Metamorphic Fluids with Magmatic Overprint in the Huayagou Gold Deposit, West Qinling Orogen, Central China: Evidence from Apatite and Tourmaline In Situ Geochemistry
Abstract
1. Introduction
2. Geological Background
3. Deposit Geology
4. Sampling and Analytical Method
4.1. Sampling, Scanning Electron Microscopy, TIMA Examination and CL Imaging
4.2. Major Element Analyses of Apatite and Tourmaline
4.3. Trace Element Analysis of Apatite and Tourmaline
4.4. In Situ Analysis of Nd Isotopes of Apatite and B Isotopes of Tourmaline
5. Results
5.1. TIMA Examination, BSE and CL Imaging
5.2. Major Element Composition of Apatite and Tourmaline
5.3. Trace Element Composition of Apatite and Tourmaline

5.4. In Situ Nd Isotopic Analysis of Apatite and B Isotopic Analysis of Tourmaline Results
6. Discussions
6.1. Classification of the Samples and Origin of the Apatite and Tourmaline
6.2. Nature of the Auriferous Fluid Constrained by Mineral Geochemistry

6.3. Mineralization Mechanism of the Huayagou Au Deposit
7. Conclusions
- Magmatic, syn-ore hydrothermal, and metamorphic apatites from the Huayagou Au deposit exhibit distinct textural, compositional, and isotopic characteristics. Syn-ore hydrothermal apatite is characterized by homogeneous cathodoluminescence, fluorapatite compositions, strong LREE depletion, and εNd(t) values overlapping those of Triassic magmatic apatite, whereas Early-Devonian magmatic and metamorphic apatites display more distinct geochemical signatures.
- Tourmaline geochemistry records a systematic evolution from early-phase dravite to late-phase schorl, characterized by compositional overlap with both orogenic and intrusion-related Au deposit fields and a shift toward heavier δ11B values. When combined with previous in situ pyrite geochemical data, these features indicate a magmatic–hydrothermal overprint superimposed on an overall orogenic system during the formation of the richer ores.
- Integrated mineralogical, isotopic, structural, and geophysical evidence indicates that gold mineralization at Huayagou was dominantly controlled by structurally focused metamorphic fluids, with Triassic magmatic activity acting as a superimposed process that enhanced gold enrichment in favorable structural sites. Accordingly, the Huayagou Au deposit is best interpreted as an atypical orogenic gold system. Based on orebody geometry and geophysical constraints, the deeper western part of the district—where Triassic magmatism is inferred at depth—is considered to have significant exploration potential.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Liu, C.; Carranza, E.J.M.; Li, Y.; Mao, Z.; Wang, J.; Wang, Y.; Zhang, J.; Zhai, D.; Zhang, H.; et al. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China. J. Asian Earth Sci. 2015, 103, 40–69. [Google Scholar] [CrossRef]
- Li, N.; Yang, L.Q.; Groves, D.I.; Li, H.X.; Liu, X.W.; Liu, J.; Ye, Y.; Li, H.R.; Liu, C.X.; Yin, C. Tectonic and district- to deposit-scale structural controls on the Ge’erke orogenic gold deposit within the Dashui–Zhongqu district, West Qinling Belt, China. Ore Geol. Rev. 2020, 120, 103436. [Google Scholar] [CrossRef]
