# Ontology-Based Photogrammetry Survey for Medieval Archaeology: Toward a 3D Geographic Information System (GIS)

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Managing Time in Archeology

^{14}C decay is a standard way to roughly calculate the date of death or fixation of an object containing organic material) dating or dendrochronology (The dendrochronology dating method, first developed by Andrew Ellicott Douglas, is based on the growth of tree rings. This method can only be used if one knows the growth curve of the region where the object that we want to date was found), are both linear approaches.

#### 2.1. Harris’s Methods for the Temporal Representation of Stratigraphic Units

#### 2.2. Chronology

- Maximum readability and immediacy of the drawings and schedules, avoiding, as much as possible, obscure symbolism and hypertrophy of the documentation
- Simultaneous presence in the same media of all kinds of information (text, drawing, pictures), in order to really simplify the information sharing. It is clear that the Harris matrix itself is not very easy to understand and lacks meaning, and without photographs and drawings, the US are equally unclear. This rigid separation of the information must be properly addressed
- The formalism used to store and represent this complex and heterogeneous knowledge cannot be rigid and too structured because archaeological data and the knowledge itself change over time [53].

## 3. Photogrammetric Analysis of the Shawbak Castle

#### 3.1. How Photogrammetry Helps Archaeological Research

- The area that we need to study, which can be represented by an orthophoto, a digital terrain model (DTM) or, more generally when the studied site is complex and a full 3D approach is required, by a 3D surface, mainly meshes.
- The artifact that we seek to position in space and for which we have good a priori knowledge (in our case, the atomic element is the ashlar block, the smallest measurable element of each USM)

#### 3.2. Dense Cloud of 3D Points and Meshes

#### 3.3. Measuring Artifacts and Querying the Model: Spatial Considerations

#### 3.4. The Use of Stratigraphic Units in Archeology

## 4. Photogrammetry, Knowledge and Time

#### 4.1. Ontology for Photogrammetry Process

#### 4.2. Tools for Managing Ontologies

#### 4.3. ARPENTEUR Ontology: A Link between Photogrammetry and Stratigraphy

#### 4.3.1. Ontology and Graphical Representation

#### 4.3.2. Positive and Negative US

#### 4.4. Toward Duration for Representing the Stratigraphic Unit

**Definition**

**1.**

#### 4.4.1. Time Points Algebra

- $precedes=\left\{\right(x,y)\in \mathcal{Q}\times \mathcal{Q}\phantom{\rule{0.166667em}{0ex}}:\phantom{\rule{0.166667em}{0ex}}x<y\}$,
- $follows=\left\{\right(x,y)\in \mathcal{Q}\times \mathcal{Q}\phantom{\rule{0.166667em}{0ex}}:\phantom{\rule{0.166667em}{0ex}}y<x\}$,
- $same=\left\{\right(x,y)\in \mathcal{Q}\times \mathcal{Q}\phantom{\rule{0.166667em}{0ex}}:\phantom{\rule{0.166667em}{0ex}}x=y\}$.

**Example**

**1.**

- The constraint ${C}_{12}=\left\{precedes\right\}$ states that ${v}_{1}$ precedes ${v}_{2}$;
- The constraint ${C}_{23}=\left\{same\right\}$ states that ${v}_{2}$ is the same as ${v}_{3}$;
- The constraint ${C}_{26}=\left\{precedes\right\}$ states that ${v}_{2}$ precedes ${v}_{6}$;
- The constraint ${C}_{34}=\left\{precedes\right\}$ states that ${v}_{3}$ precedes ${v}_{4}$;
- The constraint ${C}_{45}=\left\{precedes\right\}$ states that ${v}_{4}$ precedes ${v}_{5}$.

