Tectono-Thermal Evolution and Morphodynamics of the Central Dronning Maud Land Mountains, East Antarctica, Based on New Thermochronological Data
Abstract
:1. Introduction
2. Regional Geology
Post-Pan-African Evolution
3. Previous Thermochronological Results
4. Samples and Analytical Methods
4.1. Apatite Fission Track Analyses
4.2. (U-Th)/He Analyses
4.3. Modelling of the Thermal History
- (1)
- simple cooling with only start and end constraints.
- (2)
- late Paleozoic peneplanation with subsequent late Paleozoic–early Mesozoic burial beneath sediments. For these models, we inferred the position of the late Paleozoic peneplain by connecting mountain peaks from the escarpment to the hinterland. These peaks define a gently southward sloping surface, which we interpreted as the last remnant of the peneplain. Based on glacial deposits within both the Beacon sediments in Heimefrontfjella and the Karoo Supergroup in south-central Africa, e.g., [42,94,95], we have applied a surface temperature of −10 °C and corrected the temperature for each sample based on their vertical distance to the extrapolated peneplain, assuming a geothermal gradient of 25 °C/km (this has been done for all following steps as well). This approach works well for the main mountain range but not for samples from the coast (e.g., Schirmacheroasen)—they were generally given a lot more freedom during the modelling to account for the uncertainty in their position with regard to the extrapolated peneplain. A second constraint box allows for Permo-Triassic sedimentary burial; Triassic surface temperatures have been set to 25 °C [96].
- (3)
- late Paleozoic peneplanation with subsequent late Paleozoic–early Mesozoic burial beneath sediments, followed by rapid cooling in the Late Triassic–Early Jurassic and renewed burial in the Jurassic (as suggested by studies from adjacent regions by e.g., Krohne [13] and Sirevaag et al. [14]). This has been implemented by forcing the samples to the surface in the Early Jurassic, assuming a surface temperature of 25 °C, corrected for each sample’s depth below the extrapolated peneplain, followed by a second constraint box to allow for re-burial.
5. Results
5.1. Apatite Fission Track Results
5.2. (U-Th)/He Results
6. Tectono-Thermal Evolution
6.1. Post-Pan-African Evolution
6.1.1. Late Paleozoic–Early Mesozoic Peneplanation and Sedimentary Basins
6.1.2. Jurassic Reburial?
6.1.3. Mesozoic–Cenozoic Cooling
6.2. Regional Thermochronological Age Distribution and Tectonic Implications
7. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Region | Spontaneous | Induced | Central Age | Measured | C-Axis Proj. | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elev. | Sample | n | ρs | Ns | ρi | Ni | ρd | Nd | P(χ2) | Disp. | U | Dpar | ±1σ | Age | ±1σ | MTL | ±1σ | MTL | ±1σ | n | ||
[m] | Quality | (G) | [%] | [ppm] | [µm] | [µm] | [Ma] | [Ma] | [µm] | [µm] | [µm] | [µm] | (G) | |||||||||
Mühlig-Hofmannfjella | ||||||||||||||||||||||
JJ1742 | Mühlig-Hofmannfj. | 1410 | G, f | 20 | 41.51 | 1689 | 57.19 | 2327 | 19.872 | 35707 | 49 | 0.02 | 45 | 1.30 | 0.11 | 153 | 6 | 12.0 | 1.8 | 13.3 | 1.3 | 100 |
Orvinfjella | ||||||||||||||||||||||
JJ1700 | Drygalskifjella | 1745 | G | 20 | 19.85 | 960 | 23.60 | 1141 | 19.984 | 35707 | 55 | 0.01 | 18 | 1.49 | 0.12 | 177 | 9 | 12.5 | 1.8 | 13.2 | 1.4 | 100 |
JJ1768 | Drygalskifjella | 2145 | F, f, wz/z | 20 | 39.91 | 1720 | 29.38 | 1266 | 19.817 | 35707 | 65 | 0.01 | 22 | 1.28 | 0.08 | 282 | 13 | 12.2 | 1.6 | 13.4 | 1.2 | 100 |
JJ1673 | Conradfjella | 1200 | F, z | 20 | 30.60 | 2522 | 46.98 | 3872 | 20.208 | 35707 | 0 | 0.12 | 40 | 1.48 | 0.12 | 140 | 6 | 10.9 | 1.6 | 12.5 | 1.1 | 100 |
JJ1720 | Conradfjella | 2985 | G | 20 | 82.07 | 3856 | 68.92 | 3238 | 18.199 | 41977 | 0 | 0.11 | 53 | 1.41 | 0.15 | 228 | 10 | 12.7 | 1.6 | 13.8 | 1.1 | 100 |
JJ1736 | Conradfjella | 2605 | VG, (f), (i) | 20 | 57.31 | 4447 | 45.35 | 3519 | 18.262 | 41977 | 83 | 0.00 | 35 | 1.40 | 0.09 | 242 | 8 | 13.4 | 1.3 | 14.3 | 1.0 | 100 |
JJ1746 | Conradfjella | 1590 | G | 20 | 20.04 | 1606 | 18.91 | 1378 | 18.325 | 41977 | 4 | 0.11 | 15 | 1.33 | 0.07 | 226 | 12 | 12.8 | 1.5 | 13.9 | 1.1 | 100 |
JJ1766 | Gjeruldsenhøgda | 2100 | G, f, (z) | 20 | 24.72 | 1883 | 22.79 | 1736 | 18.388 | 41977 | 91 | 0.00 | 19 | 1.35 | 0.09 | 210 | 9 | 13.2 | 1.5 | 14.2 | 1.1 | 100 |
JJ1796 | Dallmannfjellet | 1745 | G, f, wz/z | 20 | 24.29 | 1188 | 32.54 | 1591 | 19.761 | 35707 | 18 | 0.09 | 26 | 1.31 | 0.07 | 155 | 8 | 10.6 | 1.5 | 12.6 | 1.1 | 86 |
JJ1797 | Dallmannfjellet | 1745 | F, z | 20 | 32.07 | 1691 | 41.47 | 2187 | 19.649 | 35707 | 14 | 0.03 | 34 | 1.37 | 0.06 | 161 | 7 | 10.7 | 1.6 | 12.3 | 1.2 | 100 |
JJ1677 | Henriksenskjera | 1315 | G, z | 20 | 39.09 | 1903 | 62.12 | 3024 | 20.152 | 35707 | 16 | 0.07 | 52 | 1.41 | 0.12 | 134 | 6 | 10.7 | 1.6 | 12.4 | 1.1 | 89 |
Wohlthatmassivet | ||||||||||||||||||||||
JJ1812 | Zwieselhøgda | 2965 | F, z | 20 | 25.82 | 1049 | 29.39 | 1194 | 19.593 | 35707 | 77 | 0.01 | 25 | 1.37 | 0.15 | 182 | 9 | 13.4 | 1.60 | 14.3 | 1.2 | 100 |
JJ1838 | Petermannkjedene | 1260 | F, i | 20 | 4.62 | 388 | 9.94 | 835 | 20.432 | 35707 | 59 | 0.09 | 8 | 1.24 | 0.07 | 102 | 7 | - | - | - | - | - |
JJ1867 | Petermannkjedene | 1410 | F, i | 20 | 32.85 | 1351 | 54.03 | 2222 | 19.537 | 35707 | 66 | 0.00 | 41 | 1.35 | 0.08 | 126 | 5 | 12.1 | 1.5 | 13.4 | 1.1 | 100 |
JJ1886 | Petermannkjedene | 1125 | F, f | 20 | 15.58 | 744 | 34.83 | 1663 | 18.514 | 41977 | 24 | 0.11 | 28 | 1.27 | 0.09 | 88 | 5 | 12.6 | 1.8 | 13.7 | 1.5 | 100 |
JJ1931 | Petermannkjedene | 1475 | G | 20 | 11.69 | 518 | 27.47 | 1217 | 18.577 | 41977 | 48 | 0.02 | 22 | 1.30 | 0.09 | 84 | 5 | 12.3 | 1.6 | 13.5 | 1.3 | 100 |
JJ1875 | Madsensåta | 1400 | F, f, (wz) | 20 | 74.86 | 2271 | 118.93 | 3608 | 18.640 | 41977 | 0 | 0.20 | 98 | 1.63 | 0.12 | 126 | 7 | 13.2 | 1.4 | 14.1 | 1.1 | 100 |
JJ1890 | Gruberfjella | 2800 | F, f | 20 | 25.45 | 1073 | 30.36 | 1280 | 20.300 | 36879 | 1 | 0.16 | 22 | 1.42 | 0.12 | 181 | 11 | 13.1 | 1.6 | 14.1 | 1.2 | 100 |
JJ1897 | Gruberfjella | 2175 | F, (f), (i) | 20 | 22.64 | 1739 | 29.36 | 2256 | 20.249 | 36879 | 10 | 0.07 | 21 | 1.35 | 0.08 | 166 | 7 | 12.3 | 1.7 | 13.6 | 1.2 | 100 |
JJ1911 | Gruberfjella | 1285 | F | 20 | 61.79 | 3150 | 105.51 | 5379 | 20.197 | 36879 | 5 | 0.07 | 81 | 1.50 | 0.12 | 125 | 5 | 12.2 | 1.4 | 13.4 | 1.1 | 100 |
JJ1924 | Weyprechtfjella | 2685 | G, (f) | 20 | 44.55 | 1854 | 33.76 | 1405 | 18.136 | 41977 | 77 | 0.00 | 27 | 1.39 | 0.09 | 251 | 11 | 13.2 | 1.3 | 14.2 | 1.0 | 100 |
JJ1940 | Oddenskjera | 1190 | F, f, z, i | 20 | 31.41 | 1868 | 55.17 | 3281 | 19.481 | 35707 | 22 | 0.07 | 45 | 1.40 | 0.11 | 118 | 5 | 11.8 | 1.8 | 13.2 | 1.3 | 100 |
SG-25 | E. Wohlthatmassiv. | 1795 | F, f, d | 23 | 35.38 | 1726 | 37.81 | 1845 | 19.201 | 35707 | 15 | 0.08 | 30 | 1.46 | 0.09 | 190 | 9 | 11.3 | 1.5 | 12.8 | 1.2 | 100 |
Continental wedge | ||||||||||||||||||||||
JJ1730 | Sigurdsvodene | 1035 | G | 20 | 11.40 | 886 | 14.72 | 1144 | 19.928 | 35707 | 43 | 0.06 | 11 | 1.41 | 0.08 | 163 | 9 | 10.9 | 1.8 | 12.4 | 1.2 | 47 |
JJ1731 | Sigurdsvodene | 1155 | G, (f) | 20 | 8.69 | 575 | 13.17 | 871 | 18.451 | 35707 | 65 | 0.00 | 10 | 1.26 | 0.05 | 129 | 8 | 12.8 | 1.4 | 13.9 | 1.0 | 47 |
