Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Front Position Changes
- The minimum spatial resolution of the satellite images had to be 15 m in order to obtain a trustworthy view of the glacier front position;
- Due to the least snow cover in general being during the austral summer, most of the images were selected between December and March. Satellite scenes available during others seasons but without snow cover were also taken into account;
- Cloud cover could not veil the glacier front;
- Free access to some of the satellite images (e.g., Landsat) [45].
- (1)
- Falkland Island Dependency Aerial Survey Expedition (FIDASE)—aerial photography taken on 20 December 1956 with a scale of 1:28,000. The calibration of photos was with the use of ground control points (GCP), with a total root mean square (RMS) error of 0.5 m;
- (2)
- 1:3600 scale airborne images, taken in January/February of 1979;
- (3)
- SPOT XS multispectral satellite imagery taken on 29 March 1995 with a spatial resolution of 20 m [28];
- (4)
- Landsat satellite images taken on 04 February 2003, 14 January 2007, and 05 February 2018; the determination of the frontal positions was based on a panchromatic band with a spatial resolution of 15 m;
- (5)
- (6)
- The ASPA 128 topographic map from 2001 at a scale of 1:12,500 [47];
- (7)
- The map of the Western shore of Admiralty Bay from 2001 at a scale of 1:10,000 [48];
- (8)
- The TLS survey done on 08 January 2016. The total geo-referencing error was 85 mm.
2.3. Surface Water Temperature
2.4. Ice Surface Elevation
2.5. Ice Elevation Differences Calculation
2.6. Geomorphological Mapping
2.7. Mean Monthly Air Temperature
3. Results
3.1. Terminus Position Changes
3.2. Ice Surface Elevation Changes
3.3. Geomorphology of the Forefield
3.3.1. Slope Landforms
3.3.2. Littoral Landforms
3.3.3. Post-Glacial and Glacial Landforms
3.3.4. Fluvial and Glaciofluvial Forms
4. Discussion
5. Conclusions
- Since 1956, the front position of the Baranowski Glacier and its ice surface elevation has been changing. Over 50 years of rising trends in the mean annual air temperature, the reaction of the glacier has simultaneously been visible, as manifested by recession and ice surface lowering. However, from 2001 to 2016, regional cooling in the summer months was observed, which could decelerate this process. In contrast, since 2017, repeated increases in the mean annual air temperature up to −1.6 °C, in comparison to the mean annual air temperature of −2.3 °C for the period 1969–2017 and warm summers, caused a reduction in the front position of approximately 5 m per year. Consequentially, the melting glacier has uncovered new ice-free surfaces, where the relief of the forefield strictly reflects the spatial and temporal fluctuation of the glacier retreat rate and ice elevation changes;
- The highest recession rate observed for the northern tongue, when the ice cliff was flowing to the proglacial lagoon in the period 2001–2003, reached 65 m/year. In contrast, the recession rate for the southern tongue terminating on land was 1.5 m/year in the same period. The different reaction of both tongues during the same climate conditions suggests that warm water in the proglacial lagoon, reaching 5.0–5.5 °C, played a significant role in calving and melting processes and caused a retreat of the glacier front;
- Observations of long flutes and crevasse fill ridges on the analyzed forefield of Baranowski Glacier suggest a former surge episode, which could happen at least in the northern part of the glacier and the middle part of the southern forefield.