#### 4.4.2. Intervals Algebra

**Example**

**2.**

#### 4.5. From Harris to Allen

## 5. Conclusions and Future Work

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Drap, P.; Merad, D.; Gaoua, L.; Pruno, E.; Marcotulli, C.; Vannini, G. Underwater Photogrammetry in a Terrestrial Excavation: San Domenico (Prato-Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
**2015**, 40, 171–176. [Google Scholar] - Drap, P.; Durand, A.; Seinturier, J.; Vannini, G.; Nucciotti, M. Full XML Documentation from Photogrammetric Survey to 3D Visualization. The Case Study of Shawbak Castle in Jodan. In Proceedings of the CIPA 2005 XX International Symposium, Torino, Italy, 26 September–1 October 2005; Volume 2, pp. 771–776. [Google Scholar]
- Brogiolo, G.P. Archeologia dell’Edilizia Storica; Aedes Muratoriana: Modena, Italy, 1988; p. 120. [Google Scholar]
- Harris, E.C. Principles of Archaeological Stratigraphy, 2nd ed.; Academic Press: Waltham, MA, USA, 1979; p. 170. [Google Scholar]
- Francovich, R.; Parenti, R. Archeologia e Restauro dei Monumenti. I Ciclo di Lezioni Sulla Ricerca Applicata in Archeologia; All’Insegna del Giglio: Siena, Italy, 1987. [Google Scholar]
- Gallina, D. Sillogismo deduttivo o abduzione? Alcune proposte per l’abbandono/superamento del matrix di Harris nell’analisi dell’architettura. In Proceedings of the VI Cngresso Nazionale di Archeologia Medievale, L’Aquila, Italy, 12–15 September 2012; Giglio, A.D., Ed.; All’Insegna del Giglio: Firenze, Italy, 2012. [Google Scholar]
- Doerr, M. The CIDOC CRM An ontological approach to semantic interoperability of metadata. AI Mag.
**2001**, 24, 75–92. [Google Scholar] - Lodi, G.; Asprino, L.; Nuzzolese, A.G.; Presutti, V.; Gangemi, A.; Recupero, D.R.; Veninata, C.; Orsini, A. Semantic Web for cultural heritage Valorisation. In Data Analytics in Digital Humanities; Hai-Jew, S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–37. [Google Scholar]
- Noardo, F. A Spatial Ontology for Architectural Heritage Information. Revised Selected Papers. In Proceedings of the Geographical Information Systems Theory, Applications and Management: Second International Conference (GISTAM 2016), Rome, Italy, 26–27 April 2016; Grueau, C., Laurini, R., Rocha, J.G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–163. [Google Scholar]
- Niang, C.; Marinica, C.; Markhoff, B.; Leboucher, E.; Malavergne, O.; Bouiller, L.; Darrieumerlou, C.; Laissus, F. Supporting Semantic Interoperability in Conservation-Restoration Domain: The PARCOURS Project. J. Comput. Cult. Herit.
**2017**, 10, 1–20. [Google Scholar] [CrossRef] - Bing, L.; Chan, K.C.C.; Carr, L. Using Aligned Ontology Model to Convert cultural heritage Resources into Semantic Web. In Proceedings of the 2014 IEEE International Conference on Semantic Computing, Newport Beach, CA, USA, 16–18 June 2014; pp. 120–123. [Google Scholar]
- Niccolucci, F.; D’Andrea, A. An Ontology for 3D Cultural Objects. In Proceedings of the 7th International Symposium on Virtual Reality, Archaeology and cultural heritage VAST, Nicosia, Cyprus, 30 October–4 November 2006. [Google Scholar]
- Amico, N.; Ronzino, P.; Felicetti, A.; Niccolucci, F. Quality Management of 3D Cultural Heritage Replicas with CIDOC-CRM. Available online: http://ceur-ws.org/Vol-1117/paper6_slides.pdf (accessed on 3 September 2017).
- Niccolucci, F.; Hermon, S.; Doerr, M. The Formal Logical Foundations of Archaeological Ontologies. In Mathematics and Archaeology; Barcelo, J.A., Bogdanovic, I., Eds.; CRC Press: Abingdon, UK, 2015; pp. 86–99. [Google Scholar]
- Ronzino, P.; Niccolucci, F.; Felicetti, A.; Doerr, M. CRMba a CRM extension for the documentation of standing buildings. Int. J. Digit. Libr.
**2016**, 17, 71–78. [Google Scholar] [CrossRef] - Araújo, C.; Martini, R.G.; Henriques, P.R.; Almeida, J.J. Annotated Documents and Expanded CIDOC-CRM Ontology in the Automatic Construction of a Virtual Museum. In Developments and Advances in Intelligent Systems and Applications; Rocha, A., Reis, L.P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 91–110. [Google Scholar]
- Niccolucci, F. Documenting archaeological science with CIDOC CRM. Int. J. Digit. Libr.
**2016**, 18, 223–231. [Google Scholar] [CrossRef] - Gaitanou, P.; Gergatsoulis, M.; Spanoudakis, D.; Bountouri, L.; Papatheodorou, C. Mapping the Hierarchy of CIDOC CRM. In Proceedings of the Metadata and Semantics Research: 10th International Conference (MTSR 2016), Gottingen, Germany, 22–25 November 2016; Garoufallou, E., Subirats Coll, I., Stellato, A., Greenberg, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 193–204. [Google Scholar]
- Niccolucci, F.; Hermon, S. Expressing reliability with CIDOC CRM. Int. J. Digit. Libr.