- He, C.G.; Li, J.W.; Zu, B.; Liu, W.J.; Qiu, H.N.; Bai, X.J. Sericite 40Ar/39Ar and zircon U–Pb dating of the Liziyuan gold deposit, West Qinling orogen, central China: Implications for ore genesis and tectonic setting. Ore Geol. Rev. 2021, 139, 104531. [Google Scholar] [CrossRef]
- Cao, Y.; Du, Y.; Wang, Y.; Li, W.; Liu, K.; Zhang, Z.; Lou, Y. Magmatic–hydrothermal fingerprints in lode gold deposits: A case study of the Liushaogou deposit in the West Qinling Orogen, China. Ore Geol. Rev. 2025, 186, 106888. [Google Scholar] [CrossRef]
- Du, S.G.; Tian, X.S.; Ren, Z.; Jin, X.Y.; Tao, H.; Luo, T.; Zhu, R.; Li, J.W.; Deng, X.D. Laser ablation ICP-MS scheelite U–Pb dating constraints on two discrete gold mineralization events of the Zaozigou Au–Sb deposit, West Qinling orogen, China. Ore Geol. Rev. 2025, 176, 106437. [Google Scholar] [CrossRef]
- Fan, C.; Yu, H.C.; Tamer, M.T.; Zhang, L.; Wang, J.; Liu, P.X.; Xue, X.F.; Li, C.; Wang, Y.X. Ore genesis of the Nanban gold deposit, West Qinling Orogen: Insights from monazite geochronology and geochemistry of sulfides. Ore Geol. Rev. 2025, 179, 106531. [Google Scholar] [CrossRef]
- Mao, J.; Qiu, Y.; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Feng, R. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Miner. Depos. 2002, 37, 352–377. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Ma, J.; Lü, X.; Li, S.; Fu, J.; Mao, C.; Lu, F.; Yin, X.; Zhi, Q.; Zou, B. Pyrite zonation and source of gold in the Pangjiahe orogenic gold deposit, West Qinling Orogen, central China. Ore Geol. Rev. 2021, 139, 104578. [Google Scholar] [CrossRef]
- Ma, J.; Lü, X.; Li, S.; Chen, J.; Lu, F.; Yin, X.; Wu, M. The ca. 230 Ma gold mineralization in the Fengtai Basin, Western Qinling orogen, and its implications for ore genesis and geodynamic setting: A case study of the Matigou gold deposit. Ore Geol. Rev. 2021, 138, 104398. [Google Scholar] [CrossRef]
- Du, W.G.; Yan, K.; Gao, Y.B.; Wei, L.Y.; Li, G.Y.; Yang, K.; Guo, W.D.; Du, W.G.; Shi, L.; Zhang, R. A new discovery of large prospective gold deposit in the Huayagou area, eastern section of Western Qinling. Geol. China 2024, 51, 1791–1792. (In Chinese) [Google Scholar]
- Tang, Y.H.; Gao, Y.B.; Yan, K.; Wei, L.Y.; Li, G.Y.; Yang, K.; Guo, W.D.; Du, W.G.; Shi, L.; Zhang, R. Discovery of large prospective gold deposit (10.88t) in the Huayagou area, eastern section of Western Qinling. Geol. China 2024. (In Chinese) [Google Scholar]
- Ma, J.; Lü, X.; Escolme, A.; Li, S.; Zhao, N.; Cao, X.; Zhang, L.; Lu, F. In-situ sulfur isotope analysis of pyrite from the Pangjiahe gold deposit: Implications for variable sulfur sources in the north and south gold belt of the South Qinling orogen. Ore Geol. Rev. 2018, 98, 38–61. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Liu, Y.; Deng, N.; Yang, B.; Tân, L. Contribution of Triassic tectonomagmatic activity to the mineralization of the Liziyuan orogenic gold deposits, West Qinling Orogenic Belt, China. Minerals 2023, 13, 130. [Google Scholar] [CrossRef]
- Du, W.; Song, Y.; Yang, K.; Yan, K.; Gao, Y.; Wei, L. Gold mineralization processes of the Huayagou gold deposit, West Qinling Orogen: Constraints from textures, in-situ sulfur isotopes and trace element compositions of pyrite. Ore Geol. Rev. 2026, 188, 107039. [Google Scholar] [CrossRef]