JJ1976 | Starheimtind | 1345 | F, f | 20 | 8.39 | 463 | 11.76 | 649 | 18.703 | 41977 | 16 | 0.15 | 9 | 1.48 | 0.10 | 144 | 11 | 13.1 | 1.6 | 14.0 | 1.3 | 100 |
JJ1984 | Schirmacheroasen | 50 | F, (i) | 20 | 13.22 | 802 | 22.42 | 1360 | 19.425 | 35707 | 17 | 0.10 | 17 | 1.58 | 0.11 | 122 | 7 | 12.4 | 1.8 | 13.6 | 1.3 | 100 |
S25.1 | Schirmacheroasen | 150 | G | 20 | 9.61 | 474 | 14.84 | 732 | 19.313 | 35707 | 63 | 0.01 | 11 | 1.77 | 0.09 | 132 | 9 | 12.9 | 1.7 | 14.0 | 1.3 | 100 |
S30.1 | Schirmacheroasen | 150 | G, (d) | 21 | 14.17 | 734 | 23.40 | 1212 | 19.257 | 35707 | 6 | 0.15 | 18 | 1.53 | 0.12 | 124 | 8 | 12.4 | 1.7 | 13.6 | 1.2 | 100 |
J02.02./2 | Schirmacheroasen | 150 | G | 20 | 10.00 | 477 | 13.54 | 646 | 20.655 | 35707 | 9 | 0.15 | 9 | 1.39 | 0.08 | 163 | 13 | - | - | - | - | - |
J03.02./1 | Schirmacheroasen | 150 | G | 20 | 5.89 | 500 | 7.79 | 661 | 20.599 | 35707 | 29 | 0.12 | 5 | 1.50 | 0.07 | 165 | 12 | 12.2 | 2.0 | 13.4 | 1.5 | 100 |
Appendix B
Sample | Term | He | 238U | 232Th | Sm | Ejec. Corr. (FT) | Uncorr. He-Age | FT Corr. He-Age | Unweighted Sample Average | Reason for Exclusion | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SR | Vol. | 1σ | Mass | 1σ | Conc. | Mass | 1σ | Conc. | Th/U | Mass | 1σ | Conc. | eU | Age | 1σ | Age | 1σ | |||||
[µm] | [ncc] | [%] | [ng] | [%] | [ppm] | [ng] | [%] | [ppm] | ratio | [ng] | [%] | [ppm] | [ppm] | [Ma] | [Ma] | [Ma] | [Ma] | [Ma] | ||||
Mühlig-Hofmannfjella | ||||||||||||||||||||||
JJ1742 a1 | 2 | 49 | 2.847 | 1.1 | 0.132 | 1.9 | 31.1 | 0.153 | 2.5 | 35.8 | 1.15 | 4.62 | 6.8 | 1084 | 39 | 0.67 | 113 | 168 | 9 | 165 | 23 | |
JJ1742 a2 | 2 | 54 | 3.603 | 1.0 | 0.195 | 1.9 | 39.4 | 0.284 | 2.4 | 57.4 | 1.46 | 6.33 | 6.8 | 1279 | 53 | 0.70 | 94 | 135 | 7 | |||
JJ1742 a3 | 1 | 65 | 5.423 | 1.1 | 0.189 | 1.9 | 27.8 | 0.224 | 2.4 | 33.1 | 1.19 | 7.85 | 6.8 | 1159 | 36 | 0.76 | 145 | 191 | 8 | |||
Orvinfjella | ||||||||||||||||||||||
JJ1700 a1 | 1 | 51 | 2.389 | 1.1 | 0.040 | 2.3 | 21.8 | 0.481 | 2.4 | 263.5 | 12.08 | 2.26 | 3.2 | 1237 | 84 | 0.67 | 114 | 171 | 9 | 158 | 20 | |
JJ1700 a2 | 1 | 60 | 5.126 | 1.0 | 0.052 | 2.2 | 15.8 | 1.092 | 2.4 | 335.1 | 21.19 | 2.32 | 3.6 | 712 | 95 | 0.72 | 128 | 179 | 9 | |||
JJ1700 a3 | 1 | 57 | 1.577 | 1.1 | 0.043 | 2.3 | 19.4 | 0.331 | 2.4 | 150.4 | 7.74 | 2.61 | 3.5 | 1186 | 55 | 0.71 | 91 | 128 | 6 | |||
JJ1700 a4 | 1 | 41 | 0.932 | 1.1 | 0.025 | 2.8 | 21.1 | 0.198 | 2.4 | 166.3 | 7.89 | 1.52 | 3.1 | 1280 | 60 | 0.60 | 91 | 153 | 10 | |||
JJ1768 a1 | 1 | 38 | 0.071 | 2.3 | 0.008 | 7.6 | 11.9 | 0.012 | 3.3 | 16.6 | 1.40 | 0.30 | 3.8 | 421 | 16 | 0.58 | 43 | 74 | 6 | |||
JJ1768 a2 | 2 | 49 | 0.810 | 1.2 | 0.034 | 2.5 | 16.5 | 0.018 | 3.0 | 8.7 | 0.53 | 4.04 | 3.4 | 1961 | 19 | 0.70 | 93 | 134 | 7 | |||
JJ1768 a3 | 1 | 64 | 1.338 | 1.2 | 0.040 | 2.3 | 20.2 | 0.023 | 2.8 | 11.9 | 0.59 | 3.93 | 3.8 | 1989 | 23 | 0.76 | 141 | 187 | 8 | |||
JJ1621 a1 | 1 | 73 | 1.429 | 1.4 | 0.064 | 2.1 | 8.2 | 0.017 | 3.1 | 2.2 | 0.27 | 7.53 | 6.8 | 974 | 9 | 0.79 | 91 | 115 | 6 | 86 | 21 | |
JJ1621 a2 | 1 | 73 | 0.721 | 1.5 | 0.034 | 2.9 | 4.8 | 0.005 | 4.3 | 0.8 | 0.16 | 9.36 | 6.8 | 1327 | 5 | 0.79 | 53 | 67 | 4 | |||
JJ1621 a3 | 2 | 64 | 0.864 | 1.4 | 0.042 | 2.6 | 6.0 | 0.024 | 3.0 | 3.4 | 0.57 | 9.78 | 6.8 | 1383 | 7 | 0.74 | 55 | 75 | 5 | |||
JJ1673 a1 | 2 | 76 | 0.590 | 1.4 | 0.060 | 2.2 | 6.2 | 0.094 | 2.5 | 9.7 | 1.56 | 2.66 | 6.8 | 274 | 8 | 0.79 | 47 | 59 | 2 | 71 | 8 | |
JJ1673 a2 | 1 | 122 | 2.956 | 1.4 | 0.099 | 2.0 | 4.0 | 0.241 | 2.4 | 9.6 | 2.43 | 6.04 | 6.9 | 242 | 6 | 0.87 | 118 | 136 | 4 | Outlier | ||
JJ1673 a3 | 1 | 76 | 1.538 | 1.4 | 0.120 | 1.9 | 15.2 | 0.237 | 2.4 | 30.2 | 1.98 | 4.52 | 6.9 | 575 | 22 | 0.79 | 59 | 75 | 3 | |||
JJ1673 a4 | 2 | 64 | 1.942 | 1.4 | 0.159 | 1.9 | 18.7 | 0.383 | 2.4 | 45.0 | 2.41 | 3.68 | 6.9 | 432 | 29 | 0.74 | 57 | 77 | 3 | |||
JJ1720 a1 | 2 | 43 | 2.008 | 1.8 | 0.057 | 2.1 | 39.3 | 0.099 | 2.5 | 68.3 | 1.74 | 0.82 | 9.1 | 564 | 55 | 0.62 | 189 | 306 | 19 | 276 | 21 | |
JJ1720 a2 | 2 | 36 | 1.589 | 1.9 | 0.065 | 3.0 | 58.3 | 0.171 | 3.0 | 154.6 | 2.65 | 0.56 | 2.9 | 502 | 95 | 0.54 | 66 | 122 | 9 | Outlier | ||
JJ1720 a3 | 2 | 58 | 13.058 | 1.7 | 0.275 | 1.8 | 66.6 | 1.157 | 2.4 | 279.7 | 4.20 | 3.11 | 9.1 | 752 | 132 | 0.71 | 186 | 260 | 13 | |||
JJ1720 a5 | 2 | 36 | 1.097 | 1.1 | 0.026 | 3.3 | 24.9 | 0.133 | 2.5 | 125.8 | 5.05 | 0.69 | 8.1 | 650 | 54 | 0.54 | 142 | 262 | 19 | |||
JJ1736 a1 | 2 | 57 | 4.949 | 1.8 | 0.187 | 1.8 | 45.3 | 0.018 | 2.9 | 4.4 | 0.10 | 2.85 | 9.1 | 692 | 46 | 0.73 | 188 | 256 | 12 | 259 | 3 | |
JJ1736 a2 | 2 | 57 | 4.259 | 1.7 | 0.157 | 1.9 | 41.3 | 0.030 | 2.7 | 7.9 | 0.19 | 2.38 | 9.1 | 624 | 43 | 0.73 | 189 | 258 | 12 | |||
JJ1736 a3 | 2 | 49 | 3.094 | 1.8 | 0.122 | 1.9 | 51.9 | 0.011 | 3.2 | 4.8 | 0.09 | 1.70 | 9.0 | 725 | 53 | 0.69 | 182 | 264 | 14 | |||
JJ1746 a1 | 2 | 68 | 0.852 | 2.2 | 0.030 | 2.6 | 6.1 | 0.013 | 3.1 | 2.6 | 0.43 | 3.57 | 9.0 | 733 | 7 | 0.77 | 112 | 146 | 9 | 141 | 22 | |
JJ1746 a2 | 2 | 62 | 0.681 | 2.3 | 0.038 | 2.4 | 11.1 | 0.031 | 2.7 | 9.2 | 0.83 | 2.35 | 9.0 | 693 | 13 | 0.75 | 87 | 117 | 6 | |||
JJ1746 a3 | 2 | 69 | 1.244 | 2.1 | 0.066 | 2.0 | 6.3 | 0.014 | 3.1 | 1.3 | 0.21 | 5.67 | 9.1 | 540 | 7 | 0.78 | 88 | 113 | 6 | |||
JJ1746 a5 | 2 | 36 | 0.281 | 1.5 | 0.017 | 4.2 | 11.1 | 0.002 | 6.1 | 1.2 | 0.10 | 0.91 | 7.9 | 591 | 11 | 0.58 | 92 | 160 | 12 | |||
JJ1746 a6 | 2 | 50 | 0.025 | 1.9 | 0.010 | 6.3 | 3.6 | 0.001 | 35.9 | 0.4 | 0.11 | 1.77 | 7.0 | 662 | 4 | 0.69 | 8 | 12 | 1 | Outlier | ||
JJ1746 a7 | 1 | 66 | 1.138 | 1.7 | 0.045 | 2.2 | 8.3 | 0.006 | 4.1 | 1.1 | 0.13 | 3.14 | 7.0 | 570 | 9 | 0.77 | 129 | 167 | 8 | |||
JJ1766 a1 | 0 | 98 | 4.990 | 1.7 | 0.209 | 1.8 | 17.5 | 0.317 | 2.4 | 26.5 | 1.52 | 3.66 | 9.0 | 306 | 24 | 0.84 | 130 | 155 | 5 | 152 | 10 | |
JJ1766 a2 | 0 | 111 | 7.845 | 1.7 | 0.349 | 1.8 | 41.0 | 0.390 | 2.4 | 45.9 | 1.12 | 2.23 | 9.1 | 262 | 52 | 0.86 | 140 | 162 | 5 | |||
JJ1766 a3 | 0 | 93 | 3.119 | 1.8 | 0.135 | 1.9 | 16.2 | 0.282 | 2.4 | 33.8 | 2.09 | 2.65 | 9.0 | 318 | 24 | 0.83 | 115 | 138 | 5 | |||
JJ1796 a1 | 2 | 42 | 0.055 | 2.6 | 0.004 | 19.4 | 3.4 | 0.000 | n.c. | 0.3 | 0.10 | 0.39 | 4.1 | 337 | 4 | 0.64 | 63 | 100 | 12 | 99 | 3 | |
JJ1796 a2 | 2 | 56 | 0.647 | 1.2 | 0.061 | 2.0 | 19.6 | 0.012 | 3.2 | 3.9 | 0.20 | 1.10 | 3.3 | 356 | 21 | 0.73 | 73 | 101 | 5 | |||
JJ1796 a3 | 2 | 40 | 0.211 | 1.6 | 0.024 | 3.0 | 24.7 | 0.006 | 4.1 | 6.3 | 0.26 | 0.45 | 3.7 | 454 | 26 | 0.62 | 59 | 95 | 6 | |||
JJ1797 a1 | 2 | 47 | 0.629 | 1.2 | 0.028 | 2.8 | 10.8 | 0.000 | n.c. | 0.1 | 0.01 | 0.46 | 3.9 | 179 | 11 | 0.67 | 163 | 243 | 14 | 224 | 33 | |
JJ1797 a2 | 2 | 64 | 4.087 | 1.1 | 0.165 | 1.8 | 28.3 | 0.005 | 4.1 | 0.9 | 0.03 | 0.90 | 3.6 | 154 | 29 | 0.76 | 192 | 252 | 10 | |||
JJ1797 a3 | 1 | 56 | 1.238 | 1.1 | 0.074 | 2.0 | 25.5 | 0.003 | 4.6 | 1.0 | 0.04 | 0.49 | 3.7 | 167 | 26 | 0.73 | 129 | 177 | 8 | |||
JJ1677 a1 | 1 | 71 | 1.143 | 1.4 | 0.101 | 2.0 | 12.8 | 0.325 | 2.9 | 41.2 | 3.22 | 1.77 | 7.0 | 224 | 22 | 0.77 | 49 | 64 | 3 | 68 | 16 | |
JJ1677 a2 | 2 | 42 | 0.335 | 1.6 | 0.039 | 2.6 | 10.2 | 0.026 | 3.0 | 6.9 | 0.67 | 0.55 | 7.3 | 143 | 12 | 0.62 | 55 | 89 | 6 | |||