- The formation of the northern forefield started in 1995. Nevertheless, the ice surface elevation in 1989 was approximately 70 m a.s.l., descending to the edges. In addition, the elevation of the ice cliff is not certain; however, the model results suggest no huge changes. Therefore, it was likely similar to values from 2016, when it was 20 m. The glacier in the northern part calved from the ice cliff with a maximum loss of 50 m between 1989 and 2001. The largest loss of frontal ice cliff occurred in the center of the current proglacial lagoon, suggesting that this location may be the deepest due to the erosional force from the calved glacier scouring the bottom. However, the bathymetry of the lagoon is still unknown and needs further study;
- The recent relief of the forefield is the result of climatic conditions due to the fluctuations of air temperature. This condition has influenced the dynamics of the frontal position changes of the Baranowski Glacier and the morphodynamics of the geomorphological processes;
- As the bed topography is still unknown, it is difficult to forecast the further direction of the developing proglacial relief. However, the convex shape of isolines on the southern part of Siodło in 1989, 2001, and 2016 allow us to postulate that, under this part of the glacier, the slope is most likely steeper than in the surrounding areas, and that after the recession of the glacier, most of the forms may be erosional.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- López-Martínez, J.; Serrano, E.; Schmid, T.; Mink, S.; Linés, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 2012, 155, 62–79. [Google Scholar] [CrossRef]
- Doran, P.T.; Priscu, J.C.; Lyons, W.B.; Walsh, J.E.; Fountain, A.G.; McKnight, D.M.; Moorhead, D.L.; Virginia, R.A.; Wall, D.H.; Clow, G.D.; et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 2002, 415, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.H.; Li, Y.; McConnell, J.R.; Frey, M.M.; Hanna, E. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 2005, 308, 1898–1901. [Google Scholar] [CrossRef] [PubMed]
- Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Prinz, R.; Heller, A.; Ladner, M.; Nicholson, L.I.; Kaser, G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences 2018, 8, 174. [Google Scholar] [CrossRef]
- Osipov, E.Y.; Osipova, O.P. Glacier Changes on the Pik Topografov Massif, East Sayan Range, Southeast Siberia, from Remote Sensing Data. Geosciences 2018, 8, 148. [Google Scholar] [CrossRef]
- Walther, M.; Dashtseren, A.; Kamp, U.; Temujin, K.; Meixner, F.; Pan, C.G.; Gansukh, Y. Glaciers, Permafrost and Lake Levels at the Tsengel Khairkhan Massif, Mongolian Altai, During the Late Pleistocene and Holocene. Geosciences 2017, 7, 73. [Google Scholar] [CrossRef]
- Skvarca, P.; Rack, W.; Rott, H.; Donángelo, T.I. Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: An overview. Polar Res. 1999, 18, 151–157. [Google Scholar] [CrossRef]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459. [Google Scholar] [CrossRef] [PubMed]
- Barrand, N.E.; Vaughan, D.G.; Steiner, N.; Tedesco, M.; Munneke, P.K.; Broeke, M.R.; Hosking, J.S. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. Earth Surf. 2013, 118, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Falk, U.; Sala, H. Winter melt conditions of the inland ice cap on King George Island, Antarctic Peninsula. Erdkunde 2015, 69, 341–363. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Oliva, M.; Navarro, F.; Hrbáček, F.; Hernández, A.; Nỳvlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arctic and Antarctic Research Institute, St. Petersburg. Available online: http://www.aari.aq/data/data.php?lang=1&station=0 (accessed on 17 September 2018).
- Pętlicki, M.; Sziło, J.; MacDonell, S.; Vivero, S.; Bialik, R. Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica). Remote Sens. 2017, 9, 520. [Google Scholar] [CrossRef]
- Cryosphere—Hydrosphere, Biosphere and Geophysics—NASA. Available online: https://neptune.gsfc.nasa.gov/csb/index.php?section=234 (accessed on 17 September 2018).
- Navarro, F.J.; Jonsell, U.Y.; Corcuera, M.I.; Martín-Español, A. Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. J. Glaciol. 2013, 59, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Rückamp, M.; Braun, M.; Suckro, S.; Blindow, N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob. Planet. Chang. 2011, 79, 99–109. [Google Scholar] [CrossRef]
- Falk, U.; López, D.A.; Silva-Busso, A. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula. Cryosphere 2018, 12, 1211–1232. [Google Scholar] [CrossRef] [Green Version]