- Ren, H.Z.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Wei, B.; Chen, W.N.; Wang, Y.Y.; Xu, X.C.; Liu, T.J.; et al. LA-ICP-MS zircon U–Pb dating and geochemistry of the Taibai intrusion in the Tianshui area of the western Qinling Mountains and their geological significance. Geol. Bull. China 2014, 33, 1041–1054, (In Chinese with English abstract). [Google Scholar]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2020, 55, 275–292. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Pitcairn, I. Orogenic gold: Is a genetic association with magmatism realistic? Miner. Depos. 2022, 58, 5–35. [Google Scholar] [CrossRef]
- Legros, H.; Marignac, C.; Tabary, T.; Mercadier, J.; Richard, A.; Cuney, M.; Wang, R.C.; Charles, N.; Lespinasse, M.Y. The ore-forming magmatic–hydrothermal system of the Piaotang W–Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. Am. Mineral. 2018, 103, 39–54. [Google Scholar] [CrossRef]
- Andersson, S.S.; Wagner, T.; Jonsson, E.; Fusswinkel, T.; Whitehouse, M.J. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum–Djupedal REE-phosphate mineralisation, SE Sweden. Geochim. Cosmochim. Acta 2019, 255, 163–187. [Google Scholar] [CrossRef]
- Vasilopoulos, M.; Molnár, F.; Ranta, J.P.; Kurhila, M.; O’Brien, H.; Lahaye, Y.; Lukkari, S.; Moilanen, M. U-Pb geochronology, tourmaline geochemistry, and stable (B, S) isotope constraints from the Hirvilavanmaa Au-only and the polymetallic Naakenavaara orogenic gold deposits, Central Lapland belt, northern Finland. J. Geochem. Explor. 2024, 258, 107419. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Makvandi, S. Chemical composition of tourmaline in orogenic gold deposits. Miner. Depos. 2021, 56, 537–560. [Google Scholar] [CrossRef]
- Trumbull, R.B.; Codeço, M.S.; Jiang, S.-Y.; Palmer, M.R.; Slack, J.F. Boron isotope variations in tourmaline from hydrothermal ore deposits: A review of controlling factors and insights for mineralizing systems. Ore Geol. Rev. 2020, 125, 103682. [Google Scholar] [CrossRef]
- Roberts, S.; Palmer, M.R.; Waller, L. Sm–Nd and REE characteristics of tourmaline and scheelite from the Björkdal gold deposit, northern Sweden: Evidence of an intrusion-related gold deposit? Econ. Geol. 2006, 101, 1415–1425. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, J.H.; Santosh, M. Tectonic evolution of the Qinling orogenic belt, central China: New evidence from geochemical, zircon U–Pb geochronology and Hf isotopes. Precambrian Res. 2013, 231, 19–60. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Meng, Q.R.; Zhang, G.W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Dilek, Y.; Zhang, J.; Pei, X.; Chen, S.; Xu, X.; Li, J. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: Record of subduction initiation and backarc basin development. Gondwana Res. 2015, 27, 733–744. [Google Scholar] [CrossRef]
- Li, S.; Kusky, T.M.; Wang, L.; Zhang, G.; Lai, S.; Liu, X.; Dong, S.; Zhao, G. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Res. 2007, 12, 121–143. [Google Scholar] [CrossRef]
- Mattauer, M.; Matte, P.; Malavieille, J. Tectonics of the Qinling Belt: Build-up and evolution of the eastern Tibetan Plateau. Nature 1985, 317, 511–516. [Google Scholar] [CrossRef]