**2016**. [Google Scholar] [CrossRef] - Hiebel, G.; Doerr, M.; Eide, O. CRMgeo: A spatiotemporal extension of CIDOC-CRM. Int. J. Digit. Libr.
**2016**. [Google Scholar] [CrossRef] - Curé, O.; Sérayet, M.; Papini, O.; Drap, P. Toward a novel application of CIDOC CRM to underwater archaeological surveys. In Proceedings of the 4th IEEE International Conference on Semantic Computing (ICSC 2010), Pittsburgh, PA, USA, 22–24 September 2010; pp. 519–524. [Google Scholar]
- Papini, O.; Drap, P. The Revision of Partially Preordered Information in Answer Set Programming. Proceedings of ECSQARU. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011; pp. 421–433. [Google Scholar]
- Seinturier, J. Fusion de Connaissances: Applications aux Relevés PhotogramméTriques de Fouilles ArchéOlogiques Sous-Marines. Ph.D. Thesis, University of Toulon, Toulon, France, 2007. [Google Scholar]
- Serayet, M. Raisonnement à Partir d’Information Structurées et Hiérarchisées: Application à l’Information Archéologique. P.h.D. Thesis, Aix Marseille, Marseille, France, 2010. [Google Scholar]
- Drap, P.; Seinturier, J.; Chambelland, J.C.; Gaillard, G.; Pires, H.; Vannini, G.; Nucciotti, M.; Pruno, E. Going To Shawbak (Jordan) And Getting The Data Back: toward a 3D GIS dedicated to medieval archeology. INCT Bull. Sci. Géogr.
**2009**, 24, 40–50. [Google Scholar] - Kendall, D.G. A statistical approach to Flinders Petries’ sequence-dating. Bull. Int. Stat. Inst.
**1963**, 34, 657–680. [Google Scholar] - Kendall, D.G. Abundance matrices and seriation in archeology. Probab. Theory Relat. Fields
**1971**, 17, 104–112. [Google Scholar] - Guénoche, A.; Tchernia, A. L’analyse descriptive dans la construction d’un modèle typologique des amphores Dressel 20. In Archéologie et Calcul; book Section 2; Borillo, M., Ed.; Union Generale D’editions: Paris, France, 1978; pp. 167–181. [Google Scholar]
- Regnier, S. Sériation des Niveaux de Plusieurs Tranches de Fouille Dans Une Zone ArchéOlogique HomogèNe. In Raisonement et MéThodes MathéMatiques en Archéologie; American Anthropological Association: Arlington, VA, USA, 1977. [Google Scholar]
- Halekoh, U.; Vach, W. A Bayesian approach to seriation problems in archeology. Comput. Stat. Data Anal.
**2004**, 45, 651–673. [Google Scholar] [CrossRef] - Harris, E.C. The laws of archaeological stratigraphy. World Archaeol.
**1979**, 11, 111–117. [Google Scholar] [CrossRef] - Djindjian, F. Méthodes Pour l’Archéologie; Armand Colin: Paris, France, 1991; p. 401. [Google Scholar]
- Djindjian, F.; Desachy, B. Sur l’aide au traitement des données stratigraphiques des sites archéologiques. Hist. Mes.
**1990**, 11, 51–88. [Google Scholar] [CrossRef] - Desachy, B. Traitement multidimensionnel (analyse factorielle des correspondances) des poids groupes de céramique du site des Hallettes à Compiègne (Oise). Rev. ArchéOl. Picardie
**1997**, 13, 169–170. [Google Scholar] [CrossRef] - Desachy, B. Du terrain au temps archeologique, vers un systeme d’information stratigraphique. In Temps et Espaces de l’Homme en Société: Analyses et Modèles Spatiaux en Archéologie; Association pour la Promotion et la Diffusion des Connaissances archéologiques: Valbonne, France, 2012; pp. 269–272. [Google Scholar]
- Desachy, B. De la Formalisation du Traitement des DonnéEs Stratigraphiques en Archéologie de Terrain. Ph.D. Thesis, Pantheon-Sorbonne University, Paris, France, 2008. [Google Scholar]
- Carandini, A. Storie Dalla Terra. Manuale di Scavo Archeologico; Einaudi, Ed.; Piccola biblioteca Einaudi: Torino, Italy, 1991. [Google Scholar]
- Ryan, N. Jnet, a Successor to Gnet. Archaologie und Computer; Workshop 6; Borner, W., Ed.; Forschungsgesellschaft Wiener Stadtarchaologie: Wien, Austria, 2001; pp. 182–196. [Google Scholar]
- Scollar, I. Bonn Archaeological Software Package (BASP). 2017. Available online: http://www.uni-koeln.de/~al001/ (accessed on 22 August 2017).
- Hundack, C.; Mutzel, P.; Pouchkarev, I.; Reitgruber, B.; Schuhmacher, B.; Thome, S. Arched|Technical University of Vienna, Austria. 2017. Available online: http://www.ads.tuwien.ac.at/arched (accessed on 22 August 2017).