JJ1677 a3 | 2 | 50 | 0.258 | 1.7 | 0.044 | 2.5 | 8.8 | 0.029 | 2.9 | 5.8 | 0.66 | 1.13 | 7.1 | 224 | 10 | 0.68 | 35 | 52 | 3 | |||
Wohlthatmassivet | ||||||||||||||||||||||
JJ1812 a1 | 1 | 44 | 3.504 | 1.3 | 0.126 | 1.9 | 23.4 | 0.404 | 2.4 | 75.0 | 3.21 | 1.29 | 7.0 | 240 | 41 | 0.63 | 124 | 195 | 11 | 193 | 3 | |
JJ1812 a3 | 2 | 38 | 0.551 | 1.5 | 0.025 | 3.7 | 6.6 | 0.055 | 2.6 | 14.4 | 2.19 | 0.43 | 7.3 | 114 | 10 | 0.58 | 109 | 190 | 13 | |||
JJ1838 a1 | 1 | 51 | 0.032 | 3.2 | 0.018 | 4.3 | 12.2 | 0.004 | 4.3 | 2.5 | 0.20 | 0.49 | 3.6 | 324 | 13 | 0.70 | 11 | 16 | 1 | |||
JJ1838 a2 | 2 | 73 | 0.138 | 1.8 | 0.007 | 11.0 | 5.3 | 0.037 | 2.7 | 26.6 | 5.06 | 1.17 | 3.5 | 828 | 12 | 0.77 | 44 | 57 | 3 | |||
JJ1838 a3 | 2 | 70 | 1.486 | 1.1 | 0.160 | 1.9 | 26.5 | 0.021 | 2.9 | 3.5 | 0.13 | 1.91 | 3.4 | 317 | 27 | 0.78 | 68 | 87 | 3 | |||
JJ1867 a1 | 2 | 41 | 0.917 | 1.2 | 0.077 | 2.1 | 13.8 | 0.032 | 2.8 | 5.8 | 0.42 | 1.20 | 7.1 | 217 | 15 | 0.63 | 80 | 128 | 8 | 132 | 17 | |
JJ1867 a2 | 2 | 44 | 0.668 | 1.2 | 0.062 | 2.2 | 12.5 | 0.024 | 3.0 | 4.9 | 0.39 | 0.94 | 6.9 | 188 | 14 | 0.64 | 73 | 114 | 7 | |||
JJ1867 a3 | 1 | 64 | 3.150 | 1.1 | 0.180 | 1.9 | 21.9 | 0.087 | 2.5 | 10.6 | 0.48 | 2.18 | 7.1 | 265 | 24 | 0.76 | 118 | 155 | 6 | |||
JJ1886 a1 | 2 | 36 | 0.507 | 2.3 | 0.042 | 3.0 | 35.3 | 0.093 | 3.0 | 78.0 | 2.21 | 1.40 | 2.7 | 1172 | 54 | 0.55 | 31 | 56 | 4 | |||
JJ1886 a2 | 2 | 58 | 4.155 | 1.8 | 0.173 | 1.8 | 49.2 | 0.485 | 2.4 | 137.7 | 2.80 | 3.87 | 9.0 | 1098 | 82 | 0.72 | 107 | 149 | 7 | |||
JJ1886 a3 | 2 | 40 | 0.351 | 2.8 | 0.031 | 2.6 | 27.5 | 0.055 | 2.5 | 49.5 | 1.80 | 1.16 | 9.1 | 1035 | 39 | 0.59 | 54 | 91 | 6 | |||
JJ1886 a5 | 1 | 38 | 4.468 | 1.6 | 0.230 | 1.8 | 166.9 | 0.399 | 2.4 | 289.9 | 1.74 | 2.03 | 7.8 | 1477 | 235 | 0.59 | 108 | 184 | 12 | |||
JJ1931 a1 | 2 | 37 | 0.164 | 3.3 | 0.024 | 3.0 | 18.7 | 0.012 | 10.0 | 9.1 | 0.49 | 0.27 | 3.3 | 206 | 21 | 0.58 | 22 | 37 | 3 | |||
JJ1931 a2 | 1 | 50 | 0.664 | 2.2 | 0.078 | 2.0 | 23.1 | 0.045 | 2.6 | 13.4 | 0.58 | 0.90 | 9.1 | 266 | 26 | 0.70 | 57 | 82 | 4 | |||
JJ1931 a3 | 2 | 41 | 0.316 | 2.6 | 0.045 | 3.0 | 20.2 | 0.023 | 3.0 | 10.1 | 0.50 | 0.44 | 2.9 | 195 | 23 | 0.62 | 22 | 36 | 2 | |||
JJ1931 a4 | 2 | 53 | 0.569 | 2.5 | 0.067 | 2.0 | 18.8 | 0.040 | 2.6 | 11.2 | 0.59 | 0.68 | 3.0 | 192 | 21 | 0.71 | 57 | 81 | 4 | |||
JJ1931 a5 | 1 | 49 | 0.712 | 1.8 | 0.071 | 2.2 | 26.5 | 0.033 | 2.7 | 12.2 | 0.46 | 0.67 | 8.2 | 251 | 29 | 0.68 | 70 | 102 | 6 | |||
JJ1875 a1 | 1 | 46 | 15.214 | 1.7 | 0.832 | 2.5 | 405.2 | 6.845 | 2.0 | 3332.8 | 8.22 | 7.62 | 2.7 | 3712 | 1188 | 0.64 | 35 | 54 | 3 | 86 | 19 | |
JJ1875 a2 | 2 | 34 | 7.250 | 1.7 | 0.330 | 1.8 | 322.9 | 2.909 | 2.4 | 2849.8 | 8.83 | 3.82 | 10.1 | 3744 | 993 | 0.50 | 57 | 114 | 9 | |||
JJ1875 a3 | 1 | 45 | 10.037 | 1.7 | 0.404 | 1.8 | 370.0 | 4.154 | 2.4 | 3803.4 | 10.28 | 4.91 | 10.1 | 4495 | 1264 | 0.63 | 58 | 92 | 6 | |||
JJ1875 a4 | 0 | 38 | 3.681 | 1.8 | 0.144 | 3.0 | 245.9 | 1.335 | 2.0 | 2273.4 | 9.24 | 2.50 | 4.2 | 4262 | 780 | 0.57 | 45 | 79 | 5 | |||
JJ1875 a5 | 0 | 56 | 16.189 | 1.6 | 0.722 | 1.8 | 652.5 | 5.455 | 2.4 | 4931.6 | 7.56 | 4.86 | 7.8 | 4392 | 1811 | 0.71 | 65 | 92 | 5 | |||
JJ1890 a1 | 2 | 42 | 0.366 | 2.6 | 0.021 | 3.0 | 10.7 | 0.067 | 3.0 | 34.3 | 3.20 | 0.33 | 3.3 | 169 | 19 | 0.61 | 44 | 72 | 5 | 146 | 1 | Outlier |
JJ1890 a2 | 2 | 55 | 0.457 | 2.5 | 0.017 | 3.8 | 6.2 | 0.065 | 2.5 | 24.0 | 3.87 | 0.48 | 9.2 | 177 | 12 | 0.70 | 104 | 148 | 8 | |||
JJ1890 a3 | 2 | 61 | 1.000 | 2.1 | 0.034 | 2.5 | 11.7 | 0.098 | 2.5 | 33.9 | 2.90 | 0.50 | 9.2 | 171 | 20 | 0.74 | 134 | 181 | 9 | Outlier | ||
JJ1890 a4 | 0 | 88 | 0.623 | 2.5 | 0.018 | 3.8 | 6.9 | 0.092 | 2.5 | 35.7 | 5.17 | 0.42 | 3.0 | 163 | 15 | 0.82 | 119 | 146 | 6 | |||
JJ1890 a5 | 0 | 95 | 2.198 | 1.6 | 0.076 | 2.1 | 20.3 | 0.282 | 2.4 | 74.7 | 3.69 | 0.79 | 7.9 | 209 | 38 | 0.83 | 121 | 145 | 5 | |||
JJ1897 a1 | 2 | 106 | 8.254 | 1.7 | 0.339 | 1.8 | 27.2 | 0.847 | 2.4 | 67.9 | 2.50 | 2.39 | 10.1 | 192 | 43 | 0.85 | 121 | 142 | 4 | 134 | 9 | |
JJ1897 a2 | 0 | 91 | 3.277 | 1.8 | 0.151 | 1.9 | 25.3 | 0.425 | 2.4 | 71.4 | 2.82 | 1.09 | 10.2 | 183 | 42 | 0.83 | 103 | 125 | 4 | |||
JJ1897 a3 | 1 | 64 | 0.950 | 2.1 | 0.050 | 3.0 | 12.8 | 0.111 | 3.0 | 28.2 | 2.21 | 0.82 | 2.8 | 210 | 19 | 0.75 | 51 | 68 | 3 | Outlier | ||
JJ1897 a4 | 1 | 80 | 2.847 | 1.8 | 0.122 | 1.9 | 17.5 | 0.300 | 2.4 | 43.2 | 2.46 | 1.13 | 2.9 | 163 | 28 | 0.80 | 116 | 144 | 5 | |||
JJ1897 a5 | 1 | 78 | 2.734 | 1.6 | 0.136 | 1.9 | 20.9 | 0.329 | 2.4 | 50.4 | 2.41 | 1.21 | 7.9 | 186 | 33 | 0.80 | 100 | 126 | 5 | |||
JJ1911 a1 | 1 | 72 | 8.502 | 1.7 | 0.675 | 1.8 | 107.7 | 0.707 | 2.4 | 112.8 | 1.05 | 1.32 | 10.1 | 211 | 134 | 0.79 | 82 | 104 | 4 | 109 | 3 | |
JJ1911 a2 | 0 | 71 | 3.828 | 1.8 | 0.285 | 1.8 | 188.8 | 0.331 | 2.4 | 219.0 | 1.16 | 0.45 | 10.2 | 296 | 240 | 0.78 | 86 | 109 | 4 | |||
JJ1911 a3 | 2 | 67 | 7.080 | 1.7 | 0.375 | 1.8 | 64.4 | 1.230 | 2.4 | 211.3 | 3.28 | 1.71 | 10.1 | 295 | 114 | 0.76 | 86 | 113 | 5 | |||
JJ1924 a1 | 0 | 53 | 1.528 | 1.9 | 0.069 | 3.0 | 29.2 | 0.008 | 12.0 | 3.5 | 0.12 | 0.32 | 2.9 | 136 | 30 | 0.72 | 74 | 104 | 6 | |||
JJ1924 a2 | 1 | 69 | 4.386 | 1.7 | 0.228 | 1.8 | 28.9 | 0.024 | 2.8 | 3.1 | 0.11 | 0.87 | 9.1 | 111 | 30 | 0.78 | 149 | 192 | 8 | |||
JJ1924 a3 | 2 | 41 | 0.872 | 2.1 | 0.036 | 2.4 | 14.0 | 0.002 | 5.5 | 0.8 | 0.06 | 0.20 | 9.4 | 79 | 14 | 0.63 | 187 | 298 | 19 | |||
JJ1924 a4 | 2 | 32 | 1.919 | 2.0 | 0.098 | 3.0 | 109.2 | 0.010 | 4.0 | 11.5 | 0.11 | 0.23 | 4.8 | 260 | 112 | 0.52 | 66 | 127 | 10 | |||
JJ1924 a5 | 1 | 64 | 5.332 | 1.6 | 0.177 | 1.9 | 41.0 | 0.014 | 3.2 | 3.1 | 0.08 | 1.06 | 8.0 | 246 | 42 | 0.76 | 229 | 301 | 13 | |||
JJ1924 a6 | 2 | 46 | 7.020 | 1.6 | 0.271 | 1.8 | 113.0 | 0.019 | 3.0 | 7.8 | 0.07 | 0.72 | 7.4 | 298 | 115 | 0.67 | 203 | 304 | 17 | |||
JJ1940 a1 | 2 | 47 | 4.496 | 1.3 | 0.233 | 1.8 | 50.9 | 1.253 | 2.4 | 273.7 | 5.37 | 5.02 | 6.9 | 1096 | 115 | 0.64 | 65 | 102 | 6 | 110 | 12 | |
JJ1940 a2 | 2 | 31 | 0.901 | 1.4 | 0.064 | 2.2 | 24.0 | 0.362 | 2.4 | 136.7 | 5.69 | 1.16 | 6.8 | 438 | 56 | 0.46 | 47 | 102 | 9 | |||
JJ1940 a3 | 1 | 34 | 1.093 | 1.4 | 0.057 | 2.2 | 20.3 | 0.300 | 2.4 | 106.6 | 5.25 | 1.06 | 7.0 | 377 | 45 | 0.52 | 66 | 128 | 10 | |||
SG-25 a1 | 1 | 48 | 0.724 | 1.0 | 0.044 | 2.3 | 28.7 | 0.099 | 2.5 | 64.9 | 2.26 | 0.37 | 4.9 | 246 | 44 | 0.67 | 85 | 128 | 7 | 133 | 9 | |
SG-25 a2 | 1 | 46 | 0.450 | 1.2 | 0.026 | 2.9 | 23.9 | 0.057 | 2.6 | 51.7 | 2.17 | 0.22 | 4.8 | 201 | 36 | 0.65 | 89 | 137 | 8 | |||
SG-25 a3 | 0 | 57 | 0.602 | 1.0 | 0.045 | 2.2 | 35.1 | 0.091 | 2.5 | 70.8 | 2.01 | 0.29 | 4.7 | 224 | 52 | 0.73 | 72 | 98 | 4 | Outlier | ||
SG-25 a4 | 1 | 53 | 1.246 | 1.7 | 0.075 | 2.0 | 18.9 | 0.162 | 2.5 | 40.9 | 2.16 | 0.76 | 5.0 | 192 | 29 | 0.70 | 86 | 123 | 6 | |||
SG-25 a5 | 0 | 48 | 0.484 | 1.8 | 0.029 | 2.6 | 20.5 | 0.060 | 2.5 | 42.8 | 2.09 | 0.28 | 5.0 | 197 | 31 | 0.68 | 88 | 129 | 7 | |||
SG-25 a6 | 1 | 46 | 0.972 | 1.7 | 0.055 | 2.1 | 28.8 | 0.101 | 2.5 | 53.3 | 1.85 | 0.47 | 5.1 | 247 | 41 | 0.65 | 97 | 149 | 9 | |||
SG-28 a1 | 2 | 63 | 0.436 | 1.8 | 0.021 | 3.9 | 11.4 | 0.024 | 3.1 | 12.7 | 1.12 | 0.49 | 7.4 | 264 | 14 | 0.75 | 116 | 155 | 8 | 144 | 9 | |