- Meng, Q.R.; Hu, J.M.; Jin, J.Q.; Zhang, Y.; Xu, D.F. Tectonics of the Qinling Belt; Science Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Zeng, Q.; Evans, N.J.; McInnes, B.I.A.; Batt, G.E.; McCuaig, C.T.; Bagas, L.; Tohver, E. Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China. Miner. Depos. 2013, 48, 397–412. [Google Scholar] [CrossRef]
- Zhang, G.W.; Zhang, B.R.; Yuan, X.C.; Xiao, Q.H. Qinling Orogenic Belt and Continental Dynamics; Science Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Hu, F.; Liu, S.; Ducea, M.N.; Chapman, J.B.; Wu, F.; Kusky, T. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Res. 2020, 88, 296–332. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, Z.; Liu, X.; Sun, S.; Li, W.; Cheng, B.; Zhang, F.; Zhang, X.; He, D.; Zhang, G. Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Res. 2016, 30, 144–158. [Google Scholar] [CrossRef]
- Wu, Y.F.; Li, J.W.; Evans, K.; Koenig, A.E.; Li, Z.K.; O’Brien, H.; Lahaye, Y.; Rempel, K.; Hu, S.Y.; Zhang, Z.P.; et al. Ore-forming processes of the Daqiao epizonal orogenic gold deposit, West Qinling Orogen, China: Constraints from textures, trace elements, and sulfur isotopes of pyrite and marcasite, and Raman spectroscopy of carbonaceous material. Econ. Geol. 2018, 113, 1093–1132. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Gou, Z.Y.; Liang, Z.L.; Zhang, J.L.; Zhu, R. Nature and origin of Triassic igneous activity in the Western Qinling Orogen: The Wenquan composite pluton example. Int. Geol. Rev. 2017, 60, 242–266. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Santosh, M.; Zhao, J.; Sun, J.; He, D.; Shi, X.; Hui, B.; Cheng, C.; Zhang, G. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Res. 2021, 100, 131–194. [Google Scholar] [CrossRef]
- Foster, G.; Vance, D. In situ Nd isotopic analysis of geological materials by MC-ICP-MS. J. Anal. At. Spectrom. 2006, 21, 288–296. [Google Scholar] [CrossRef]
- McFarlane, C.R.M.; McCulloch, M.T. Coupling of in-situ Sm–Nd systematics and U–Pb dating of monazite and allanite with applications to crustal evolution studies. Chem. Geol. 2007, 245, 45–60. [Google Scholar] [CrossRef]
- Fisher, C.M.; McFarlane, C.R.M.; Hanchar, J.M.; Schmitz, M.D.; Sylvester, P.J.; Lam, R.; Longerich, H.P. Sm–Nd isotope systematics by laser ablation–multicollector–inductively coupled plasma mass spectrometry: Methods and potential natural and synthetic reference materials. Chem. Geol. 2011, 284, 1–20. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Hamilton, P.J.; Evensen, N.M. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett. 1977, 34, 13–22. [Google Scholar] [CrossRef]
- Isnard, H.; Brennetot, R.; Caussignac, C.; Caussignac, N.; Chartier, F. Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC-ICP-MS. Int. J. Mass Spectrom. 2005, 246, 66–73. [Google Scholar] [CrossRef]
- Dubois, J.C.; Retali, G.; Cesario, J. Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1992, 120, 163–177. [Google Scholar] [CrossRef]
- Gonçalves, G.O.; Lana, C.; Scholz, R.; Buick, I.S.; Gerdes, A.; Kamo, S.L.; Corfu, F.; Rubatto, D.; Wiedenbeck, M.; Nalini, H.A.; et al. The Diamantina monazite: A new low-Th reference material for microanalysis. Geostand. Geoanalytical Res. 2017, 42, 25–47. [Google Scholar] [CrossRef]
