Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia)
Abstract
1. Introduction
2. Materials and Methods
2.1. Geochemistry
2.2. Palaeontology
2.2.1. Calcareous Nannofossil Analyses
2.2.2. Foraminiferal Analyses
3. Results
3.1. Geochemistry
3.2. Palaeontology
3.2.1. Calcareous Nannofossils
3.2.2. Foraminifera
4. Discussion
4.1. The LLTM/C19r Event
4.1.1. Bioevents
4.1.2. Response of Calcareous Plankton to Hyperthermal Event Indicators
4.2. The MECO Event
4.2.1. Bioevents
4.2.2. Calcareous Plankton Response to Warming Event
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boscolo Galazzo, F.; Thomas, E.; Pagani, M.; Warren, C.; Luciani, V.; Giusberti, L. The Middle Eocene Climatic Optimum (MECO): A multiproxy record of paleoceanographic changes in the Southeast Atlantic (ODP Site 1263, Walvis Ridge). Paleoceanography 2014, 29, 1143–1161. [Google Scholar] [CrossRef]
- Arimoto, J.; Nishi, H.; Kuroyanagi, A.; Takashima, R.; Matsui, H.; Ikehara, M. Changes in upper ocean hydrography and productivity across the Middle Eocene Climate Optimum: Local insights and global implications from the Northwest Atlantic. Glob. Planet. Change 2020, 193, 103258. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, A.; Barnet, J.S.K.; Bohaty, S.M.; de Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, R.; Cramwinckel, M.J.; Kocken, I.J.; Leutert, T.J.; Bohaty, S.M.; Fokkema, C.D.; Hull, P.M.; Meckler, A.N.; Middleburg, J.J.; Muller, I.A.; et al. North Atlantic surface warming and salinization in response to middle Eocene greenhouse warming. Sci. Adv. 2023, 9, eabq0110. [Google Scholar] [CrossRef] [PubMed]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Westerhold, T.; Rohl, U. Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the Chron C19r event: Missing link found in the tropical western Atlantic. Geochem. Geophys. Geosyst. 2013, 14, 4811–4825. [Google Scholar] [CrossRef]
- Westerhold, T.; Röhl, U.; Frederichs, T.; Agnini, C.; Raffi, I.; Zachos, J.C.; Wilkens, R.H. Astronomical calibration of the Ypresian time scale. Pangaea 2017, 13, 1129–1152. [Google Scholar] [CrossRef]
- Edgar, K.M.; Wilson, P.A.; Sexton, P.F.; Suganuma, Y. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 2007, 448, 908–911. [Google Scholar] [CrossRef]
- Westerhold, T.; Röhl, U.; Donner, B.; Zachos, J.C. Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanogr. Paleoclimatol. Paleoecol. 2018, 33, 626–642. [Google Scholar] [CrossRef]
- Soták, J.; Elbra, T.; Pruner, P.; Antolíková, S.; Schnobl, P.; Biron, A.; Kdyr, Š.; Milonsky, R. End-Cretaceous to middle Eocene events from the Alpine Tethys: Multi-proxy data from a reference section at Kršteňany (Western Carpathians). Paleogeogr. Paleoclimatol. Paleoecol. 2021, 579, 110571. [Google Scholar] [CrossRef]
- Intxauspe-Zubiaurre, B.; Martínez-Braceras, N.; Payros, A.; Ortiz, S.; Dinarès-Turell, J.; Flores, J.-A. The last Eocene hyperthermal (Chron C19r event, ~41.5 Ma): Chronological and paleoenvironmental insights from a continental margin (Cape Oyambre, N Spain). Paleogeogr. Paleoclimatol. Paleoecol. 2018, 505, 198–216. [Google Scholar] [CrossRef]
- Rivero-Cuesta, L.; Westerhold, T.; Alegret, L. The Late Lutetian Thermal Maximum (middle Eocene): First record of deep-seabenthic foraminiferal response. Palaeogeogr. Palaeoclimat. Palaeoecol. 2020, 545, 109637. [Google Scholar] [CrossRef]
- Tori, F.; Monechi, S. Lutetian calcareous nannofossil events in the Agost section (Spain): Implications toward a revision of the Middle Eocene biomagnetostratigraphy. Lethaia 2013, 46, 293–307. [Google Scholar] [CrossRef]