SG-28 a2 | 1 | 46 | 0.135 | 2.2 | 0.004 | 34.6 | 9.8 | 0.003 | 5.5 | 7.4 | 0.76 | 0.09 | 9.3 | 249 | 11 | 0.66 | 218 | 329 | 81 | Large error | ||
SG-28 a3 | 2 | 55 | 0.472 | 1.8 | 0.016 | 4.7 | 13.4 | 0.014 | 3.8 | 11.8 | 0.88 | 0.28 | 7.7 | 232 | 16 | 0.71 | 180 | 252 | 15 | Outlier | ||
SG-28 a4 | 1 | 67 | 0.393 | 1.5 | 0.019 | 4.7 | 3.6 | 0.015 | 3.3 | 2.7 | 0.77 | 1.10 | 7.0 | 201 | 4 | 0.77 | 101 | 132 | 7 | |||
SG-28 a5 | 2 | 44 | 0.726 | 1.5 | 0.015 | 5.5 | 4.4 | 0.017 | 3.2 | 4.9 | 1.11 | 0.45 | 7.1 | 132 | 6 | 0.65 | 259 | 401 | 27 | Older than FT.He-implantation? | ||
SG-28 a6 | 2 | 45 | 0.159 | 1.9 | 0.008 | 10.0 | 2.5 | 0.009 | 3.3 | 2.8 | 1.15 | 0.47 | 7.4 | 143 | 3 | 0.65 | 93 | 144 | 12 | |||
Continental wedge | ||||||||||||||||||||||
JJ1730 a1 | 2 | 35 | 0.023 | 3.9 | 0.002 | 66.2 | 0.6 | 0.007 | 3.2 | 2.2 | 3.92 | 0.10 | 7.3 | 29 | 1 | 0.53 | 43 | 81 | 23 | 95 | 10 | Large error |
JJ1730 a2 | 1 | 58 | 0.538 | 1.3 | 0.043 | 2.5 | 7.0 | 0.052 | 2.7 | 8.5 | 1.21 | 0.42 | 7.0 | 70 | 9 | 0.73 | 76 | 104 | 5 | |||
JJ1730 a3 | 2 | 47 | 0.146 | 1.8 | 0.010 | 9.8 | 2.1 | 0.029 | 2.9 | 6.2 | 2.91 | 0.21 | 7.2 | 45 | 4 | 0.65 | 65 | 100 | 8 | |||
JJ1731 a1 | 0 | 93 | 0.969 | 2.2 | 0.046 | 2.2 | 7.9 | 0.179 | 2.4 | 30.7 | 3.88 | 0.49 | 9.2 | 85 | 15 | 0.83 | 86 | 104 | 4 | 105 | 8 | |
JJ1731 a2 | 2 | 66 | 0.926 | 2.1 | 0.046 | 2.2 | 7.8 | 0.157 | 2.5 | 26.5 | 3.38 | 0.48 | 9.2 | 81 | 14 | 0.76 | 87 | 115 | 5 | |||
JJ1731 a3 | 0 | 74 | 0.735 | 2.2 | 0.042 | 2.3 | 7.3 | 0.142 | 2.5 | 24.5 | 3.36 | 0.48 | 9.2 | 82 | 13 | 0.79 | 76 | 97 | 4 | |||
JJ1974 a1 | 1 | 65 | 0.076 | 5.4 | 0.002 | 41.9 | 0.4 | 0.001 | 9.6 | 0.2 | 0.57 | 2.08 | 10.1 | 535 | 0 | 0.76 | 33 | 44 | 5 | 70 | 23 | |
JJ1974 a3 | 1 | 42 | 0.031 | 7.6 | 0.000 | n.c. | 0.0 | 0.000 | n.c | 0.0 | 0.00 | 0.72 | 10.2 | 332 | 0 | 0.64 | 43 | 66 | 12 | |||
JJ1974 a6 | 0 | 61 | 0.062 | 2.5 | 0.000 | n.c. | 0.1 | 0.000 | n.c | 0.1 | 0.86 | 0.73 | 4.9 | 389 | 0 | 0.77 | 82 | 106 | 14 | |||
JJ1974 a7 | 1 | 48 | 0.048 | 2.8 | 0.000 | n.c. | 0.1 | 0.000 | n.c | 0.0 | 0.00 | 1.08 | 7.0 | 245 | 0 | 0.69 | 43 | 63 | 9 | |||
JJ1974 a8 | 1 | 61 | 0.671 | 1.4 | 0.009 | 9.8 | 1.8 | 0.000 | n.c | 0.0 | 0.00 | 1.52 | 7.0 | 306 | 2 | 0.75 | 256 | 341 | 24 | Outlier | ||
JJ1976 a1 | 2 | 53 | 0.451 | 2.4 | 0.017 | 3.8 | 4.8 | 0.141 | 2.5 | 39.4 | 8.21 | 2.77 | 9.0 | 777 | 14 | 0.69 | 51 | 74 | 5 | 69 | 8 | |
JJ1976 a2 | 2 | 46 | 0.423 | 2.4 | 0.025 | 3.0 | 9.5 | 0.092 | 3.0 | 34.5 | 3.62 | 1.85 | 2.7 | 690 | 18 | 0.64 | 36 | 56 | 3 | |||
JJ1976 a3 | 0 | 56 | 0.206 | 3.0 | 0.007 | 8.2 | 5.5 | 0.075 | 2.5 | 55.3 | 10.08 | 0.99 | 9.1 | 732 | 18 | 0.71 | 51 | 72 | 4 | |||
JJ1976 a4 | 0 | 46 | 0.187 | 3.6 | 0.011 | 5.5 | 9.4 | 0.057 | 2.5 | 47.9 | 5.12 | 0.89 | 3.4 | 748 | 21 | 0.65 | 49 | 75 | 5 | |||
JJ1984 a1 | 2 | 42 | 0.408 | 1.5 | 0.037 | 2.8 | 9.6 | 0.065 | 2.6 | 17.2 | 1.78 | 2.35 | 7.1 | 621 | 14 | 0.62 | 47 | 76 | 5 | 57 | 16 | |
JJ1984 a2 | 2 | 42 | 0.049 | 2.8 | 0.006 | 11.4 | 1.9 | 0.000 | n.c | 0.1 | 0.06 | 1.30 | 6.8 | 382 | 2 | 0.63 | 23 | 37 | 3 | |||
JJ1984 a3 | 1 | 89 | 0.856 | 1.4 | 0.076 | 2.1 | 6.9 | 0.050 | 2.7 | 4.6 | 0.67 | 11.61 | 6.8 | 1057 | 8 | 0.83 | 39 | 47 | 2 | |||
JJ1984 a4 | 1 | 65 | 1.080 | 1.4 | 0.108 | 1.9 | 16.7 | 0.011 | 3.3 | 1.8 | 0.11 | 6.86 | 6.8 | 1065 | 17 | 0.76 | 53 | 70 | 3 | |||
S25-1 a1 | 2 | 36 | 0.146 | 3.6 | 0.009 | 6.8 | 7.4 | 0.056 | 2.5 | 45.9 | 6.24 | 0.43 | 9.1 | 353 | 18 | 0.53 | 47 | 88 | 7 | 83 | 7 | |
S25-1 a2 | 2 | 35 | 0.179 | 3.4 | 0.012 | 5.2 | 8.5 | 0.067 | 2.5 | 48.4 | 5.70 | 0.45 | 9.1 | 326 | 20 | 0.53 | 47 | 90 | 7 | |||
S25-1 a3 | 2 | 46 | 0.116 | 3.9 | 0.015 | 4.0 | 7.0 | 0.023 | 3.0 | 10.5 | 1.50 | 0.70 | 3.0 | 321 | 9 | 0.65 | 20 | 31 | 2 | Outlier | ||
S25-1 a4 | 2 | 44 | 0.238 | 3.3 | 0.016 | 3.9 | 10.2 | 0.078 | 2.5 | 49.0 | 4.81 | 0.69 | 3.6 | 434 | 22 | 0.68 | 49 | 72 | 4 | |||
S25-1 a5 | 2 | 45 | 0.351 | 2.0 | 0.028 | 3.0 | 13.0 | 0.084 | 2.5 | 39.6 | 3.04 | 1.01 | 7.9 | 475 | 22 | 0.64 | 52 | 80 | 5 | |||
S30-1 a1 | 2 | 48 | 0.271 | 2.9 | 0.035 | 3.0 | 10.8 | 0.012 | 10.0 | 3.8 | 0.35 | 1.53 | 2.8 | 478 | 12 | 0.68 | 23 | 34 | 2 | 72 | 4 | Outlier |
S30-1 a2 | 2 | 53 | 0.193 | 3.1 | 0.023 | 3.1 | 4.8 | 0.002 | 5.3 | 0.5 | 0.11 | 1.10 | 9.1 | 236 | 5 | 0.71 | 49 | 70 | 4 | |||
S30-1 a5 | 1 | 65 | 0.674 | 1.8 | 0.070 | 2.0 | 14.4 | 0.004 | 4.7 | 0.8 | 0.06 | 2.94 | 7.8 | 600 | 15 | 0.76 | 58 | 76 | 4 | |||
S30-1 a6 | 2 | 48 | 0.197 | 2.3 | 0.025 | 3.2 | 7.1 | 0.002 | 5.6 | 0.7 | 0.09 | 1.37 | 7.9 | 393 | 7 | 0.68 | 44 | 65 | 4 | |||
S30-1 a7 | 1 | 61 | 0.334 | 1.9 | 0.036 | 2.6 | 12.2 | 0.017 | 3.0 | 5.8 | 0.48 | 1.11 | 7.9 | 377 | 14 | 0.75 | 56 | 75 | 4 | |||
S30-1 z1 | 2 | 47 | 20.810 | 1.6 | 0.616 | 1.8 | 132.0 | 0.185 | 2.4 | 40.0 | 0.30 | 0.02 | 13.3 | 4 | 141 | 0.74 | 256 | 344 | 15 | 348 | 7 | |
S30-1 z2 | 2 | 55 | 40.120 | 1.6 | 1.076 | 1.8 | 158.0 | 0.400 | 2.4 | 59.0 | 0.37 | 0.04 | 10.4 | 6 | 172 | 0.78 | 277 | 358 | 15 | |||
S30-1 z3 | 2 | 50 | 22.540 | 1.6 | 0.660 | 1.8 | 122.0 | 0.188 | 2.4 | 35.0 | 0.28 | 0.02 | 14.6 | 3 | 130 | 0.76 | 259 | 342 | 15 | |||
J02.02./2 z1 | 2 | 54 | 50.110 | 1.6 | 1.156 | 1.8 | 190.5 | 0.267 | 2.4 | 44.1 | 0.23 | 0.03 | 11.7 | 4 | 201 | 0.77 | 331 | 429 | 18 | 389 | 29 | |
J02.02./2 z2 | 2 | 51 | 46.337 | 1.6 | 1.289 | 1.8 | 207.4 | 0.323 | 2.4 | 52.0 | 0.25 | 0.03 | 11.6 | 5 | 220 | 0.76 | 274 | 361 | 15 | |||
J02.02./2 z3 | 2 | 48 | 67.248 | 1.6 | 1.828 | 1.8 | 322.4 | 0.409 | 2.4 | 72.2 | 0.22 | 0.05 | 9.8 | 8 | 339 | 0.75 | 282 | 377 | 17 | |||
J03.02./1 a1 | 1 | 49 | 0.095 | 2.4 | 0.011 | 5.5 | 5.6 | 0.000 | n.c | 0.1 | 0.02 | 0.23 | 4.1 | 115 | 6 | 0.69 | 59 | 86 | 6 | 83 | 5 | |
J03.02./1 a2 | 1 | 45 | 0.112 | 2.3 | 0.012 | 5.0 | 5.6 | 0.001 | 17.0 | 0.6 | 0.10 | 0.69 | 3.5 | 310 | 6 | 0.66 | 50 | 75 | 5 | |||
J03.02./1 a4 | 1 | 49 | 0.307 | 2.3 | 0.010 | 5.9 | 4.9 | 0.000 | n.c | 0.2 | 0.04 | 0.52 | 5.1 | 249 | 5 | 0.69 | 172 | 250 | 17 | Outlier | ||
J03.02./1 a5 | 2 | 62 | 0.357 | 1.8 | 0.037 | 2.4 | 6.2 | 0.008 | 3.5 | 1.4 | 0.22 | 0.68 | 5.0 | 112 | 7 | 0.75 | 65 | 87 | 4 |
Appendix C
Sample | Locality | Elev. | Model 1 | Model 2 | Model 3 | Jurassic Reheating? | |||
---|---|---|---|---|---|---|---|---|---|
[m] | Good | Acc. | Good | Acc. | Good | Acc. | |||
Mühlig-Hofmannfjella | |||||||||
JJ1742 | Mühlig-Hofmannfjella | 1410 | 0 | 0 | 40 | 255 | 15 | 121 | No |
Orvinfjella | |||||||||
JJ1700 | Drygalskifjella | 1745 | 0 | 9 | 238 | 721 | 496 | 1192 | No |
JJ1768 | Drygalskifjella | 2145 | 34 | 123 | 141 | 567 | 166 | 785 | No |
JJ1673 | Conradfjella | 1200 | 0 | 0 | 0 | 41 | 0 | 6 | No |
JJ1720 | Conradfjella | 2985 | 0 | 33 | 49 | 272 | 293 | 1092 | Limited (<30 °C) |
JJ1736 | Conradfjella | 2605 | 88 | 1007 | 55 | 497 | 164 | 1047 | No |
JJ1746 | Conradfjella | 1590 | 0 | 0 | 0 | 242 | 8 | 348 | No |
JJ1766 | Gjeruldsenhøgda | 2100 | 0 | 0 | 0 | 186 | 0 | 160 | Limited (<30 °C) |
JJ1796 | Dallmannfjellet | 1745 | 2 | 5 | 3 | 61 | 1 | 14 | Limited (<30 °C) |
JJ1797 | Dallmannfjellet | 1745 | 3 | 1 | 6 | 97 | 3 | 15 | Limited (<30 °C) |
JJ1677 | Henriksenskjera | 1315 | 0 | 8 | 112 | 744 | 37 | 276 | No |
Wohlthatmassivet | |||||||||