- Ma, Q.; Evans, N.J.; Ling, X.X.; Yang, J.H.; Wu, F.Y.; Zhao, Z.D.; Yang, Y.H. Natural titanite reference materials for in situ U–Pb and Sm–Nd isotopic measurements by LA-(MC)-ICP-MS. Geostand. Geoanalytical Res. 2019, 43, 355–384. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Yang, J.H.; Chew, D.M.; Xie, L.W.; Chu, Z.Y.; Zhang, Y.B.; Huang, C. Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chem. Geol. 2014, 385, 35–55. [Google Scholar] [CrossRef]
- Wang, D.; Fu, Y. Petrogenesis of the Mesozoic Tongshanling granodiorite in southern Hunan Province, South China: Clues from in-situ Nd isotopes and trace elements of titanite. Rock Miner. Anal. 2023, 42, 282–297, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Xiao, Y.K.; Liu, F.; Tian, Y.R. In situ boron isotope measurements of natural geological materials by LA–MC–ICP–MS. Chin. Sci. Bull. 2010, 55, 3305–3311. [Google Scholar] [CrossRef]
- Ketcham, R.A. Technical Note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am. Mineral. 2015, 100, 1620–1623. [Google Scholar] [CrossRef]
- Li, W.; Costa, F. A thermodynamic model for F–Cl–OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim. Cosmochim. Acta 2020, 269, 203–222. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Henry, D.J. Classification of the minerals of the tourmaline group. Eur. J. Mineral. 1999, 11, 201–216. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins, 42; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London, Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar] [CrossRef]
- Teng, F.; Yan, K.; Yang, K.; Bagas, L.; Gao, Y.; Wei, L.; Teng, Y.; Guo, H.; Tang, Y.; Li, G. Geological characteristics and geochronology of the Huayagou Au deposit, Western Qinling: Implication for regional ore genesis. Ore Geol. Rev. 2025, 178, 106456. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, X.; Palmer, M.R.; Zhao, K.; Hernández-Uribe, D.; Gao, S.; Wu, S. Magma mixing and magmatic-to-hydrothermal fluid evolution revealed by chemical and boron isotopic signatures in tourmaline from the Zhunuo–Beimulang porphyry Cu–Mo deposits. Miner. Depos. 2024, 59, 1133–1153. [Google Scholar] [CrossRef]
- Li, W.; Qiao, X.; Zhang, F.; Zhang, L. Tourmaline as a potential mineral for exploring porphyry deposits: A case study of the Bilihe gold deposit in Inner Mongolia, China. Miner. Depos. 2022, 57, 61–82. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.Y.; Frimmel, H.E. Apatite records metamorphic and hydrothermal fluid evolution at the large Shuangqishan orogenic gold deposit, SE China. Geol. Soc. Am. Bull. 2023, 135, 3005–3023. [Google Scholar] [CrossRef]
- Hong, W.; Testa, F.; Cooke, D.R.; Fox, N.; Zhang, L.; Baker, M.J.; Orovan, E.; Ahmed, A.; Hollings, P.; Belousov, I.; et al. Tourmaline mineral chemistry: A fertility assessment and vectoring tool for mineral exploration in magmatic-hydrothermal ore systems. Econ. Geol. 2025, 120, 87–118. [Google Scholar] [CrossRef]
- Khan, A.; Ullah, Z.; Li, H.; Faisal, S.; Rahim, Y. Apatite texture, trace elements and Sr–Nd isotope geochemistry of the Koga carbonatite–alkaline complex, NW Pakistan: Implications for petrogenesis and mantle source. Chem. Geol. 2025, 676, 122611. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Wang, F.; Zhou, T. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China. Ore Geol. Rev. 2021, 128, 103886. [Google Scholar] [CrossRef]