- Museums, F.N.H. Intrasis Is a GIS Designed to Handle and Structure Geographical Data. 2017. Available online: http://www.intrasis.com/index.htm (accessed on 22 August 2017).
- Traxler, C.; Neubauer, W. The Harris matrix Composer—A New Tool to Manage Archaeological Stratigraphy. In Kulturelles Erbe und Neue Technologien Workshop, Archaeologie und Computer; Wolfgang Borner, S.U., Ed.; Museen der Stadt Wien, Phoibos Verlag: Vienna, Austria, 2008; Available online: http://www.stadtarchaeologie.at/ (accessed on 3 September 2017).
- Sikora, J.; Tyszkiewicz, J. Strati5—Open Mobile Software for Harris matrix. In Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology (CAA 2015), Siena, Italy, 30 March–3 April 2015; Campana, S., Scopigno, R., Eds.; Archeopress: Oxford, UK, 2015; Volume 2, pp. 182–196. [Google Scholar]
- Galeazzi, F.; Callieri, M.; Dellepiane, M.; Charno, M.; Richards, J.D.; Scopigno, R. Web-based visualization for 3D data in archeology: The ADS 3D viewer. J. Archaeol. Sci.
**2016**, 9, 1–24. [Google Scholar] - Lucas, G. The Archaeology of Time; Routledge: Abingdon, UK, 2005. [Google Scholar]
- Ramenofsky, A. The Illusion of Time. In Unit Issues in Archaeology: Measuring Time, Space and Materia; Ramensofsky, A.F., Steffen, A., Eds.; University of Utah Press: Salt Lake City, UT, USA, 1998; pp. 74–86. [Google Scholar]
- Accary, T.; Bénel, A.; Calabretto, S. Modélisation de connaissances temporelles en archéologie. Rev. Sci. Technol. l’Inf. RSTI Journ. Francoph. d’Extr. Gest. Connaiss. ECG
**2003**, 17, 503–508. [Google Scholar] - Desachy, B. Du temps ordonne au temps quantifié : Application d’outils mathématiques au modèle d’analyse stratigraphique d’Edward Harris. Bull. Soc. Préhist. Française
**2005**, 102, 729–740. [Google Scholar] [CrossRef] - Rodier, X.; Saligny, L. Modélisation des objets urbains pour l’étude des dynamiques urbaines dans la longue durée. In Proceedings of the SAGEO 2007 Colloque International de Géomatique et d’Analyse Spatiale, Clermont-Ferrand, France, 18–22 June 2007. [Google Scholar]
- Lucas, G. Time and the archaeological archive. Rethink. Hist.
**2010**, 14, 343–359. [Google Scholar] [CrossRef] - Harris, E.C. The stratigraphy of standing structures con alcune considerazioni in nota di R. Parenti. In Archeologia dellArchitettura; All’Insegna del Giglio: Sesto, Italy, 2003; pp. 9–16. [Google Scholar]
- Althusser, L. For Marx; Verso: Stockholm, Sweden, 1969. [Google Scholar]
- Drap, P.; Durand, A.; Nedir, M.; Seinturier, J.; Papini, O.; Gabrielli, R.; Peloso, D.; Kadobayashi, R.; Gaillard, G.; Chapman, P.; et al. Photogrammetry and archaeological knowledge: Toward a 3dinformation system dedicated to medieval archeology: A case Study of Shawbak castle in Jordan. In Proceedings of the 3D Virtual Reconstruction and Visualization of Complex Architectures (3D-ARCH 2007), Zurich, Switzerland, 12–13 July 2007. [Google Scholar]
- Pruno, E.; Drap, P. Dalla stratigrafia all’archeologia teorica: il matrix di Harris e l’archeologia del tempo. In Proceedings of the VI Congresso Nazionale di Archeologia Medievale, L’Aquila, Italy, 12–15 September 2012; Giglio, A.D., Ed.; All’Insegna del Giglio: Firenze, Italy, 2012. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations; Wiley: Hoboken, NJ, USA, 1977; p. 491. [Google Scholar]
- Allen, J.F. Maintaining knowledge about temporal intervals. Commun. ACM
**1983**, 26, 832–843. [Google Scholar] [CrossRef] - Buchsenschutz, O. Images et RelevéS ArchéOlogiques, de la Preuve à la Démonstration. Available online: http://cths.fr/ed/edition.php?id=4703 (accessed on 3 September 2017).
- Vannini, G. Archeologia dell’Insediamento Crociato-Ayyubide in Transgiordania: Il Progetto Shawbak; All’insegna del Giglio: Firenze, Italy, 2007. [Google Scholar]
- Vannini, G.; Nucciotti, M. Da Petra a Shawbak, Archeologia di una frontiera. Archeologia Viva
**2009**, 135, 18–31. [Google Scholar] - Drap, P.; Gaillard, G.; Grussenmeyer, P. Simple photogrammetric methods with arpenteur. 3-d plotting and orthoimage generation : The I-MAGE process. In Proceedings of the CIPA 2001 International Symposium, Potsdam, Germany, 18–21 September 2001. [Google Scholar]
- Drap, P.; Gaillard, G.; Grussenmeyer, P.; Hartmann-Virnich, A. A stone-by-stone photogrammetric survey using architectural knowledge formalised on the ARPENTEUR Photogrammetric workstation. In Proceedings of the XIXth Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Amsterdam, The Netherlands, 16–23 July 2001. [Google Scholar]