JJ1812 | Zwieselhøgda | 2965 | 0 | 311 | 0 | 205 | 0 | 84 | Yes |
JJ1867 | Petermannkjedene | 1410 | 23 | 217 | 31 | 363 | 11 | 265 | Yes* |
JJ1886 | Petermannkjedene | 1125 | 0 | 0 | 69 | 886 | 126 | 2146 | Yes* |
JJ1931 | Petermannkjedene | 1475 | 0 | 0 | 44 | 179 | 127 | 438 | Yes* |
JJ1875 | Madsensåta | 1400 | 154 | 975 | 222 | 1297 | 367 | 1655 | Yes* |
JJ1890 | Gruberfjella | 2800 | 0 | 658 | 0 | 789 | 0 | 209 | Limited (<20 °C) |
JJ1897 | Gruberfjella | 2175 | 0 | 0 | 147 | 418 | 70 | 204 | Limited (<20 °C) |
JJ1911 | Gruberfjella | 1285 | 0 | 0 | 0 | 74 | 0 | 70 | Yes* |
JJ1924 | Weyprechtfjella | 2685 | 151 | 775 | 91 | 498 | 56 | 353 | No |
JJ1940 | Oddenskjera | 1190 | 0 | 0 | 0 | 58 | 0 | 37 | Yes* |
SG-25 | E. Wohlthatmassivet | 1795 | 0 | 2 | 47 | 193 | 9 | 20 | Limited (<20 °C) |
Continental wedge | |||||||||
JJ1730 | Sigurdsvodene | 1035 | 4 | 83 | 7 | 155 | 13 | 197 | No |
JJ1731 | Sigurdsvodene | 1155 | 0 | 0 | 0 | 193 | 0 | 285 | Yes* |
JJ1976 | Starheimtind | 1345 | 0 | 0 | 0 | 79 | 0 | 37 | Yes* |
JJ1984 | Schirmacheroasen | 50 | 0 | 0 | 6 | 125 | 1 | 38 | No |
S25.1 | Schirmacheroasen | 150 | 0 | 191 | 0 | 302 | 0 | 168 | Yes* |
S30.1 | Schirmacheroasen | 150 | 0 | 0 | 4 | 64 | 1 | 18 | No |
J03.02./1 | Schirmacheroasen | 150 | 0 | 0 | 0 | 59 | 0 | 0 | No |
References
- Jacobs, J.; Bauer, W.; Fanning, C.M. New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaeogeography of Kalahari in Rodinia. Int. J. Earth Sci. 2003, 92, 301–315. [Google Scholar] [CrossRef]
- Jacobs, J.; Bauer, W.; Fanning, C.M. Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Res. 2003, 126, 27–53. [Google Scholar] [CrossRef]
- Storey, B.; Kyle, P. An active mantle mechanism for Gondwana breakup. S. Afr. J. Geol. 1997, 100, 283–290. [Google Scholar]
- König, M.; Jokat, W. Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data. Geophys. J. Int. 2010, 180, 158–180. [Google Scholar] [CrossRef] [Green Version]
- Boger, S.D. Antarctica—Before and after Gondwana. Gondwana Res. 2011, 19, 335–371. [Google Scholar] [CrossRef]
- Slater, B.J.; McLoughlin, S.; Hilton, J. A high-latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 2015, 27, 1446–1473. [Google Scholar] [CrossRef]
- Stone, P. Geology reviewed for the Falkland Islands and their offshore sedimentary basins, South Atlantic Ocean. Earth Environ. Sci. Trans. R. Soc. Edinb. 2016, 106, 115–143. [Google Scholar] [CrossRef]
- Meier, S. Paleozoic and Mesozoic Tectono-Thermal History of Central Dronning Maud Land, East Antarctica—Evidence From Fission-Track Thermochronology. Ph.D. Thesis, University of Bremen, Bremen, Germany, 1999. [Google Scholar]
- Meier, S.; Jacobs, J.; Olesch, M. Tectono-thermal Evolution of Central Dronning Maud Land, East Antarctica, from Mid-Palaeozoic to Cenozoic Times: Zircon and Apatite Fission-Track Data from the Conradgebirge and Östliche Petermannkette. Geol. Jahrb. Reihe B 2004, 96, 423–448. [Google Scholar]
- Emmel, B.; Jacobs, J.; Crowhurst, P.; Daszinnies, M.C. Combined apatite fission-track and single grain apatite (U–Th)/He ages from basement rocks of central Dronning Maud Land (East Antarctica)—Possible identification of thermally overprinted crustal segments? Earth Planet. Sci. Lett. 2007, 264, 72–88. [Google Scholar] [CrossRef]
- Jacobs, J.; Lisker, F. Post Permian tectono-thermal evolution of western Dronning Maud Land, East Antarctica: An apatite fission-track approach. Antarct. Sci. 1999, 11, 451–460. [Google Scholar] [CrossRef]
- Emmel, B.; Jacobs, J.; Daszinnies, M.C. Combined Titanite and Apatite Fission-Track Data from Gjelsvikfjella, East Antarctica—Another Piece of A Concealed Intracontinental Permo-Triassic Gondwana Rift Basin? Geol. Soc. 2009, 324, 317–330. [Google Scholar] [CrossRef]
- Krohne, N. From Active to Passive Margins: The Basin and Highland Evolution of the Weddell Sea Sector, East Antarctica. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2017. [Google Scholar]
- Sirevaag, H.; Jacobs, J.; Ksienzyk, A.K.; Dunkl, I.; Marschall, H.R. Extent, thickness and erosion of the Jurassic continental flood basalts of Dronning Maud Land, East Antarctica: A low-T thermochronological approach. Gondwana Res. 2018, 61, 222–243. [Google Scholar] [CrossRef]
- Jacobs, J.; Elburg, M.; Läufer, A.; Kleinhanns, I.C.; Henjes-Kunst, F.; Estrada, S.; Ruppel, A.S.; Damaske, D.; Montero, P.; Bea, F. Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: The missing link, 15–21 °E. Precambrian Res. 2015, 265, 249–272. [Google Scholar] [CrossRef]
- Smith, A.G.; Hallam, A. The Fit of the Southern Continents. Nature 1970, 225, 139–144. [Google Scholar] [CrossRef]
- Martin, A.K.; Hartnady, C.J. Plate tectonic development of the South West Indian Ocean: A revised reconstruction of East Antarctica and Africa. J. Geophys. Res. 1986, 91, 4767–4786. [Google Scholar] [CrossRef]
- Groenewald, P.B.; Grantham, G.H.; Watkeys, M.K. Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud Land, Antarctica. J. Geol. Soc. 1991, 148, 1115–1123. [Google Scholar] [CrossRef]
- Moyes, A.B.; Barton, J.M.; Groenewald, P.B. Late Proterozoic to Early Palaeozoic tectonism in Dronning Maud Land, Antarctica: Supercontinental fragmentation and amalgamation. J. Geol. Soc. 1993, 150, 833–842. [Google Scholar] [CrossRef]
- Groenewald, P.B.; Moyes, A.B.; Grantham, G.H.; Krynauw, J.R. East Antarctic crustal evolution: Geological constraints and modelling in western Dronning Maud Land. Precambrian Res. 1995, 75, 231–250. [Google Scholar] [CrossRef]
- König, M.; Jokat, W. The Mesozoic breakup of the Weddell Sea. J. Geophys. Res Solid Earth 2006, 111, B12102. [Google Scholar] [CrossRef]
- Jacobs, J.; Fanning, C.M.; Henjes-Kunst, F.; Olesch, M.; Paech, H.J. Continuation of the Mozambique Belt into East Antarctica: Grenville-Age Metamorphism and Polyphase Pan-African High-Grade Events in Central Dronning Maud Land. J. Geol. 1998, 106, 385–406. [Google Scholar] [CrossRef]
- Jacobs, J.; Pisarevsky, S.; Thomas, R.J.; Becker, T. The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res. 2008, 160, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Leinweber, V.T.; Jokat, W. The Jurassic history of the Africa–Antarctica corridor—New constraints from magnetic data on the conjugate continental margins. Tectonophysics 2012, 530, 87–101. [Google Scholar] [CrossRef]
- Arndt, N.T.; Todt, W.; Chauvel, C.; Tapfer, M.; Weber, K. U-Pb zircon age and Nd isotopic composition of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geol. Rundsch. 1991, 80, 759–777. [Google Scholar] [CrossRef]
- Thomas, R.J.; Agenbacht, A.L.; Cornell, D.H.; Moore, J.M. The Kibaran of southern Africa: Tectonic evolution and metallogeny. Ore Geol. Rev. 1994, 9, 131–160. [Google Scholar] [CrossRef]
- Wareham, C.D.; Pankhurst, R.J.; Thomas, R.J.; Storey, B.C.; Grantham, G.H.; Jacobs, J.; Eglington, B.M. Pb, Nd, and Sr Isotope Mapping of Grenville-Age Crustal Provinces in Rodinia. J. Geol. 1998, 106, 647–660. [Google Scholar] [CrossRef]
- Jacobs, J.; Thomas, R.J.; Weber, K. Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 1993, 21, 203–206. [Google Scholar] [CrossRef]