- Bralower, T.J. Data report: Paleocene–early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 (Shatsky Rise, Pacific Ocean). In Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX, USA, 27 August–23 October 2005; Bralower, T.J., Premoli Silva, I., Malone, M.J., Eds.; Ocean Drilling Program: College Station, TX, USA, 2005; Volume 198, pp. 1–15. [Google Scholar]
- Fornaciari, E.; Agnini, C.; Catanzariti, R.; Rio, D.; Bolla, E.M.; Valvasoni, E. Mid-latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition. Stratigraphy 2010, 7, 229–264. [Google Scholar] [CrossRef]
- Messaoud, J.H.; Thibault, N.; Bomou, B.; Adatte, T.; Monkenbusch, J.; Spangenberg, J.E.; Aljahdali, H.A.; Yaich, C. Integrated stratigraphy of the middle–upper Eocene Souar Formation (Tunisian Dorsal): Implications for the Middle Eocene Climatic Optimum (MECO) in the SW Neo-Tethys. Paleogeogr. Palaeoclimatol. Paleoecol. 2021, 581, 110639. [Google Scholar] [CrossRef]
- Bohaty, S.M.; Zachos, J.C. Significant Southern Ocean warming event in the late middle Eocene. Geology 2003, 31, 1017–1020. [Google Scholar] [CrossRef]
- Bohaty, S.M.; Zachos, J.C.; Florindo, F.; Delaney, M.L. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 2009, 24, PA2207. [Google Scholar] [CrossRef]
- Zhang, L.; Hay, W.W.; Wang, C.; Gu, X. The evolution of latitudinal temperature gradients from the latest Cretaceous through the Present. Earth-Sci. Rev. 2019, 189, 3274. [Google Scholar] [CrossRef]
- Cramwinckel, M.J.; Coxall, H.K.; Śliwińska, K.K.; Polling, M.; Harper, D.T.; Bijl, P.K.; Brinkhuis, H.; Eldrett, J.S.; Houben, J.P.; Peterse, F.; et al. A warm, stratified, and restricted Labrador Sea across the middle Eocene and its climatic optimum. Paleoceanogr. Paleoclimatol. 2020, 35, e2020PA003932. [Google Scholar] [CrossRef]
- Luciani, V.; Giusberti, L.; Agnini, C.; Fornaciari, E.; Rio, D.; Spofforth, D.J.A.; Palike, H. Ecological and evolutionary response of Tethyan planktonic foraminifera to the Middle Eocene Climate Optimum (MECO) from the Alano section (NE Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 82–95. [Google Scholar] [CrossRef]
- van der Boon, A.; van der Ploeg, R.; Cramwinckel, M.J.; Kuiper, K.F.; Popov, S.P.; Tabachnikova, I.P.; Palcu, D.V.; Krijgsman, W. Integrated stratigraphy of the Eocene–Oligocene deposits of the northern Caucasus (Belaya River, Russia): Intermittent oxygen-depleted episodes in the Peri-Tethys and Paratethys. Paleogeogr. Paleoclimatol. Paleoecol. 2019, 536, 109–395. [Google Scholar] [CrossRef]
- D’Onofrio, R.; Zaky, A.S.; Frontalini, F.; Luciani, V.; Catanzariti, R.; Francescangeli, F.; Giorgioni, M.; Coccioni, R.; Özcan, E.; Jovane, L. Impact of the Middle Eocene Climatic Optimum (MECO) on foraminiferal and calcareous nannofossil assemblages in the Neo-Tethyan Baskil section (eastern Turkey): Paleoenvironmental and paleoclimatic reconstructions. Appl. Sci. 2021, 11, 11339. [Google Scholar] [CrossRef]
- Gandolfi, A.; Giraldo-Gomez, V.M.; Luciani, V.; Piazza, M.; Adatte, T.; Arena, L.; Bomou, B.; Fornaciari, E.; Frija, G.; Kocsis, L.; et al. The Middle Eocene Climatic Optimum (MECO) impact on the benthic and planktonic foraminifera resilience from a shallow-water sedimentary recirs. Riv. Ital. Di Paleontol. Stratigr. 2023, 129, 629–651. [Google Scholar]
- Gandolfi, A.; Giraldo-Gómez, V.M.; Luciani, V.; Piazza, M.; Brombin, V.; Crobu, S.; Papazzoni, C.A.; Pignatti, J.; Briguglio, A. Unraveling ecological signals related to the MECO onset through planktic and benthic foraminiferal records along a mixed car-bonate-silciclastic shallow-water succession. Mar. Micropaleontol. 2024, 190, 102388. [Google Scholar] [CrossRef]