- Xueming, P.; Beckman, P.; Havemann, S.; Tzompanaki, K.; Doerr, M.; Fellner, D.W. A Distributed Object Repository for cultural heritage. In Proceedings of the 11th International Conference on Virtual Reality, Archaeology and Cultural Heritage (VAST 2010), Paris, France, 21–24 September 2010. [Google Scholar]
- Kalyanpur, A.; Pastor, D.J.; Battle, S.; Padget, J.A. Automatic Mapping of OWL Ontologies into Java. SEKE
**2004**, 4, 98–103. [Google Scholar] - Stevenson, G.; Dobson, S. Sapphire: Generating Java Runtime Artefacts from OWL Ontologies. In Advanced Information Systems Engineering Workshops, Proceedings of the CAiSE 2011 International Workshops, London, UK, 20–24 June 2011; Salinesi, C., Pastor, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 425–436. [Google Scholar]
- Horridge, M.; Knublauch, H.; Rector, A.; Stevens, R.; Wroe, C. A Practical Guide To Building OWL Ontologies Using The Protege-OWL Plugin and CO-ODE Tools Edition 1.0. Available online: http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf (accessed on 3 September 2017).
- O’Connor, M.J.; Das, A. A Mechanism to Define and Execute SWRL Built Ins in Protege OWL. Available online: https://protege.stanford.edu/conference/2006/submissions/abstracts/7.3_Martin_oConnor_BuiltInBridge.pdf (accessed on 3 September 2017).
- Keßler, C.; Raubal, M.; Wosniok, C. Semantic Rules for Context-Aware Geographical Information Retrieval. In Smart Sensing and Context, Proceedings of the 4th European Conference (EuroSSC 2009), Guildford, UK, 16–18 September 2009; Barnaghi, P., Moessner, K., Presser, M., Meissner, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 77–92. [Google Scholar]
- Accary-Barbier, T.; Calabretto, S. Building and using temporal knowledge in archaeological documentation. J. Intell. Inf. Syst.
**2008**, 31, 147–159. [Google Scholar] [CrossRef] - Belussi, A.; Migliorini, S. Modeling Time in Archaeological Data: The Verona Case Study; University of Verona: Verona, Italy, 2014. [Google Scholar]
- Dechter, R.; Meiri, I.; Pearl, J. Temporal Constraint Networks. Artif. Intell.
**1991**, 49, 61–95. [Google Scholar] [CrossRef] - Condotta, J.; Nouaouri, I.; Sioutis, M. A SAT Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks. In Principles of Knowledge Representation and Reasoning, Proceedings of the Fifteenth International Conference (KR 2016), Cape Town, South Africa, 25–29 April 2016; AAAI Press: San Jose, CA, USA, 2016; pp. 432–442. [Google Scholar]
- Brenton, C.; Faber, W.; Batsakis, S. Answer Set Programming for Qualitative Spatio-Temporal Reasoning: Methods and Experiments. In Proceedings of the Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016), New York, NY, USA, 16–21 October 2016; USAVos, M.C., King, A., Saeedloei, N., De, M., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2016; Volume 52, pp. 1–15. [Google Scholar]
- Niccolucci, F.; Tonghini, C.; Vannini, G.; Crescioli, M. PETRA: Un sistema integrato per la gestione dei dati archeologici. Archeol. Calcolatori
**2000**, XI, 49–67. [Google Scholar] - Drap, P.; Papini, O.; Pruno, E.; Nucciotti, M.; Vannini, G. Surveying medieval archeology: A new form for harris paradigm merging photogrammetry and temporal relations. In Proceedings of the 3D Arch, 3D Virtual Reconstruction and Visualization of Complex Architectures and Scenarios, Argolida, Greece, 1–3 March 2017. [Google Scholar]
- Lefèvre, C.; Nicolas, P. The First Version of a New ASP Solver: ASPeRiX. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 10th International Conference (LPNMR 2009), Potsdam, Germany, 14–18 September 2009; Erdem, E., Lin, F., Schaub, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 522–527. [Google Scholar]
- Lefèvre, C.; Béatrix, C.; Stéphan, I.; Garcia, L. ASPeRiX, a First Order Forward Chaining Approach for Answer Set Computing; CoRR: Ithaca, NY, USA, 2015. [Google Scholar]
- Benferhat, S.; Ben-Naim, J.; Papini, O.; Wurbel, E. Answer Set Programming encoding of Prioritized Removed Sets Revision: Application to GIS. Appl. Intell.
**2010**, 32, 60–87. [Google Scholar] [CrossRef] - Benferhat, S.; Ben-Naim, J.; Jeansoulin, R.; Kelfallah, M.; Lagrue, S.; Papini, O.; Wilson, N.; Wurbel, E. Revising geoinformation: The results of REV!GIS. In Lecture Note in Artificial Intelligence, Proceedings of the Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Barcelona, Spain, 6–8 July 2005; Springer: Berlin, Germany, 2005. [Google Scholar]