- Jacobs, J.; Klemd, R.; Fanning, C.M.; Bauer, W.; Colombo, F. Extensional Collapse of the Late Neoproterozoic-Early Palaeozoic East African-Antarctic Orogen in Central Dronning Maud Land, East Antarctica. Geol. Soc. 2003, 206, 271–287. [Google Scholar] [CrossRef]
- Jacobs, J.; Bingen, B.; Thomas, R.J.; Bauer, W.; Wingate, M.T.; Feitio, P. Early Palaeozoic orogenic Collapse and Voluminous Late-Tectonic Magmatism in Dronning Maud Land and Mozambique: Insights into the Partially Delaminated Orogenic Root of the East African–Antarctic Orogen? Geol. Soc. 2008, 308, 69–90. [Google Scholar] [CrossRef]
- Jacobs, J.; Thomas, R.J. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African–Antarctic orogen. Geology 2004, 32, 721–724. [Google Scholar] [CrossRef]
- Jacobs, J.; Ahrendt, H.; Kreutzer, H.; Weber, K. K-Ar, 40Ar-39Ar and apatite fission-track evidence for Neoproterozoic and Mesozoic basement rejuvenation events in the Heimefrontfjella and Mannefallknausane (East Antarctica). Precambrian Res. 1995, 75, 251–262. [Google Scholar]
- Golynsky, A.; Jacobs, J. Grenville-Age versus Pan-African magnetic anomaly imprints in Western Dronning Maud Land, East Antarctica. J. Geol. 2001, 109, 136–142. [Google Scholar] [CrossRef]
- Bauer, W.; Siemes, H.; Spaeth, G.; Jacobs, J. Transpression and tectonic exhumation in the Heimefrontfjella, western orogenic front of the East African/Antarctic Orogen, revealed by quartz textures of high strain domains. Pol. Res. 2016, 35, 25420. [Google Scholar] [CrossRef]
- Ruppel, A.; Jacobs, J.; Eagles, G.; Läufer, A.; Jokat, W. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST). Gondwana Res. 2018, 59, 97–107. [Google Scholar] [CrossRef]
- Jacobs, J.; Opås, B.; Elburg, M.A.; Läufer, A.; Estrada, S.; Ksienzyk, A.K.; Damaske, D.; Hofmann, M. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica. Precambrian Res. 2017, 294, 1–14. [Google Scholar] [CrossRef]
- Dalziel, I.W.; Lawver, L.A.; Norton, I.O.; Gahagan, L.M. The Scotia Arc: Genesis, Evolution, Global Significance. Annu. Rev. Earth Planet. Sci. 2013, 41, 767–793. [Google Scholar] [CrossRef]
- Plumstead, E.P. A New Assemblage of Plant Fossils from Milorgfjella, Dronning Maud Land; British Antarctic Survey: Cambridge, UK, 1975; Volume 83. [Google Scholar]
- Olaussen, S. Sedimentological research in northwestern part of Dronning Maud Land. Rep. Norwegian Antarct. Res. Expedition 1985, 22, 75–88. [Google Scholar]
- Lindström, S. Early Late Permian palynostratigraphy and palaeo-biogeography of Vestfjella, Dronning Maud Land, Antarctica. Rev. Palaeobot. Palynol. 1995, 86, 157–173. [Google Scholar] [CrossRef]
- Lindström, S. Early Permian palynostratigraphy of the northern Heimefrontfjella mountain-range, Dronning Maud Land, Antarctica. Rev. Palaeobot. Palynol. 1995, 89, 359–415. [Google Scholar] [CrossRef]
- Bauer, W. Permian sedimentary cover, Heimefrontfjella, western Dronning Maud Land (East Antarctica). Polarforschung 2009, 79, 39–42. [Google Scholar]
- McKelvey, B.C.; Webb, P.N.; Kohn, B.P. Stratigraphy of the Taylor and lower Victoria Groups (Beacon Supergroup) between the Mackay Glacier and Boomerang Range, Antarctica. N. Z. J. Geol. Geophys. 1977, 20, 813–863. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P.J. History of the Ross Sea region during the deposition of the Beacon Supergroup 400–180 million years ago. J. R. Soc. N. Z. 1981, 11, 447–458. [Google Scholar] [CrossRef]
- Isbell, J.L. The Kukri Erosion Surface; a reassessment of its relationship to rocks of the Beacon Supergroup in the central Transantarctic Mountains, Antarctica. Antarct. Sci. 1999, 11, 228–238. [Google Scholar] [CrossRef]
- Johnson, M.R. Stratigraphy and Sedimentology of the Cape and Karoo Sequences in the Eastern Cape Province. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 1976. [Google Scholar]
- Näslund, J.O. Landscape development in western and central Dronning Maud Land, East Antarctica. Antarct. Sci. 2001, 13, 302–311. [Google Scholar] [CrossRef]
- Matsuoka, N.; Thomachot, C.E.; Oguchi, C.T.; Hatta, T.; Abe, M.; Matsuzaki, H. Quaternary bedrock erosion and landscape evolution in the Sør Rondane Mountains, East Antarctica: Reevaluating rates and processes. Geomorphology 2006, 81, 408–420. [Google Scholar] [CrossRef]
- Suganuma, Y.; Miura, H.; Zondervan, A.; Okuno, J.I. East Antarctic deglaciation and the link to global cooling during the Quaternary: Evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud Land. Quatern. Sci. Rev. 2014, 97, 102–120. [Google Scholar] [CrossRef]
- Duncan, R.A.; Hooper, P.R.; Rehacek, J.; Marsh, J.S.; Duncan, A.R. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. Solid Earth 1997, 102, 18127–18138. [Google Scholar] [CrossRef] [Green Version]
- Luttinen, A.V.; Furnes, H. Flood basalts of vestfjella: Jurassic magmatism across an Archaean–Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. J. Petrol. 2000, 41, 1271–1305. [Google Scholar] [CrossRef]
- Riley, T.R.; Knight, K.B. Age of Pre-Break-Up Gondwana Magmatism. Antarct. Sci. 2001, 13, 99–110. [Google Scholar] [CrossRef]
- Jourdan, F.; Féraud, G.; Bertrand, H.; Watkeys, M.K.; Renne, P.R. Distinct brief major events in the Karoo large igneous province clarified by new 40Ar/39Ar ages on the Lesotho basalts. Lithos 2007, 98, 195–209. [Google Scholar] [CrossRef]
- Svensen, H.; Corfu, F.; Polteau, S.; Hammer, Ø.; Planke, S. Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet. Sci. Lett. 2012, 325, 1–9. [Google Scholar] [CrossRef]
- Cleverly, R.W.; Bristow, J.W. Revised volcanic stratigraphy of the Lebombo Monocline. Trans. Geol. Soc. S. Afr. 1979, 82, 227–230. [Google Scholar]
- Furnes, H.; Vad, E.; Austrheim, H.; Mitchell, J.G.; Garmann, L.B. Geochemistry of basalt lavas from Vestfjella and adjacent areas, Dronning Maud Land, Antarctica. Lithos 1987, 20, 337–356. [Google Scholar] [CrossRef]
- Harris, C.; Marsh, J.S.; Duncan, A.R.; Erlank, A.J. The Petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica. J. Petrol. 1990, 31, 341–369. [Google Scholar] [CrossRef]
- Riley, T.R.; Millar, I.L.; Watkeys, M.K.; Curtis, M.L.; Leat, P.T.; Klausen, M.B.; Fanning, C.M. U–Pb zircon (SHRIMP) ages for the Lebombo rhyolites, South Africa: Refining the duration of Karoo volcanism. J. Geol. Soc. 2004, 161, 547–550. [Google Scholar] [CrossRef]
- Luttinen, A.V.; Heinonen, J.S.; Kurhila, M.; Jourdan, F.; Mänttäri, I.; Vuori, S.K.; Huhma, H. Depleted Mantle-sourced CFB Magmatism in the Jurassic Africa–Antarctica Rift: Petrology and 40Ar/39Ar and U/Pb Chronology of the Vestfjella Dyke Swarm, Dronning Maud Land, Antarctica. J. Petrol. 2015, 56, 919–952. [Google Scholar] [CrossRef]
- Rolf, C.; Henjes-Kunst, F. Palaeomagnetic and Geochronological Study of Late Pan-African and Mesozoic Igneous and Metamorphic Rocks from Central Dronning Maud Land, East Antarctica. Geol. Jahrb. Reihe B 2005, 97, 7. [Google Scholar]
- Sushchevskaya, N.; Belyatsky, B. Geochemical and petrological characteristics of Mesozoic Dykes from Schirmacher Oasis (East Antarctica). In Dyke Swarms: Keys for Geodynamic Interpretation; Srivastava, R.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–18. [Google Scholar]
- Roeser, H.A.; Fritsch, J.; Hinz, K. The Development of the Crust off Dronning Maud Land, East Antarctica. Geol. Soc. 1996, 108, 243–264. [Google Scholar] [CrossRef]