- Knap, W.H.; Oerlemans, J.; Cabée, M. Climate sensitivity of the ice cap of King George Island, South Shetland Islands, Antarctica. Ann. Glaciol. 1996, 23, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Machío, F.; Rodríguez-Cielos, R.; Navarro, F.; Lapazaran, J.; Otero, J. A 14-year dataset of in situ glacier surface velocities for a tidewater and a land-terminating glacier in Livingston Island, Antarctica. Earth Syst. Sci. Data 2017, 9, 751. [Google Scholar] [CrossRef]
- Fieber, K.D.; Mills, J.P.; Miller, P.E.; Clarke, L.; Ireland, L.; Fox, A.J. Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery. Remote Sens. Environ. 2018, 205, 18–31. [Google Scholar] [CrossRef]
- Sobota, I.; Kejna, M.; Araźny, A. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarct. Sci. 2015, 27, 500–510. [Google Scholar] [CrossRef]
- Muser, D.; (Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany). Der Gletscherrückzug auf King George Island, South Shetland Islands Zwischen 1956 und 1992. Eine Digitale Auswertung von Karten, Luftbildern und Satellitendaten. Unpublished Thesis. 1995. (In German) [Google Scholar]
- Simões, J.C.; Bremer, U.F.; Aquino, F.E.; Ferron, F.A. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Ann. Glaciol. 1999, 29, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Birkenmajer, K. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bull. Pol. Acad. Sci. Earth Sci. 2002, 50, 15–29. [Google Scholar]
- Braun, M.; Gossmann, H. Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, maritime Antarctica. In Geoecology of Antarctic Ice-Free Coastal Landscapes; Springer: Berlin, Germany, 2002; pp. 75–89. [Google Scholar]
- Rosa, K.K.; Vieira, R.; Simões, J.C. Dinâmica Glacial e Características Sedimentares Resultantes na Zona Proglacial da Geleira Ecology-Baía do Almirantado, Ilha Rei George Antártica. Rev. Bras. Geomorfol. 2006, 7, 51–60. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Braun, M.; Hock, R.; Navarro, F.J. Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Ann. Glaciol. 2013, 54, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Pudełko, R.; Angiel, P.J.; Potocki, M.; Jędrejek, A.; Kozak, M. Fluctuation of Glacial Retreat Rates in the Eastern Part of Warszawa Icefield, King George Island, Antarctica, 1979–2018. Remote Sens. 2018, 10, 892. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, J.; Hong, M.H.; Hong, J.K.; Jin, Y.K.; Shon, H. Seismic and radar investigations of Fourcade Glacier on King George Island, Antarctica. Polar Res. 2010, 29, 298–310. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, J.; Hong, M.H.; Hong, J.K.; Shon, H. Helicopter-borne and ground-towed radar surveys of the Fourcade Glacier on King George Island, Antarctica. Explor. Geophys. 2010, 41, 51–60. [Google Scholar] [CrossRef]
- Oliva, M.; Ruiz-Fernández, J. Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surf. Process. Landf. 2015, 40, 1227–1238. [Google Scholar] [CrossRef]
- Oliva, M.; Ruiz-Fernández, J. Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica). Geomorphology 2017, 293, 368–379. [Google Scholar] [CrossRef]
- Francelino, M.R.; Schaefer, C.E.G.; Simas, F.N.B.; Fernandes Filho, E.I.; de Souza, J.J.L.L.; da Costa, L.M. Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena 2011, 85, 194–204. [Google Scholar] [CrossRef]
- Almeida, I.C.; Schaefer, C.E.G.; Fernandes, R.B.; Pereira, T.T.; Nieuwendam, A.; Pereira, A.B. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica. Geomorphology 2014, 225, 36–46. [Google Scholar] [CrossRef]
- Rachlewicz, G. Glacial relief and deposits of the western coast of Admiralty Bay, King George Island, South Shetland Islands. Pol. Polar Res. 1999, 20, 89–130. [Google Scholar]
- Sziło, J.; Bialik, R.J. Grain Size Distribution of Bedload Transport in a Glaciated Catchment (Baranowski Glacier, King George Island, Western Antarctica). Water 2018, 10, 360. [Google Scholar] [CrossRef]
- Tatur, A.; del Valle, R. Badania paleolimnologiczne i geomorfologiczne na Wyspie Króla Jerzego, Antarktyka Zachodnia (1984–1986). Przegląd Geol. 1986, 34, 621–626. [Google Scholar]
- Kostrzewski, A.; Rachlewicz, G.; Zwolinski, Z. Geomorphological map of the western coast of Admiralty Bay, King George Island. In Relief, Quaternary Paleogeography and Changes of the Polar Environment; Maria Curie-Skłodowska University Press: Lublin, Poland, 1998; pp. 71–77. [Google Scholar]
- Kostrzewski, A.; Rachlewicz, G.; Zwolinski, Z. The relief of the Western coast of Admiralty Bay, King George Island, South Shetlands. Quaest. Geogr. 2003, 22, 43–58. [Google Scholar]
- Sziło, J.; Bialik, R.J. Bedload transport in two creeks at the ice-free area of the Baranowski Glacier, King George Island, West Antarctica. Pol. Polar Res. 2017, 38, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Final Report of the Thirty-Seventh Antarctic Treaty Consultative Meeting. Available online: https://www.ats.aq/documents/ATCM37/fr/ATCM37_fr001_e.pdf (accessed on 17 September 2018).
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 17 September 2018).