**Figure 1.**Relative temporal representations: (

**a**) PERT diagram; (

**b**) MPM diagram; (

**c**) Harris matrix; (

**d**) Harris graph.

**Figure 2.**Different representations of Unit of Stratigraphication (US) relations, cited from ([37], p. 83).

**Figure 5.**The full-scale 3D model of Corpo di Fabbrica 5 (CF5) built for the exhibition From Petra to Shawbak. Archeology of a frontier.

**Figure 7.**Ashlar blocks using a plane as an approximation of the exterior face of the wall [53].

**Figure 8.**An example of the stone-by-stone survey using an extrusion vector from CF34 (the Ayyubid Palace in Shawbak).

**Figure 9.**Several orthophoto/map generation images based on several queries: (

**a**) the design of USM perimeters; (

**b**) same as (a) with a reprojection of one of the oriented images; (

**c**) Image (a) with a reprojection of the texture inside the block perimeter; (

**d**) texture reprojection inside of the US perimeter (computed with blocks); (

**e**) Image (a) query with a uniform color inside each block according to their US and an automatic extraction of the cement (computed as the Boolean difference between the global perimeter of all US and all the individual blocks); (

**f**) the same as (e), but with texture mapping for each block.

**Figure 12.**Physical and stratigraphic relations editor with graph visualization of all the relations in which the current USM is involved. A color code is used to separate physical relations from stratigraphic relations.

**Figure 13.**Ashlar block visualization, on the left; the colors show the clusterization result based on the block’s height. Right: the colors show the clusterization result based on USM.

**Figure 14.**Positive stratigraphic relations with the USM node coordinate coming from photogrammetric measurement.

**Figure 15.**2D bloc representation with the stratigraphic graph and bloc position. The nodes of the graphs are computed as centroids of US or block.

**Figure 16.**Negative USM represented by the set of 3D points extracted using the perimeters designed on the photographs by an archaeologist.