- Tan, H.M.R.; Huang, X.W.; Qi, L.; Gao, J.F.; Meng, Y.M.; Xie, H. Research progress on chemical composition of apatite: Application in petrogenesis, ore genesis and mineral exploration. Acta Petrol. Sin. 2022, 38, 3067–3084, (In Chinese with English abstract). [Google Scholar]
- Xie, D.; Yang, L.Q.; Gao, X.; O’Sullivan, G.; Santosh, M.; Yang, W.; Li, Z.; Feng, T.; Deng, J. Apatite as a proxy for imaging the link between multistage hydrothermal alteration and anomalous gold enrichment in orogenic gold deposits: Evidence from the Jiaodong Peninsula, Eastern China. J. Geochem. Explor. 2025, 272, 107716. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Lang, X.; Xiang, Z.; Deng, Y.; Ye, Z.; Dong, W.; Luo, C.; Lohmeier, S.; Frimmel, H.E. Apatite and zircon compositions as petrogenetic and metallogenic indicators for Late Ordovician porphyries in the Songshunangou gold district, North Qilian orogenic belt (China). Ore Geol. Rev. 2025, 179, 106502. [Google Scholar] [CrossRef]
- Liu, J.W.; Li, L.; Li, S.R.; Santosh, M.; Yuan, M.W. Apatite as a fingerprint of granite fertility and gold mineralization: Evidence from the Xiaoqinling Goldfield, North China Craton. Ore Geol. Rev. 2022, 142, 104720. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Mineral. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Teng, F.; Yan, K.; Yang, K.; Teng, Y.; Bagas, L.; Xue, Z.; Guo, W.; Li, W.; Gao, Y.; Wei, L. Geological characteristics and enrichment mechanisms of the Huayagou–Jinchanggou Au deposit: Implications for ore genesis in the Baguamiao–Jiutiaogou anomaly belt. Ore Geol. Rev. 2025, 186, 106878. [Google Scholar] [CrossRef]
- Yu, P.Y.; Li, C.; Fu, J.N.; Wang, J.Y.; Zhang, J.H.; Zhang, H.; Ren, H.Y.; Yu, H.C.; Luo, J.X.; He, Z.J.; et al. Laser ablation inductively coupled plasma tandem mass spectrometry (LA-ICP-MS/MS) Rb–Sr sericite geochronology in orogenic gold deposits: Strategies and significance. Ore Geol. Rev. 2025, 180, 106543. [Google Scholar] [CrossRef]
- Huang, Y.; Qi, X.; Wu, Q.; Li, J.; Ren, M.; Duan, L.; Xiong, T.; Yang, Z.; Zhao, Y.; Ciren, L.; et al. In situ Rb–Sr dates of muscovite and sulfur isotope of pyrite from the Yangshan gold deposit in western Qinling, China. Acta Geol. Sin. (Engl. Ed.) 2023, 97, 1475–1489. [Google Scholar] [CrossRef]
- Liu, Y.G.; Yang, Y.P.; Li, J.J.; Liu, W.L.; Xue, J.N.; Su, Q.H.; Wu, J.F.; Hu, X.L. Metallogenic epoch and genetic study of the Tianziping gold deposit, West Qinling orogenic belt. Geol. Bull. China 2020, 39, 1212–1220, (In Chinese with English abstract). [Google Scholar]
- Chen, S.C.; Yu, J.J.; Bi, M.F.; Lehmann, B. Fluid-rock interaction and fluid mixing in the large Furong tin deposit, South China: New insights from tourmaline and apatite chemistry and in situ B–Nd–Sr isotope composition. Am. Mineral. 2023, 108, 338–353. [Google Scholar] [CrossRef]
- Madayipu, N.; Li, H.; Algeo, T.J.; Elatikpo, S.M.; Zheng, H.; Wu, Q.H.; Chen, Y.L.; Sun, W.B. Chemical and boron isotopic compositions of tourmalines from the Lianyunshan Nb–Ta pegmatite in northeastern Hunan, China: Insights into fluid and metallogenic sources. Ore Geol. Rev. 2023, 152, 105263. [Google Scholar] [CrossRef]
