, 257. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.J.; Li, X.L.; Wang, J.P.; Xu, M.G.; Li, D.W. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Sci. Rep. 2016, 6, 36105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Qabany, A.; Soga, K. Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 2013, 63, 331–339. [Google Scholar] [CrossRef]
- Monger, H.C.; Kraimer, R.A.; Khresat, S.; Cole, D.R.; Wang, X.; Wang, J. Sequestration of inorganic carbon in soil and groundwater. Geology 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Nurhanim, A.A.; Norli, I.; Morad, N.; Khalil, H.P.S.A. Leaching Behavior of Construction and Demolition Waste (Concrete and Gypsum). Iran. J. Energy Environ. 2016, 7, 203–211. [Google Scholar]
- Ghani, A.A.; Lo, C.-H.; Chung, S.-L. Basaltic dykes of the Eastern Belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. J. Asian Earth Sci. 2013, 77, 127–139. [Google Scholar] [CrossRef]
- Marto, A.; Kassim, K.A.; Makhtar, A.M.; Wei, L.F.; Lim, Y.S. Engineering characteristics of Tanjung Bin coal ash. Electron. J. Geotech. Eng. 2010, 15, 1117–1129. [Google Scholar]
- Manaf, L.A.; Abu Samah, M.A.; Mohd Zukki, N.I. Municipal solid waste management in Malaysia: Practices and challenges. Waste Manag. 2009, 29, 2902–2906. [Google Scholar] [CrossRef] [PubMed]
- Saadi, N.; Ismail, Z.; Alias, Z. A review of construction waste management and initiatives in Malaysia. J. Sustain. Sci. Manag. 2016, 11, 101–114. [Google Scholar]
- Esa, M.R.; Halong, A.; Rigamonti, L. Strategies for Minimizing Construction and Demolition Wastes in Malaysia. Resour. Conserv. Recycl. 2017, 120, 219–229. [Google Scholar] [CrossRef]
- Nagapan, S.; Rahman, I.A.; Asmi, A. Construction Waste Management: Malaysian Perspective. In Proceeding of the International Conference on Civil and Environmental Engineering Sustainability (IConCEES), Thistle Hotel, Johor, Malaysia, 3–5 April 2012. [Google Scholar]
- Andrade, F.D.; Pecchio, M.; Bendoraitis, D.; Montanheiro, T.; Kihara, Y. Basalt Mine-Tailings as Raw-Materials for Portland Clinker. Cerâmica 2010, 56, 39–43. [Google Scholar] [CrossRef]
- Gobbett, D.G. Geological Map of the Malay Peninsula; Geological Society of Malaysia: Kuala Lumpur, Malaysia, 1972. [Google Scholar]
- Shamshuddin, J.; Kapok, J. Effect of Ground Basalt on Chemical Properties of an Ultisol and Oxisol in Malaysia. Pertan. J. Trop. Agric. Sci. 2010, 33, 7–14. [Google Scholar]
- Hamdan, J.; Ruhana, B.; McRae, S. Characteristics of Regolith Developed on Basalt in Pahang, Malaysia. Commun. Soil Sci. Plant Anal. 2000, 31, 981–993. [Google Scholar] [CrossRef]
- Department of Mineral and Geoscience Malaysia. Industrial Mineral Production Statistics and Directory of Producers in Malaysia; Department of Mineral and Geoscience Malaysia: Putrajaya, Malaysia, 2017.
- Marto, A.; Tan, C.S. Properties of Coal Bottom Ash from Power Plants in Malaysia and Its Suitability as Geotechnical Engineering Material. J. Teknol. 2016, 78, 1–10. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of Coal Bottom Ash and Fly Ash in Concrete as Replacement for Sand and Cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Jorat, M.E.; Marto, A.; Namazi, E.; Amin, M. Engineering Characteristics of Kaolin Mixed with Various Percentages of Bottom Ash. Electron. J. Geotech. Eng. 2011, 16, 841–850. [Google Scholar]
- Latifi, N.; Marto, A.; Rashid, A.S.A.; Yii, J.L.J. Strength and Physico-Chemical Characteristics of Fly Ash–Bottom Ash Mixture. Arabian J. Sci. Eng. 2015, 40, 2447–2455. [Google Scholar] [CrossRef]
- Marto, A.; Hassan, M.A.; Makhtar, A.M.; Othman, B.A. Shear Strength Improvement of Soft Clay Mixed with Tanjung Bin Coal Ash. APCBEE Procedia 2013, 5, 116–122. [Google Scholar] [CrossRef]
- Moradi, R.; Marto, A.; Rashid, A.S.A.; Moradi, M.M.; Ganiyu, A.A.; Horpibulsuk, S. Bearing Capacity of Soft Soil Model Treated with End-Bearing Bottom Ash Columns. Environ. Earth Sci. 2018, 77, 100. [Google Scholar] [CrossRef]
- Mah, C.M.; Fujiwara, T.; Ho, C.S. Concrete Waste Management Decision Analysis Based on Life Cycle Assessment. Chem. Eng. Trans. 2017, 56, 25–30. [Google Scholar]
- Manning, D.A.C.; Renforth, P.; Lopez-Capel, E.; Robertson, S.; Ghazireh, N. Carbonate Precipitation in Artificial Soils Produced from Basaltic Quarry Fines and Composts: An opportunity for Passive Carbon Sequestration. Int. J. Greenh. Gas Control 2013, 17, 309–317. [Google Scholar] [CrossRef]
- Iszaynuddin, A.H.; Yusairi, B.; Joanes, M. Industrial Mineral Production Statistics and Directory of Producers in Malaysia; Mineral Economics Section for Mineral and Geoscience Department Malaysia: Kuala Lumpur, Malaysia, 2017; pp. 2–3.