Physical Relations | Stratigraphical Relations |
---|---|

Gli si appoggia (ad A si appoggia B) | A Anteriore B |

Coperto da (A coperto da B) | A Anteriore B |

Tagliato da (A tagliato da B) | A Anteriore B |

Riempito da (A riempito da B) | A Anteriore B |

Appoggiato a (A appoggiato a B) | A Posteriore B |

Copre (A copre B) | A Posteriore B |

Taglia (A taglia B) | A Posteriore B |

Riempie (A riempie B) | A Posteriore B |

Uguale a (A uguale a B) | A Contemporaneo B |

Legato a (A legato a B) | A Contemporaneo B |

Collegato a (A collegato a B) | A Contemporaneo B |

Stratigraphical Relations | Start and End of US |
---|---|

A Contemporaneo B | A${}_{min}$ = B${}_{min}$ |

A Anteriore B | A${}_{max}$ anterior B${}_{min}$ |

A Anteriore B | A${}_{max}$ = B${}_{min}$ |

A Posteriore B | B${}_{max}$ anterior A${}_{min}$ |

A Posteriore B | B${}_{max}$ = A${}_{min}$ |

n | (Harris) Physical Relations | (Harris) Stratigraphical Relation | Allen (More Than One Relation Is Possible) |
---|---|---|---|

1 | It leans on (y leans on x) Appoggiato a (y appoggiato a x) | y is later than x y Posteriorità x | y preceded by x y met by x |

2 | leaned on by (x is leaned on by y) Gli si appoggia (ad x si appoggia y) | x is earlier than y x Anteriorita y | x precedes y x meets y |

3 | It connects (x is connected with y) CollegatoA (ad x si CollegatoA y) | x is contemporary to y x Contemporaneo y | x equals y x starts y x during y x finishes y |

4 | Linked to (x is linked to y) Legato a (x è legato a y) | x is contemporary to y x Contemporaneo y | x equals y x starts y x during y x finishes y |

5 | Covered by (y is covered by x) Coperto da (y è coperto da x) | x is earlier than y x Anteriorita y | y preceded by x y meet by x y overlaped by x |

6 | It covers (x covers y) Copre (x copre y) | x is later than y x Posteriorità y | x precedes y x meets y x overlaps y |

7 | It fills (x fills y) Riempie (x riempie y) | x is later than y x Posteriorità y | x preceded by y |

8 | Filled by (y is filled by x) Riempito da (y è riempito da x) | y is earlier than x y Anteriorita x | y preceded x |

9 | It cuts (x cuts y) Taglia (x taglia y) | x is later than y x Posteriorità y | x preceded by y |

10 | Cut by (y is cut by x) Tagliato da (y è tagliato da x) | y is earlier than x y Anteriorita x | y precedes x |

11 | Equal to (x is equal to y) Uguale a (x è uguale a y) | x is contemporary to y x Contemporaneo y | x equals y |

n | Allen | Harris (Physical) | Harris (Temporal) | Example |
---|---|---|---|---|

1 | x precedes y y preceded by x | (a) x covers y Copre y is covered by da x Coperto da (b) x fills up y Riempie y is filled up by x Riempito da | (a) x is later than y y is earlier than x (b) x is later than y y is earlier than x | (a) Construction of upper floor, preparation layer of a brick floor, etc. (b) Filling of a wall post-hole; filling of a door, window, arch, etc. |

2 | x meets y y met by x | x leans on y Gli si appoggia y is leaned on by x Appoggiato a | x is earlier than y y is later than x | Consecutive building phases. Until now, we are not be able to distinguish between meets and overlaps. We use for both subsequent and anteriority. |

3 | x overlaps y y overlapped by x | x leans on y Gli si appoggia y is leaned on by x Appoggiato a | x is earlier than y y is later than x | Building of wall and angle wall in the same phase; generally speaking, every time, we are in front of USM built in the same phase Until now, we were not able to distinguish between MEETS and OVERLAPS. We use for both subsequent and anteriority. |

4 | x starts y y started by x | x is linked to y Legato a y is linked to x Legato a | x is contemporary to y y is contemporary to x | Two linked walls (their building is started at the same time, but we cannot know if they are also finished at the same time); wall and arch (both are started at the same moment, but one of them is finished before the other): we cannot recognize this stratigraphically, so we use the contemporary relationship. |

5 | x during y y contains x | x cuts y Taglia y is cut by x Tagliato da | x is later than y y is earlier than x | Cut in a wall to realize a post-hole or a window or a door in the same building phase of a wall. |

6 | x finishes y y finished by y | x is linked with y Legato a y is linked with x Legato a | x is contemporary to y y is contemporary to x | Two walls linked with “wait joint” ashlars. |