- Yao, J.M.; Li, F.L.; Ma, G.Z.; Zhang, X.B.; Hou, K.J.; Yang, H.Y.; Li, N. Tourmaline chemical composition and boron isotopic composition at the Longmenshan pegmatite in the Dahongliutan area, West Kunlun: Implications for rare-metal Li–Be mineralization. Ore Geol. Rev. 2024, 167, 105987. [Google Scholar] [CrossRef]
- Li, W.T.; Jiang, S.Y.; Liu, D.L.; Yang, M.Z.; Niu, P.P. Formation of large to giant porphyry Mo deposits: Constraints from whole-rock and in situ mineral geochemistry of causative magmatic rocks in the Tongbai–Hong’an–Dabie orogens, central China. Econ. Geol. 2024, 119, 1005–1033. [Google Scholar] [CrossRef]
- Safiyanu, M.E.; Li, H.; Algeo, T.J.; Madayipu, N.; Tamehe, L.S.; Lemdjou, Y.B. Formation of tourmaline in the Bakoshi–Gadanya Goldfield, Nigeria: Insights from elemental compositions and boron isotopes. Geochemistry 2023, 83, 126020. [Google Scholar] [CrossRef]
- Daver, L.; Jébrak, M.; Beaudoin, G.; Trumbull, R.B. Three-stage formation of greenstone-hosted orogenic gold deposits in the Val-d’Or mining district, Abitibi, Canada: Evidence from pyrite and tourmaline. Ore Geol. Rev. 2020, 120, 103449. [Google Scholar] [CrossRef]
- Pimenta, J.S.; Cabral, A.R.; Queiroga, G.; Lana, C.; Tupinambá, M.; Zeh, A.; Kwitko-Ribeiro, R. The auriferous quartz lode of the Veloso deposit, Quadrilátero Ferrífero of Minas Gerais, Brazil: Geological characterisation and constraints from tourmaline boron isotopes. Mineral. Petrol. 2024, 118, 89–103. [Google Scholar] [CrossRef]
- Beckett-Brown, C.E.; McDonald, A.M.; McClenaghan, M.B. Trace element characteristics of tourmaline in porphyry Cu systems: Development and application to discrimination. Can. J. Mineral. Petrol. 2023, 61, 31–60. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.; Zhai, D.; de Fourestier, J.; Liu, M.; Zhu, R. Tourmaline as an indicator of ore-forming processes: Evidence from the Laodou gold deposit, Northwest China. Ore Geol. Rev. 2023, 154, 105304. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Yang, K.; Xue, Z.; Ma, C.; Song, Y.; Ge, Z.; Liu, C. Gold metallogenic regularity and resource potential in the Qinling metallogenic belt. Northwestern Geol. 2026, 59, 1–21, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, M.; Lü, X.; Jiang, S.; Sun, B.; Ruan, B.; Chen, C. The genesis of the Baguamiao orogenic gold deposit linked to multistage ore-forming processes in Triassic tectonic transition of South Qinling, China. Ore Geol. Rev. 2025, 166, 105964. [Google Scholar] [CrossRef]
- Yang, H.; Du, B.; Santosh, M.; Wang, Z.; Yan, G.; Qi, X.; Xu, K.; Li, L.; Deng, J. Role of As in the formation of giant Au deposits: Insights from sulfur isotope and geochemistry of pyrite from the Shuangwang Au deposit, West Qinling, central China. Ore Geol. Rev. 2024, 175, 106363. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Carranza, E.J.M.; Liu, Z.; Liu, C.; Liu, B.; Wang, K.; Zeng, X.; Wang, H. A possible genetic model of the Shuangwang hydrothermal breccia gold deposit, Shaanxi Province, central China: Evidence from fluid inclusion and stable isotope. J. Asian Earth Sci. 2015, 111, 840–852. [Google Scholar] [CrossRef]