- Battke, Z. Admiralty Bay, King George Island, 1:50,000; E. Romer State Cartographical Publishing House: Warsaw, Poland, 1990. [Google Scholar]
- Pudełko, R. Topographic map of the SSSI No. 8, King George Island, West Antarctica. Pol. Polar Res. 2003, 24, 53–60. [Google Scholar]
- Pudełko, R. Two new topographic maps for sites of scientific interest on King George Island, West Antarctica. Pol. Polar Res. 2008, 29, 291–297. [Google Scholar]
- Landsat 7 Science Data Users Handbook. Available online: https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat7_Handbook.pdf (accessed on 17 September 2018).
- Pudełko, R. Site of Special Interest No. 8 (SSSI-8) King George Island 2002, Topographic Map, 1:12,500 Scale; Department of Antarctic Biology: Warsaw, Poland, 2002. [Google Scholar]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Haeberli, W. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys. Res. Lett. 2008, 35, L21502. [Google Scholar] [CrossRef]
- Navarro, F.J.; Glazovsky, A.F.; Macheret, Y.Y.; Vasilenko, E.V.; Corcuera, M.I.; Cuadrado, M.L. Ice-volume changes (1936–1990) and structure of Aldegondabreen, Spitsbergen. Ann. Glaciol. 2005, 42, 158–162. [Google Scholar] [CrossRef]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Braun, M.; Rau, F.; Saurer, H.; Goßmann, H. The development of radar glacier zones onthe King George Island ice cap (Antarctica) during the austral summer 1996/97 as observed in ERS-2 SAR data. Ann. Glaciol. 2000, 31, 357–363. [Google Scholar] [CrossRef]
- Bintanja, R. The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling. Antarct. Sci. 1995, 7, 315–325. [Google Scholar] [CrossRef]
- Birkenmajer, K. Geology of Admiralty Bay, King George Island (South Shetland Islands). An outline. Pol. Polar Res. 1980, 1, 29–54. [Google Scholar]
- Mozer, A.; Pécskay, Z.; Krajewski, K.P. Eocene age of the Baranowski Glacier Group at Red Hill, King George Island, West Antarctica. Pol. Polar Res. 2015, 36, 307–324. [Google Scholar] [CrossRef] [Green Version]
- Kotarba, A.; Kaszowski, L.; Krzemień, K. High-mountain Denudational System of the Polish Tatra Mountains = Wysokogórski System Denudacyjny Tatr Polskich. Available online: http://rcin.org.pl/Content/18828/WA51_35225_r1987-nr3_Geogr-Stud-Special-I.pdf (accessed on 18 September 2018).
- Schomacker, A.; Benediktsson, I.O.; Ingólfsson, Ó. The Eyjabakkajökull glacial landsystem, Iceland: Geomorphic impact of multiple surges. Geomorphology 2014, 218, 98–107. [Google Scholar] [CrossRef]
- Kirkbride, M.P.; Warren, C.R. Calving processes at a grounded ice cliff. Ann. Glaciol. 1997, 24, 116–121. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, M.; Christoffersen, P. Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 2013, 7, 119–128. [Google Scholar] [CrossRef]
- Pętlicki, M.; Ciepły, M.; Jania, J.A.; Promińska, A.; Kinnard, C. Calving of a tidewater glacier driven by melting at the waterline. J. Glaciol. 2015, 61, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Haresign, E.; Warren, C.R. Melt rates at calving termini: a study at Glaciar León, Chilean Patagonia. Geol. Soc. Lond. Spec. Publ. 2005, 242, 99–109. [Google Scholar] [CrossRef]
- Bartholomaus, T.C.; Larsen, C.F.; West, M.E.; O’Neel, S.; Pettit, E.C.; Truffer, M. Tidal and seasonal variations in calving flux observed with passive seismology. J. Geophys. Res. Earth Surf. 2015, 120, 2318–2337. [Google Scholar] [CrossRef]
- Online Tides and Currents Predictions. Available online: http://tides.mobilegeographics.com (accessed on 17 September 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sziło, J.; Bialik, R.J. Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences 2018, 8, 355. https://doi.org/10.3390/geosciences8100355
Sziło J, Bialik RJ. Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences. 2018; 8(10):355. https://doi.org/10.3390/geosciences8100355
Chicago/Turabian StyleSziło, Joanna, and Robert Józef Bialik. 2018. "Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica)" Geosciences 8, no. 10: 355. https://doi.org/10.3390/geosciences8100355
APA StyleSziło, J., & Bialik, R. J. (2018). Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences, 8(10), 355. https://doi.org/10.3390/geosciences8100355