7 | X equals y | X equals y UgualeA | x is contemporary to y | Post-hole equal for typology and for function. |

n | Harris Relation | Definition |
---|---|---|

1 | It is leaned against (y is leaned against x) Appoggiato a (y appoggiato a x) | One US A is ‘AppoggiatoA’ on a US B if: A is in contact with B; A is ‘Posteriorità’ to B; There is a horizontal plane that touches both A and B. This connection is mainly used to define the physical relationship between walls or between layers and structures (between US and USM). |

2 | It leans against (x leans against y) Gli si appoggia (ad x si appoggia y) | A US A ‘GliSiAppoggia’ a US B if: A is in contact with B; A is ‘anteriorità’ B; there is a horizontal plane that touches both A and B. This connection is mainly used to define the physical relationship between walls or between layers and structures (between US and USM) |

3 | It connects (x is connected with y) CollegatoA (ad x si CollegatoA y) | A US A is ‘CollegatoA’ to a US B if: A can be in contact with B or there is a third US in contact with both A and B; A is ‘contemporaneita’ with B; this connection describes a link, for example, in the case of two wall edges crossed by a passing bridge pit. Used only for USM. This is a ternary relationship where the US responsible for the link does not exist, or no longer exists, or is not observable. |

4 | Linked to (x is linked to y) Legato a (x è legato a y) | One US A is ‘LegatoA’ to US B if: A is in contact with B; A is ‘contemporaneita’ with B; the convex volumes of A and B intersect. Often designed to merge A and B. Only used for USM. |

5 | Covered by (y is covered by x) Coperto da (y è coperto da x) | A US A is ‘CopertoDa’ by a US B if: A is in contact with B; A is ‘anteriorita’ to B; there is a vertical plane passing through both A and B. This connection is mainly used to define the physical relationship between layers and/or structures (between US and USM). |

6 | It covers (x covers y) Copre (x copre y) | A US ‘Copre’ a US B if: A is in contact with B; A is ‘posteriorita’ to B; there is a veritable plane passing through both A and B. This connection is mainly used to define the physical relationship between layers and/or structures (between US and USM). |

7 | It fills (x fills y) Riempie (x riempie y) | A US A ‘Riempie’ US B if: A is in contact with B; B has a solid concavity, even partially from A. B is generally, but not always, a negative US. |

8 | Filled by (y is filled by x) Riempito da (y è riempito da x) | A US A is ‘RiempitoDa’ a US B if: A is in contact with B; A is partially or in totality concave and even partially filled by B. A is generally, but not always, a negative US. |

9 | It cuts (x cuts y) Taglia (x taglia y) | A US ‘Taglia’ a US B if: A and in contact with B; it physically subtracts material from B, and A is a negative US. |

10 | Cut by (y is cut by x) Tagliato da (y è tagliato da x) | A US A is ‘TagliatoDa’ US B if: A is in contact with B; A was physically subtracted from material B, and B is a negative US. |

11 | Equal to (x is equal to y) Uguale a (x è uguale a y) | A US A is ‘UgualeA’ to US B if: A is not necessarily in contact with B; A is consecutive to B; A and B are physically the same US, but there may be a physical discontinuity between them. |

12 | x is earlier than y x Anteriorita y | An USM A is ‘Anteriorita’ to USM B if A is formed before USM B |

13 | x is contemporary to y x Contemporaneo y | A USM A is in ‘Contemporaneita’ with B if A and B have been formed at the same time. |

14 | x is later than y x Posteriorità y | An USM A is in ‘Posteriorita’ compared to B if A was formed when B was already formed. Posteriority |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Drap, P.; Papini, O.; Pruno, E.; Nucciotti, M.; Vannini, G. Ontology-Based Photogrammetry Survey for Medieval Archaeology: Toward a 3D Geographic Information System (GIS). *Geosciences* **2017**, *7*, 93.
https://doi.org/10.3390/geosciences7040093

**AMA Style**

Drap P, Papini O, Pruno E, Nucciotti M, Vannini G. Ontology-Based Photogrammetry Survey for Medieval Archaeology: Toward a 3D Geographic Information System (GIS). *Geosciences*. 2017; 7(4):93.
https://doi.org/10.3390/geosciences7040093

**Chicago/Turabian Style**

Drap, Pierre, Odile Papini, Elisa Pruno, Micchele Nucciotti, and Guido Vannini. 2017. "Ontology-Based Photogrammetry Survey for Medieval Archaeology: Toward a 3D Geographic Information System (GIS)" *Geosciences* 7, no. 4: 93.
https://doi.org/10.3390/geosciences7040093