- Wang, P.; Mao, J.W.; Ye, H.S.; Wang, Y.T.; Jian, W.; Song, S.W.; Yan, J.M.; Wan, L.M.; Lu, Y.L.; Ren, B.Z. The sources and physical–chemical conditions of gold mineralization in the Qi189 porphyry deposit, Qiyugou gold orefield, Eastern Qinling. Ore Geol. Rev. 2024, 169, 106102. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Kontak, D.J.; Jin, X.; Wu, Y.; Hu, H.; Zu, B.; Yu, X.; Zhao, S.; Du, S.; et al. An Early Cretaceous gold mineralization event in the Triassic West Qinling orogen revealed from U-Pb titanite dating of the Ma’anqiao gold deposit. Sci. China Earth Sci. 2023, 66, 316–333. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Fletcher, I.R.; Zeng, Q.T. Triassic mineralization with Cretaceous overprint in the Dahu Au–Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U–Th–Pb geochronology. Gondwana Res. 2011, 20, 543–552. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, Y.T.; Mao, J.W.; Jian, W.; Hu, Q.Q.; Wei, R.; Zhang, X.W.; Hao, J.L.; Wang, J.M. Episodic Au–Mo mineralization events in the Xiaoqinling district, southern margin of the North China Craton. Ore Geol. Rev. 2022, 149, 105096. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Kendrick, M.A.; Groves, D.I.; Fan, T.; Deng, J. Metasomatized mantle lithosphere and altered ocean crust as a fluid source for orogenic gold deposits. Geochim. Cosmochim. Acta 2022, 334, 316–337. [Google Scholar] [CrossRef]
- Hector, S.; Patten, C.G.C.; Kolb, J.; de Araujo Silva, A.; Walter, B.F.; Molnár, F. Orogenic Au deposits with atypical metal association (Cu, Co, Ni): Insights from the Pohjanmaa Belt, western Finland. Ore Geol. Rev. 2023, 154, 105326. [Google Scholar] [CrossRef]
- Lusty, P.A.; Naden, J.; Bouch, J.J.; McKervey, J.A.; McFarlane, J.A. Atypical gold mineralization in an orogenic setting—The Bohaun deposit, Western Irish Caledonides. Econ. Geol. 2011, 106, 359–380. [Google Scholar] [CrossRef]
- Yang, M.L.; Zhou, H.W.; Zhang, R.F. Metallogenic model and prospecting direction of Huayagou gold deposit in Liangdang county, Gansu province. Gansu Geol. 2014, 23, 51–55, (In Chinese with English abstract). [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Teng, F.; Zhang, J.; Guo, W.; Bagas, L.; Yan, K.; Teng, Y.; Wei, Y.; Zhou, N.; Gao, Y.; Wei, L. Metamorphic Fluids with Magmatic Overprint in the Huayagou Gold Deposit, West Qinling Orogen, Central China: Evidence from Apatite and Tourmaline In Situ Geochemistry. Geosciences 2026, 16, 80. https://doi.org/10.3390/geosciences16020080
Teng F, Zhang J, Guo W, Bagas L, Yan K, Teng Y, Wei Y, Zhou N, Gao Y, Wei L. Metamorphic Fluids with Magmatic Overprint in the Huayagou Gold Deposit, West Qinling Orogen, Central China: Evidence from Apatite and Tourmaline In Situ Geochemistry. Geosciences. 2026; 16(2):80. https://doi.org/10.3390/geosciences16020080
Chicago/Turabian StyleTeng, Fei, Jiangwei Zhang, Wendi Guo, Leon Bagas, Kang Yan, Yuxiang Teng, Ying Wei, Ningchao Zhou, Yongbao Gao, and Liyong Wei. 2026. "Metamorphic Fluids with Magmatic Overprint in the Huayagou Gold Deposit, West Qinling Orogen, Central China: Evidence from Apatite and Tourmaline In Situ Geochemistry" Geosciences 16, no. 2: 80. https://doi.org/10.3390/geosciences16020080
APA StyleTeng, F., Zhang, J., Guo, W., Bagas, L., Yan, K., Teng, Y., Wei, Y., Zhou, N., Gao, Y., & Wei, L. (2026). Metamorphic Fluids with Magmatic Overprint in the Huayagou Gold Deposit, West Qinling Orogen, Central China: Evidence from Apatite and Tourmaline In Situ Geochemistry. Geosciences, 16(2), 80. https://doi.org/10.3390/geosciences16020080