- Reeves, C.; De Wit, M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 2000, 12, 272–280. [Google Scholar] [CrossRef]
- Jokat, W.; Boebel, T.; König, M.; Meyer, U. Timing and geometry of early Gondwana breakup. J. Geophys. Res. Solid Earth. 2003, 108, 2428. [Google Scholar] [CrossRef]
- Rotstein, Y.; Munschy, M.; Bernard, A. The Kerguelen Province revisited: Additional constraints on the early development of the Southeast Indian Ocean. Mar. Geophys. Res. 2001, 22, 81–100. [Google Scholar] [CrossRef]
- Storey, B.C. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature 1995, 377, 301–308. [Google Scholar] [CrossRef]
- Bialas, R.W.; Buck, W.R.; Studinger, M.; Fitzgerald, P.G. Plateau collapse model for the Transantarctic Mountains–West Antarctic Rift System: Insights from numerical experiments. Geology 2007, 35, 687–690. [Google Scholar] [CrossRef]
- Hinz, K.; Krause, W. The continental margin of Queen Maud Land, Antarctica: Seismic sequences, structural elements and geological development. Geol. Jahrb. Reihe E 1982, 23, 17–41. [Google Scholar]
- Kristoffersen, Y.; Haugland, K. Geophysical evidence for the East Antarctic plate boundary in the Weddell Sea. Nature 1986, 322, 538. [Google Scholar] [CrossRef]
- Kennett, J.P.; Barker, P.F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean-Drilling perspective. Proc. Ocean Drill. Program Sci. Result 1990, 113, 937–960. [Google Scholar]
- O’Connell, S.B. Sedimentary facies and depositional environment of the Lower Cretaceous East Antarctic margin: Sites 692 and 693. Proc. Ocean Drill. Program Sci. Result 1990, 113, 71–88. [Google Scholar]
- Kristoffersen, Y.; Strand, K.; Vorren, T.; Harwood, D.; Webb, P. Pilot shallow drilling on the continental shelf, Dronning Maud Land, Antarctica. Antarct. Sci. 2000, 12, 463–470. [Google Scholar] [CrossRef]
- Emmel, B.; Jacobs, J.; Crowhurst, P.; Austegard, A.; Schwarz-Schampera, U. Apatite single-grain (U-Th)/He data from Heimefrontfjella, East Antarctica: Indications for differential exhumation related to glacial loading? Tectonics 2008, 27, 13. [Google Scholar] [CrossRef]
- Gleadow, A.J.; Duddy, I.R. A natural long-term track annealing experiment for apatite. Nucl. Tracks 1981, 5, 169–174. [Google Scholar] [CrossRef]
- Farley, K.A.; Stockli, D.F. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Rev. Mineral. Geochem. 2002, 48, 559–577. [Google Scholar] [CrossRef]
- Reiners, P.W.; Farley, K.A.; Hickes, H.J. He diffusion and (U–Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 2002, 349, 297–308. [Google Scholar] [CrossRef]
- Shuster, D.L.; Flowers, R.M.; Farley, K.A. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett. 2006, 249, 148–161. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Ketcham, R.A.; Nasdala, L.; Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am. J. Sci. 2013, 313, 145–198. [Google Scholar] [CrossRef]
- Gleadow, A.J. Fission-track dating methods: What are the real alternatives? Nucl. Tracks 1981, 5, 3–14. [Google Scholar] [CrossRef]
- Dumitru, T.A. A new computer-automated microscope stage system for fission-track analysis. Nucl. Tracks Radiat. Meas. 1993, 21, 575–580. [Google Scholar] [CrossRef]
- Dunkl, I. Trackkey: A Windows program for calculation and graphical presentation of fission track data. Comput. Geosci. 2002, 28, 3–12. [Google Scholar] [CrossRef]
- Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Chem. Geol. 1983, 41, 285–317. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite Fission-Track Analysis. Rev. Mineral. Geochem. 2005, 58, 49–94. [Google Scholar] [CrossRef]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- Hourigan, J.K.; Reiners, P.W.; Brandon, M.T. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochim. Cosmochim. Acta 2005, 69, 3349–3365. [Google Scholar] [CrossRef]
- Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 1950, 21, 27–58. [Google Scholar] [CrossRef]
- Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Dixon, W.J. Processing Data for Outliers. Biometrics 1953, 9, 74–89. [Google Scholar] [CrossRef]
- Ketcham, R.A. Hefty, Version 1.9.1; Apatite to Zircon, Inc.: Moscow, ID, USA, 2016. [Google Scholar]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved measurement of fission-track annealing in apatite using c-axis projection. Am. Mineral. 2007, 92, 789–798. [Google Scholar] [CrossRef]
- Flowers, R.M.; Ketcham, R.A.; Shuster, D.L.; Farley, K.A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 2009, 73, 2347–2365. [Google Scholar] [CrossRef]
- Hendriks, B.W.; Engvik, A.K.; Elvevold, S. 40Ar/39Ar record of late Pan–African exhumation of a granulite facies terrain, central Dronning Maud Land, East Antarctica. Mineral. Petrol. 2013, 107, 665–677. [Google Scholar] [CrossRef]
- Catuneanu, O.; Wopfner, H.; Eriksson, P.G.; Cairncross, B.; Rubidge, B.S.; Smith, R.M.; Hancox, P.J. The Karoo basins of south-central Africa. J. Afr. Earth Sci. 2005, 43, 211–253. [Google Scholar] [CrossRef]
- Isbell, J.L.; Cole, D.I.; Catuneanu, O. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In Resolving the Late Paleozoic Ice Age in Time and Space; Geological Society of America: Boulder, CO, USA, 2008; pp. 71–82. [Google Scholar]
- Wilson, K.M.; Pollard, D.; Hay, W.W.; Thompson, S.L.; Wold, C.N. General circulation model simulations of Triassic climates: Preliminary results. In Pangea: Paleoclimate, Tectonics, and Sedimentation during Accretion, Zenith, and Breakup of a Supercontinent; Geological Society of America: Boulder, CO, USA, 1994; Volume 288, pp. 91–116. [Google Scholar]
- Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Mineral. 1999, 84, 1213–1223. [Google Scholar] [CrossRef]
- Galbraith, R.F. Statistics for Fission Track Analysis; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Farley, K.A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J. Geophys. Res. Solid Earth. 2000, 105, 2903–2914. [Google Scholar] [CrossRef] [Green Version]
- Reiners, P.W.; Farley, K.A. Influence of crystal size on apatite (U–Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming. Earth Planet. Sci. Lett. 2001, 188, 413–420. [Google Scholar] [CrossRef]
- Flowers, R.M.; Kelley, S.A. Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: An example from the US midcontinent. Geochim. Cosmochim. Acta 2011, 75, 5169–5186. [Google Scholar] [CrossRef]
- Phillips, J.D. Erosion, isostatic response, and the missing peneplains. Geomorphology 2002, 45, 225–241. [Google Scholar] [CrossRef]
- Fernandes, P.; Cogné, N.; Chew, D.M.; Rodrigues, B.; Jorge, R.C.; Marques, J.; Jamal, D.; Vasconcelos, L. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. J. Afr. Earth Sci. 2015, 112, 55–72. [Google Scholar] [CrossRef]
- Pereira, Z.; Fernandes, P.; Lopes, G.; Marques, J.; Vasconcelos, L. The Permian–Triassic transition in the Moatize–Minjova Basin, Karoo Supergroup, Mozambique: A palynological perspective. Rev. Palaeobot. Palynol. 2016, 226, 1–19. [Google Scholar] [CrossRef]
- Bicca, M.M.; Philipp, R.P.; Jelinek, A.R.; Ketzer, J.M.; dos Santos Scherer, C.M.; Jamal, D.L.; dos Reis, A.D. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique. J. Afr. Earth Sci. 2017, 130, 8–27. [Google Scholar] [CrossRef]