- Gandolfi, A.; Giraldo-Gómez, V.M.; Arena, L.; Luciani, V.; Papazzoni, C.A.; Pignatti, J.; Piazza, M.; Kocsis, L.; Baumgartner, C.; Briguglio, A. Diverse ecological responses of foraminifera to the Middle Eocene Climatic Optimum (MECO) in shallow-water settings (Provençal Domain, NW Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 661, 112697. [Google Scholar] [CrossRef]
- Wade, B.S. Planktonic foraminiferal biostratigraphy and mechanisms in the extinction of Morozovella in the late middle Eocene. Mar. Micropaleontol. 2004, 51, 23–38. [Google Scholar] [CrossRef]
- Berggren, W.A.; Olsson, R.K.; Premoli Silva, I. Chapter 1 Taxonomy, biostratigraphy and phylogenetic affinities of Eocene Astrorotalia, Igorina, Planorotalites, and Problematica (Praemurica? lozanoi). In Atlas of Eocene Planktonic Foraminifera; Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., Berggren, W.A., Eds.; Cushman Foundation for Foraminiferal Research: Fredrickburg, VA, USA, 2006; Volume 41, pp. 377–400. [Google Scholar]
- Pearson, P.N.; Berggren, W.A. Chapter 10: Taxonomy, biostratigraphy, and phylogeny of Morozovelloides n. gen. In Atlas of Eocene Planktonic Foraminifera; Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., Berggren, W.A., Eds.; Cushman Foundation for Foraminiferal Research: Fredrickburg, VA, USA, 2006; Volume 41, pp. 327–341. [Google Scholar]
- Fraass, A.J.; Kelly, D.K.; Peters, S. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 2015, 43, 139–166. [Google Scholar] [CrossRef]
- Schmidt, D.N.; Thierstein, H.R.; Bollmann, J.; Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 2004, 303, 207–210. [Google Scholar] [CrossRef]
- Boscolo Galazzo, F.; Giusberti, L.; Luciani, V.; Thomas, E. Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy). Palaeogeogr. Palaeocl. 2013, 378, 22–35. [Google Scholar] [CrossRef]
- Jovane, L.; Florindo, F.; Coccioni, R.; Dinarès-Turell, J.; Marsili, A.; Monechi, S.; Roberts, A.P.; Sprovieri, M. The Middle Eocene Climatic Optimum event in the Contessa Highway section, Umbrian Apennines, Italy. Bull. Geol. Soc. Am. 2007, 119, 413–427. [Google Scholar] [CrossRef]
- Savian, J.F.; Jovane, L.; Frontalini, F.; Trindade, R.I.F.; Coccioni, R.; Bohaty, S.M.; Wilson, P.A.; Florindo, F.; Roberts, A.P.; Catanzariti, R.; et al. Enhanced primary productivity and magnetotactic bacterial production in response to middle Eocene warming in the Neo-Tethys Ocean. Palaeogeogr. Palaeocl. 2014, 414, 32–45. [Google Scholar] [CrossRef]
- Cantalejo, B.; Pickering, K.T.; McNiocaill, C.; Bown, P.; Johansen, K.; Grant, M. A revised age-model for the Eocene deep-marine siliciclastic systems, Aínsa Basin, Spanish Pyrenees. J. Geol. Soc. 2021, 178, 131–172. [Google Scholar] [CrossRef]
- Jovane, L.; Sprovieri, M.; Coccioni, R.; Florindo, F.; Marsili, A.; Laskar, J. Astronomical calibration of the middle Eocene Contessa Highway section (Gubbio, Italy). Earth Planet. Sci. Lett. 2010, 298, 77–88. [Google Scholar] [CrossRef]
- Živković, S.; Babić, L. Palaeoceanographic implications of smaller benthic and planktonic foraminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia). Facies 2003, 49, 49–60. [Google Scholar] [CrossRef]
- Korbar, T. Orogen evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-Sci. Rev. 2009, 95, 296–312. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic carbonate platform: Palaeogeography, main events and depositional dynamics. Paleogeogr. Paleoclimatol. Paleoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Croatian Geological Survey: Geological Map of the Republic of Croatia at the Scale 1:300,000, Department of Geology, Croatian Geological Survey, Zagreb. 2009. Available online: https://www.kig.kartografija.hr/index.php/kig/article/view/158 (accessed on 26 June 2025).