- Kim, H.-J.; Lee, H.-K. Mineral Sequestration of Carbon Dioxide in Circulating Fluidized Bed Combustion Boiler Bottom Ash. Minerals 2017, 7, 237. [Google Scholar] [CrossRef]
- Kolosz, B.; Athanasiadis, I.; Cadisch, G.; Dawson, T.; Giupponi, C.; Honzak, M.; Martinez-Lopez, J.; Marvuglia, A.; Mojtahed, V.; Ogutu, K. Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land. Ecosyst. Serv. 2018, 33, 29–39. [Google Scholar] [CrossRef]
- Pasquier, L.-C.; Mercier, G.; Blais, J.-F.; Cecchi, E.; Kentish, S. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environ. Sci. Technol. 2014, 48, 5163–5170. [Google Scholar] [CrossRef] [PubMed]
Element | Demolition Concrete Waste (wt %) [60] | Basalt (wt %) [61] | Fly Ash (wt %) [62] | Bottom Ash (wt %) [62] |
---|---|---|---|---|
CaO | 70.88 ± 9.22 | 11.08 | 4.81 | 9.8 |
SiO2 | 20.68 ± 6.47 | 47.17 | 51.8 | 42.7 |
Al2O3 | 3.43 ± 1.52 | 16.78 | 26.5 | 23 |
FeO | - | 8.89 | - | - |
Fe2O3 | 1.38 ± 0.73 | - | 8.5 | 17 |
Na2O | 0.06 ± 0.01 | 2.2 | 0.67 | 0.29 |
MgO | 1.99 ± 0.19 | 8.07 | 1.1 | 1.54 |
K2O | 0.67 ± 0.13 | 1.26 | 3.27 | 0.96 |
TiO2 | 0.11 ± 0.04 | 1.13 | 1.38 | 1.64 |
MnO | 0.06 ± 0.55 | 0.11 | - | |
P2O5 | 0.06 ± 0.02 | 0.1 | 0.9 | 1.04 |
Rb2O | 0.01 ± 0 | - | - | - |
SrO | 0.04 ± 0.01 | - | - | - |
ZrO2 | 0.02 ± 0.01 | - | - | - |
BaO | - | 0.12 | 0.19 | |
SO3 | 0.61 ± 0.47 | - | 0.6 | 1.22 |
LOI | - | 3.02 | - | - |
Material | Annual Production (tonne) | Engineered Area (ha) | Annual CO2 Sequestration Capacity (tonne) |
---|---|---|---|
Demolition concrete waste | 1,200,000 | 1043 | 88,655 |
Basalt quarry fine | 62,000– 69,000 | 85 | 510 |
Fly ash | 6,800,000 | 7907 | 176,800 |
Bottom ash | 1,700,000 | 1143 | 331,500 |
Total = 10,178 | Total = 597,465 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorat, M.E.; Aziz, M.A.; Marto, A.; Zaini, N.; Jusoh, S.N.; Manning, D.A.C. Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia’s CO2 Emission. Geosciences 2018, 8, 483. https://doi.org/10.3390/geosciences8120483
Jorat ME, Aziz MA, Marto A, Zaini N, Jusoh SN, Manning DAC. Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia’s CO2 Emission. Geosciences. 2018; 8(12):483. https://doi.org/10.3390/geosciences8120483
Chicago/Turabian StyleJorat, M. Ehsan, Maniruzzaman A. Aziz, Aminaton Marto, Nabilah Zaini, Siti Norafida Jusoh, and David A.C. Manning. 2018. "Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia’s CO2 Emission" Geosciences 8, no. 12: 483. https://doi.org/10.3390/geosciences8120483
APA StyleJorat, M. E., Aziz, M. A., Marto, A., Zaini, N., Jusoh, S. N., & Manning, D. A. C. (2018). Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia’s CO2 Emission. Geosciences, 8(12), 483. https://doi.org/10.3390/geosciences8120483