- Gallagher, K.; Brown, R. Denudation and uplift at passive margins: The record on the Atlantic Margin of southern Africa. Philos. Trans. R. Soc. Lond. A 1999, 357, 835–859. [Google Scholar] [CrossRef]
- Barrett, P. Antarctic Climate history over the Last 100 Million Years. Terra Antart. Rep. 1999, 3, 53–72. [Google Scholar]
- Poole, I.; Cantrill, D.; Utescher, T. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 222, 95–121. [Google Scholar] [CrossRef] [Green Version]
- Thorn, V.C.; DeConto, R. Antarctic climate at the Eocene/Oligocene boundary—Climate model sensitivity to high latitude vegetation type and comparisons with the palaeobotanical record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 231, 134–157. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J.S. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past 2012, 8, 215–226. [Google Scholar] [CrossRef]
- Lisker, F.; Läufer, A.L. The Mesozoic Victoria Basin: Vanished link between Antarctica and Australia. Geology 2013, 41, 1043–1046. [Google Scholar] [CrossRef]
- Krohne, N.; Lisker, F.; Kleinschmidt, G.; Klügel, A.; Läufer, A.; Estrada, S.; Spiegel, C. The Shackleton Range (East Antarctica): An alien block at the rim of Gondwana? Geol. Mag. 2018, 155, 841–864. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 2003, 421, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ingólfsson, O. Quaternary glacial and climate history of Antarctica. Dev. Quat. Sci. 2004, 2, 3–43. [Google Scholar]
- Jamieson, S.S.; Sugden, D.E. Landscape evolution of Antarctica. In Antarctica: A Keystone in a Changing World; National Academies Press: Washington, DC, USA, 2008; pp. 39–54. [Google Scholar]
- Yumoto, M.; Ogata, T.; Matsuoka, N.; Matsumoto, E. Riverbank freeze-thaw erosion along a small mountain stream, Nikko volcanic area, central Japan. Permafr. Periglac. Process. 2006, 17, 325–339. [Google Scholar] [CrossRef]
- Studinger, M.; Bell, R.E.; Buck, W.R.; Karner, G.D.; Blankenship, D.D. Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet. Sci. Lett. 2004, 220, 391–408. [Google Scholar] [CrossRef]
- Studinger, M.; Bell, R.E.; Fitzgerald, P.G.; Buck, W.R. Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aerogeophysical data. Earth Planet. Sci. Lett. 2006, 250, 182–199. [Google Scholar] [CrossRef]
- Elliot, D. The Geological and Tectonic Evolution of the Transantarctic Mountains: A Review. Geol. Soc. 2013, 381, 7–35. [Google Scholar] [CrossRef]
Sample | Lithology | Locality | Province | Coordinates | Elev. | Analyses | |||
---|---|---|---|---|---|---|---|---|---|
Lat. | Long. | (m) | |||||||
Mühlig-Hofmannfjella | |||||||||
JJ1742 | Granitic gneiss | Mühlig-Hofmannfjella | Maud Belt | −71.7333 | 7.1000 | 1410 | AFT | AHe | |
Orvinfjella | |||||||||
JJ1700 | Syenite | Drygalskifjella | Maud Belt | −71.8436 | 8.1574 | 1745 | AFT | AHe | |
JJ1768 | Migmatic metavolcanic | Drygalskifjella | Maud Belt | −71.9652 | 8.4410 | 2145 | AFT | AHe | |
JJ1621 | Granite | Conradfjella | Maud Belt | −71.8604 | 9.9019 | 1785 | AHe | ||
JJ1673 | Gneiss | Conradfjella | Maud Belt | −71.9167 | 8.7500 | 1200 | AFT | AHe | |
JJ1720 | Tonalite | Conradfjella | Maud Belt | −71.8667 | 9.7000 | 2985 | AFT | AHe | |
JJ1736 | Augen gneiss | Conradfjella | Maud Belt | −71.9744 | 9.7532 | 2605 | AFT | AHe | |
JJ1746 | Tonalite/granodiorite | Conradfjella | Maud Belt | −71.8165 | 9.7276 | 1590 | AFT | AHe | |
JJ1766 | Syenite | Gjeruldsenhøgda | TOAST | −71.9667 | 10.7833 | 2100 | AFT | AHe | |
JJ1796 | Orthogneiss | Dallmannfjellet | Maud Belt | −71.7448 | 10.3676 | 1745 | AFT | AHe | |
JJ1797 | Augen gneiss | Dallmannfjellet | Maud Belt | −71.7824 | 10.4172 | 1745 | AFT | AHe | |
JJ1677 | Leucogranite | Henriksenskjera | Maud Belt | −71.4352 | 8.9637 | 1315 | AFT | AHe | |
Wohlthatmassivet | |||||||||
JJ1812 | Gabbro | Zwieselhøgda | TOAST | −71.7441 | 12.1185 | 2965 | AFT | AHe | |
JJ1838 | Gneiss | Petermannkjedene | TOAST | −71.5785 | 12.5861 | 1260 | AFT | AHe | |
JJ1867 | Granitic gneiss | Petermannkjedene | Maud Belt | −71.4592 | 11.9171 | 1410 | AFT | AHe | |
JJ1886 | Augen gneiss | Petermannkjedene | Boundary | −71.4312 | 12.6599 | 1125 | AFT | AHe | |
JJ1931 | Granodiorite-dike | Petermannkjedene | Boundary | −71.5554 | 12.2358 | 1475 | AFT | AHe | |
JJ1875 | Syenite | Madsensåta | Maud Belt | −71.3500 | 12.5833 | 1400 | AFT | AHe | |
JJ1890 | Anorthosite | Gruberfjella | TOAST | −71.4499 | 13.3777 | 2800 | AFT | AHe | |
JJ1897 | Anorthosite | Gruberfjella | TOAST | −71.4000 | 13.2833 | 2175 | AFT | AHe | |
JJ1911 | Anorthosite | Gruberfjella | TOAST | −71.3833 | 13.2500 | 1285 | AFT | AHe | |
JJ1924 | Gneiss | Weyprechtfjella | TOAST | −72.0500 | 13.2167 | 2685 | AFT | AHe | |
JJ1940 | Biotite-fluorite granite | Oddenskjera | Maud Belt | −71.3233 | 12.8054 | 1190 | AFT | AHe | |
SG-25 * | Metadiorite | E. Wohlthatmassivet | TOAST | −71.6459 | 15.1205 | 1795 | AFT | AHe | |
SG-28 * | Migmatitic gneiss | E. Wohlthatmassivet | TOAST | −72.2001 | 16.1512 | 2285 | AHe | ||
Continental wedge | |||||||||
JJ1730 | Felsic gneiss | Sigurdsvodene | Maud Belt | −71.3500 | 7.6167 | 1035 | AFT | AHe | |
JJ1731 | Hornblende gneiss | Sigurdsvodene | Maud Belt | −71.3500 | 7.6167 | 1155 | AFT | AHe | |
JJ1974 | Granodiorite-dike | Starheimtind | Maud Belt | −71.0000 | 12.0167 | 1075 | AHe | ||
JJ1976 | Diorite | Starheimtind | Maud Belt | −71.0000 | 12.0167 | 1345 | AFT | AHe | |
JJ1984 | Augen gneiss | Schirmacheroasen | Maud Belt | −70.7667 | 11.2333 | 50 | AFT | AHe | |
S25.1 * | Schirmacheroasen | Maud Belt | −70.7502 | 11.6232 | 150 | AFT | AHe | ||
S30.1 * | Schirmacheroasen | Maud Belt | −70.7502 | 11.6232 | 150 | AFT | AHe | ZHe | |
J02.02./2 * | Augen gneiss | Schirmacheroasen | Maud Belt | −70.7502 | 11.6232 | 150 | AFT | ZHe | |
J03.02./1 * | Augen gneiss | Schirmacheroasen | Maud Belt | −70.7502 | 11.6232 | 150 | AFT | AHe |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirevaag, H.; Ksienzyk, A.K.; Jacobs, J.; Dunkl, I.; Läufer, A. Tectono-Thermal Evolution and Morphodynamics of the Central Dronning Maud Land Mountains, East Antarctica, Based on New Thermochronological Data. Geosciences 2018, 8, 390. https://doi.org/10.3390/geosciences8110390
Sirevaag H, Ksienzyk AK, Jacobs J, Dunkl I, Läufer A. Tectono-Thermal Evolution and Morphodynamics of the Central Dronning Maud Land Mountains, East Antarctica, Based on New Thermochronological Data. Geosciences. 2018; 8(11):390. https://doi.org/10.3390/geosciences8110390
Chicago/Turabian StyleSirevaag, Hallgeir, Anna K. Ksienzyk, Joachim Jacobs, István Dunkl, and Andreas Läufer. 2018. "Tectono-Thermal Evolution and Morphodynamics of the Central Dronning Maud Land Mountains, East Antarctica, Based on New Thermochronological Data" Geosciences 8, no. 11: 390. https://doi.org/10.3390/geosciences8110390
APA StyleSirevaag, H., Ksienzyk, A. K., Jacobs, J., Dunkl, I., & Läufer, A. (2018). Tectono-Thermal Evolution and Morphodynamics of the Central Dronning Maud Land Mountains, East Antarctica, Based on New Thermochronological Data. Geosciences, 8(11), 390. https://doi.org/10.3390/geosciences8110390