- Chester, R. Marine Geochemistry, 2nd ed.; Wiley–Blackwell/Unwin Hyman: London, UK, 2000; pp. 1–520. [Google Scholar]
- Ryba, S.A.; Burgess, R.M. Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur and oxygen concentrations in marine sediments. Chemosphere 2002, 48, 139–147. [Google Scholar] [CrossRef]
- Galović, I.; Bajraktarević, Z. Sarmatian biostratigraphy of the Mt. Medvednica at Zagreb based on siliceous microfossils (north Croatia, central Paratethys). Geol. Carpath. 2006, 57, 199–210. [Google Scholar]
- Shamrock, J.L.; Munoz, E.J.; Carter, J.H. An improved sample preparation technique for calcareous nannofossils in organic-rich mudstones. J. Nannoplankton Res. 2015, 35, 101–110. [Google Scholar] [CrossRef]
- Perch-Nielsen, K. Cenozoic calcareous nannofossils. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 427–554. [Google Scholar]
- Galović, I. Sarmatijski Apnencev Nanoplankton, Silikoflagelati in Diatomeje Jugozahodnega Dela Paratetide. Ph.D. Thesis, Universitiy of Ljubljana, Ljubljana, Slovenija, 2009; pp. 1–199. [Google Scholar]
- Galović, I. Sarmatian biostratigraphy of a marginal sea in northern Croatia based on calcareous nannofossils. Mar. Micropaleontol. 2020, 161, 101928. [Google Scholar] [CrossRef]
- Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings of the Second Planktonic Conference, Roma, Farinacci, A., Ed. Tecnoscienza 1971, 2, 739–785. [Google Scholar]
- Green, O.R. A Manual of Practical Laboratory and Field Techniques in Palaeobiology; Kluwer Academic: London, UK, 2001; pp. 1–538. [Google Scholar]
- Ištuk, Ž.; Kampić, Š.; Felja, I.; Pavlović, M.; Tudor, T.; Jazvac, I.; Pezelj, Đ.; Horvat, M.; Čosović, V. Retrieving planktonic foraminifera from lithified rocks, examples from the Eocene limestones and marls (External Dinarides, Croatia). MethodsX 2023, 10, 102233. [Google Scholar] [CrossRef] [PubMed]
- Pearson, P.N.; Olsson, R.K.; Hemblen, C.; Huber, B.T.; Berggren, W.A. Atlas of Eocene Planktonic Foraminifera; Cushman Special Publication: Glen Allen, VA, USA, 2006; Volume 41, pp. 1–513. [Google Scholar]
- Wade, B.S.; Pearson, P.N.; Berggren, W.A.; Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Sci. Rev. 2011, 104, 111–142. [Google Scholar] [CrossRef]
- Luterbacher, H.P.; Ali, J.R.; Brinkhuis, H.; Gradstein, F.M.; Hooker, J.J.; Monechi, S.; Ogg, J.G.; Powell, J.; Röhl, U.; Sanfilippo, A.; et al. The Paleogene period. In A Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Smith, A.G., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 384–408. [Google Scholar]
- Azibeiro, L.A.; Kučera, M.; Jonkers, L.; Cloke-Hayes, A.; Sierro, F.J. Nutrients and hydrography explain the composition of recent Mediterranean planktonic foraminiferal assemblages. Mar. Micropal. 2023, 179, 102201. [Google Scholar] [CrossRef]
- Huber, B.T. Planktonic foraminifer biostratigraphy of Campanian–Maestrichtian sediments from Sites 698 and 700, southern South Atlantic. In Proceedings of the Ocean Drilling Program, Scientific Results; Ciesielski, P.F., Kristoffersen, Y., Eds.; Ocean Drilling Program: College Station, TX, USA, 1991; Volume 114, pp. 281–297. [Google Scholar] [CrossRef]
- Wade, B.S.; Aljahdali, M.H.; Mufrreh, Y.A.; Memesh, A.M.; Alsoubho, S.A.; Zalmout, I.S. Upper Eocene planktonic foraminifera from northern Saudi Arabia: Implications for stratigraphic ranges. J. Micropalaeontol. 2021, 40, 145–161. [Google Scholar] [CrossRef]
- Pettijohn, F.J. Sedimentary Rocks, 2nd ed.; Harper and Row Publishers: New York, NY, USA, 1975; pp. 1–628. [Google Scholar]
- Horvat, M.; Tomašić, N.; Aljinović, D.; Bucković, D.; Ćorić, S.; Ćosović, V.; Felja, I.; Galović, I.; Ištuk, Ž.; Kampić, Š.; et al. Eocene Weathering Oscillations Imprinted in Marl Mineral and Geochemical Record (Dinaric Foreland Basin, Croatia). J. Earth Sci. 2025, 36, 1236–1250. [Google Scholar] [CrossRef]
- Yurchenko, A.Y. Genesis of Calcite in Carbonates Within Sedimentary Basins According to Carbon and Oxygen Stable Isotopes Distribution; Moscow University Geology Bulletin: Moscow, Russia, 2014; pp. 107–110. [Google Scholar]
- Agnini, C.; Fornaciari, E.; Raffi, I.; Catanzariti, R.; Pälike, H.; Backman, J.; Rio, D. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 2014, 47, 131–181. [Google Scholar] [CrossRef]
- Agnini, C.; Backman, J.; Boscolo-Galazzo, F.; Condon, D.J.; Fornaciari, E.; Galeotti, S.; Giusberti, L.; Grandesso, P.; Lanci, L.; Luciani, V.; et al. Proposal for the Global Boundary Stratotype Section and Point (GSSP) for the Priabonian Stage (Eocene) at the Alano section (Italy). Episodes 2021, 44, 151–173. [Google Scholar] [CrossRef]
- Ogg, J.G. Geomagnetic Polarity Time Scale. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–192. [Google Scholar] [CrossRef]
- Berggren, W.A.; Kent, D.V.; Swisher III, C.C.; Aubry, M.-P. A Revised Cenozoic Gochronology and Chronostratigraphy. In Geochronology Time Scales and Global Stratigraphic Correlation; Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J., Eds.; SEPM: Tulsa, OK, USA, 1995; pp. 129–211995. [Google Scholar]
- Okada, K.H.; Bukry, D. Supplementary modifications and introduction of code numbers to the low latitude coccolith biostratigraphic zonation. Mar. Micropaleontol. 1980, 5, 321–325. [Google Scholar] [CrossRef]
- Živković, S.; Glumac, B. Paleoenvironmental reconstruction of the Middle Eocene Trieste-Patin Basin (Croatia) from benthic foraminiferal assemblages. Micropaleontology 2007, 53, 285–310. [Google Scholar] [CrossRef]
- Berggren, W.A.; Pearson, P.N. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J. Foraminifer. Res. 2005, 35, 279–298. [Google Scholar] [CrossRef]
- Dickens, G.R. The blast in the past. Nature 1999, 401, 752–755. [Google Scholar] [CrossRef]
- Spofforth, D.J.A.; Agnini, C.; Pälike, H.; Rio, D.; Fornaciari, E.; Giusberti, L.; Luciani, V.; Lanci, L.; Muttoni, G. Organic carbon burial following the Middle Eocene Climatic Optimum in the central western Tethys. Paleoceanography 2010, 25, 1–11. [Google Scholar] [CrossRef]
- Alegret, L.; Arreguin-Rodriguez, G.J.; Travina-Moreno, C.A.; Thomas, E. Turnover and stability in deep sea benthic foraminifera as tracers of Paleogene global changes. Glob. Planet. Change 2021, 196, 103372. [Google Scholar] [CrossRef]
- Gebhardt, H.; Ćorić, S.; Darga, R.; Briguglio, A.; Achenk, B.; Werner, W.; Andersen, N.; Sames, B. Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany). Aust. J. Earth Sci. 2013, 106, 45–72. [Google Scholar]
- Pearson, P.N.; Ditchfield, P.W.; Singano, J.; Harcourt-Brown, K.G.; Nicholas, C.J.; Olsson, R.K.; Shackleton, N.J.; Hall, M.A. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 2001, 413, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Pejnović, I.; Luciani, V.; Ćosović, V. Connecting morphological changes in planktonic foraminifera to Late Eocene cooling: A case study on Pseudohastigerina micra (Cole 1927) from the Dinaric foreland basin Adriatic Sea. Micropaleontology 2025, 71, 235–252. [Google Scholar] [CrossRef]
- Ćosović, V.; Drobne, K.; Moro, A. Paleoenvironmental model from Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies 2004, 50, 61–75. [Google Scholar] [CrossRef]
- Kearns, L.E.; Bohaty, S.M.; Edgar, K.M.; Nogué, S.; Ezard, T.H.G. Searching for function: Reconstructing adaptive niche changes using geochemical and morphological data planktonic foraminifera. Front. Ecol. Evol. 2021, 9, 679–722. [Google Scholar] [CrossRef]
- Aubry, M.-P. Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In The Eocene-Oligocene Climatic and Biotic Changes; Prothero, D., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 272–309. [Google Scholar] [CrossRef]
- Toffanin, F.; Agnini, C.; Fornaciari, E.; Rio, D.; Giusberti, L.; Luciani, V.; Spofforth, D.J.A.; Pälike, H. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Mar. Micropaleontol. 2011, 81, 22–31. [Google Scholar] [CrossRef]
- Bralower, T.J. Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography 2002, 17, 13-1–13-12. [Google Scholar] [CrossRef]
- Cachão, M.; Moita, M.T. Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Mar. Micropaleontol. 2000, 39, 131–155. [Google Scholar] [CrossRef]
- Rahman, A.; Roth, P.H. Late Neogene paleoceanography and paleoclimatology of the Gulf of Aden region based on calcareous nannofossils. Paleoceanography 1990, 5, 91–107. [Google Scholar] [CrossRef]
- Prista, G.; Narciso, Á.; Cachão, M. Coccolithus pelagicus subsp. braarudii morphological plasticity in response to variations in the Canary region upwelling system over the past 250 ka. Clim. Past Discuss. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
- Sharma, N.; Spangenberg, J.E.; Adatte, T.; Vennemann, T.; Kocsis, L.; Vérité, J.; Valero, L.; Castelltort, S. Middle Eocene Climatic Optimum (MECO) and its imprint in the continental Escanilla Formation, Spain. Clim. Past. 2024, 20, 935–949. [Google Scholar] [CrossRef]
- Peñalver-Clavel, I.; Agnini, C.; Westerhold, T.; Cramwinckel, M.J.; Dallanave, E.; Bhattacharya, J.; Sutherland, R.; Alegret, L. Integrated record of the Late Lutetian Thermal Maximum at IODP site U1508, Tasman Sea: The deep-sea response. Marine Micropaleontol. 2024, 191, 102390. [Google Scholar] [CrossRef]
- Waide, R.B.; Willig, M.R.; Steiner, C.F.; Mittelbach, G.; Gough, L.; Dodson, S.I.; Juday, G.P.; Parmenter, R. Less. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 1999, 30, 257–300. [Google Scholar]
- Giorgioni, M.; Jovane, L.; Rego, E.S.; Rodelli, D.; Frontalini, F.; Coccioni, R.; Catanzariti, R.; Özcan, E. Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum. Sci. Rep. 2019, 9, 9357. [Google Scholar] [CrossRef]
- Boulila, S.; Laskar, J.; Haq, B.U.; Galbrun, B.; Hara, N. Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers. Glob. Planet. Change 2018, 165, 128–136. [Google Scholar]
- Raffi, I.; Agnini, C.; Backman, J.; Catanzariti, R.; Pälike, H. A Cenozoic calcareous nannofossil biozonation from low and middle latitudes: A synthesis. J. Nannoplankton Res. 2016, 36, 121–132. [Google Scholar]
- Rodelli, D. Paleoceanographic Variations Through the Study of Rock Magnetic Properties: Biogenic Magnetite as a New Paleoenvironmental Indicator. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2018. [Google Scholar]
- Wade, B.S.; Bown, P.R. Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus, Paleogeogr. Paleoclimatol. Paleoecol. 2006, 223, 271–286. [Google Scholar] [CrossRef]
- Narciso, A.; Cachao, M.; de Abreu, L. Coccolithus pelagicus subsp. pelagicus versus Coccolithus pelagicus subsp. braarudii (Coccolithophore, Haptophyta): A proxy for surface subarctic Atlantic waters off Iberia during the last 200 kyr. Mar. Micropaleontol. 2006, 59, 15–34. [Google Scholar] [CrossRef]
- Bijma, I.; Faber, W.W.; Helminen, C. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory culture. J. Foraminifer. Res. 1990, 20, 95–116. [Google Scholar] [CrossRef]
- Juggins, S. C2 Software for Ecological and Palaeoecological Data Analysis and Visualisation; Newcastle University: Newcastle upon Tyne, UK, 2007; p. 73. [Google Scholar]
RAC 2c | J3 | |
---|---|---|
TOT/C (%) | 7.25 | 6.77 |
TOT/S (%) | 0.29 | 0.02 |
Total C% | 7.51 | 6.97 |
TOC% | 0.11 | 0.13 |
TIC% | 7.1 | 6.59 |
N% | 0.03 | 0.04 |
Insolble residum (%) | 41.04 | 37.72 |
Al2O3 (wt %) | 7.01 | 7.99 |
TiO2 (wt %) | 0.34 | 0.4 |
Mn | 0.12 | 0.08 |
Fe | 2.11 | 2.41 |
Sr (ppm) | 686.6 | 699.9 |
Ba (ppm) | 247 | 176 |
Th (ppm) | 4.4 | 5.2 |
U (ppm) | 1.4 | 1.4 |
Th/U | 3.14 | 3.71 |
Sr/Ba | 2.78 | 3.98 |
CaCO3 (wt %) | 61.86 | 55.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galović, I.; Pezelj, Đ.; Lukić, R.; Mužek, K.; Petrinjak, K.; Horvat, M.; Ćosović, V. Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia). Geosciences 2025, 15, 366. https://doi.org/10.3390/geosciences15090366
Galović I, Pezelj Đ, Lukić R, Mužek K, Petrinjak K, Horvat M, Ćosović V. Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia). Geosciences. 2025; 15(9):366. https://doi.org/10.3390/geosciences15090366
Chicago/Turabian StyleGalović, Ines, Đurđica Pezelj, Renata Lukić, Katja Mužek, Krešimir Petrinjak, Marija Horvat, and Vlasta Ćosović. 2025. "Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia)" Geosciences 15, no. 9: 366. https://doi.org/10.3390/geosciences15090366
APA StyleGalović, I., Pezelj, Đ., Lukić, R., Mužek, K., Petrinjak, K., Horvat, M., & Ćosović, V. (2025). Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia). Geosciences, 15(9), 366. https://doi.org/10.3390/geosciences15090366