Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case
Abstract
1. Introduction
2. Materials and Methods
2.1. Geological and Geomorphological Framework of the Study Area
2.2. Geomechanical: Surveys and Analytical Techniques
3. Results
- Rock-wall (°): The orientation of the rock wall in degrees.
- Group: Identifies different joint/structure groups (K1, K2, K3, S) present in the rock masses.
- Trend/Plunge (°): The orientation (direction and dip) of the joints or structures.
- Spacing (m): The average spacing between joints in m.
- Volume (m3): The volume associated with each station or joint.
- RMR: Rock Mass Rating.
- SMR: Slope Mass Rating.
- Class: The quality class of the rock mass.
- Quality: The qualitative description of the rock mass (e.g., “Very-poor”, “Poor”).
- Stability: The stability assessment (“Fairly stable”, “Weak”).
- GSI: Geological Strength Index.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A Review of Landslide Acceptable Risk and Tolerable Risk. Geoenviron. Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Special Report-National Research Council; Transportation Research Board: Washington, DC, USA, 1996; p. 247. [Google Scholar]
- Varnes, D. Slope Movement Types and Processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Pánek, T.; Břežný, M.; Smedley, R.; Winocur, D.; Schönfeldt, E.; Agliardi, F.; Fenn, K. The Largest Rock Avalanches in Patagonia: Timing and Relation to Patagonian Ice Sheet Retreat. Quat. Sci. Rev. 2023, 302, 107962. [Google Scholar] [CrossRef]
- Borrelli, L.; Critelli, S.; Gullà, G.; Muto, F. Weathering Grade and Geotectonics of the Western-Central Mucone River Basin (Calabria, Italy). J. Maps 2014, 11, 606–624. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Empirical Strength Criterion for Rock Masses. J. Geotech. Eng. Div. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Barton, N.; Lien, R.; Lunde, J. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mech. Felsmech. Méc. Roches 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Wang, Q. Deformation and Failure Characteristics of the Rock Masses around Deep Underground Caverns. Math. Probl. Eng. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Borrelli, L.; Greco, R.; Gullà, G. Weathering Grade of Rock Masses as a Predisposing Factor to Slope Instabilities: Reconnaissance and Control Procedures. Geomorphology 2007, 87, 158–175. [Google Scholar] [CrossRef]
- Nkpadobi, J.I.; Raj, J.K.; Ng, T.F. Influence of Discontinuities on the Stability of Cut Slopes in Weathered Meta-Sedimentary Rocks. Geomech. Geoengin. 2015, 10, 290–302. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Smith, K.; Petley, D.N. Environmental Hazards: Assessing Risk and Reducing Disaster; Routledge: New York, NY, USA, 2009. [Google Scholar]
- Small, J.C. Geomechanics in Soil, Rock, and Environmental Engineering; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Guccione, D.E.; Barros, G.; Thoeni, K.; Huang, Z.; Giacomini, A.; Buzzi, O. A New Stochastic Rockfall Fragmentation Approach for Lumped Mass Simulations. Rock Mech. Rock Eng. 2025, 1–34. [Google Scholar] [CrossRef]
- Matas, G.; Lantada, N.; Corominas, J.; Gili, J.; Ruiz-Carulla, R.; Prades, A. Simulation of Full-Scale Rockfall Tests with a Fragmentation Model. Geosciences 2020, 10, 168. [Google Scholar] [CrossRef]
- Gili, J.A.; Ruiz, R.; Matas, G.; Corominas, J.; Lantada, N.; Núñez, M.A.; Mavrouli, O.; Buill, F.; Moya, J.; Prades, A.; et al. Experimental Study on Rockfall Fragmentation: In Situ Test Design and First Results. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; Volume 2, pp. 983–990. [Google Scholar]
- Ji, Z.M.; Chen, T.L.; Wu, F.Q.; Li, Z.H.; Niu, Q.H.; Wang, K.Y. Assessment and Prevention on the Potential Rockfall Hazard of High-Steep Rock Slope: A Case Study of Zhongyuntai Mountain in Lianyungang, China. Nat. Hazards 2023, 115, 2117–2139. [Google Scholar] [CrossRef]
- Matas, G.; Lantada, N.; Corominas, J.; Gili, J.A.; Ruiz-Carulla, R.; Prades, A. RockGIS: A GIS-Based Model for the Analysis of Fragmentation in Rockfalls. Landslides 2017, 14, 1565–1578. [Google Scholar] [CrossRef]
- Whittaker, B.N.; Singh, R.N.; Sun, G. Rock Fracture Mechanics: Principles, Design and Applications; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Zito, C.; Mangifesta, M.; Francioni, M.; Guerriero, L.; Di Martire, D.; Calcaterra, D.; Pasculli, A.; Sciarra, N. Cascading landslides at Morino-Rendinara, L’Aquila, Central Italy: Numerical modelling of slope-scale prospective debris flow propagation. Ital. J. Eng. Geol. Environ. 2024, 285–293. [Google Scholar] [CrossRef]
- Zito, C.; Mangifesta, M.; Francioni, M.; Guerriero, L.; Di Martire, D.; Calcaterra, D.; Sciarra, N. Cascading Landslide: Kinematic and Finite Element Method Analysis through Remote Sensing Techniques. Remote. Sens. 2024, 16, 3423. [Google Scholar] [CrossRef]
- Parotto, M. Stratigrafy and Tectonics of the Eastern Simbruini and Western Marsica Ranges (Central Apennines–Italy). Atti Accad. Naz. Lincei Mem 1971, 10, 93–170. [Google Scholar]
- Pasculli, A.; Zito, C.; Mangifesta, M.; Sciarra, N. Back Analysis of a Real Debris Flow, the Morino-Rendinara Test Case (Italy), Using RAMMS Software. Land 2024, 13, 2078. [Google Scholar] [CrossRef]
- Saroli, M.; Biasini, A.; Cavinato, G.P.; Di Luzio, E. Geological Setting of the Southern Sector of the Roveto Valley (Central Apennines, Italy). Boll. Soc. Geol. Ital. 2003, 122, 467–482. [Google Scholar]
- Goodman, R.E. Introduction to Rock Mechanics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Priest, S.D.; Hudson, J.A. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys. Int. J. Rock Mech. Min. Sci. 1981, 18, 183–197. [Google Scholar] [CrossRef]
- Hudson, J.; Harrison, J.; Popescu, M. Engineering Rock Mechanics: An Introduction to the Principles. Appl. Mech. Rev. 2002, 55, B30. [Google Scholar] [CrossRef]
- Hoek, E.; Bray, J.D. Rock Slope Engineering; CRC press: Boca Raton, FL, USA, 1981. [Google Scholar]
- Irfan, T.Y.; Dearman, W.R. Engineering Classification and Index Properties of a Weathered Granite. Bull. Int. Assoc. Eng. Geol. 1978, 17, 79–90. [Google Scholar] [CrossRef]
- Palmstrom, A. Measurements of and Correlations between Block Size and Rock Quality Designation (RQD). Tunn. Undergr. Space Technol. 2005, 20, 362–377. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Romana, M. New Adjustment Ratings for Application of Bieniawski Classification to Slopes. In Proceedings of the International Symposium on Role of Rock Mechanics, Zacatecas, Mexico, 2–4 September 1985. [Google Scholar]
- Szilagyi, K.; Borosnyoi, A. 50 Years of Experience with the Schmidt Rebound Hammer. Concr. Struct. 2009, 10, 46–56. [Google Scholar]
- Marinos, P.; Hoek, E. GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation. In Proceedings of the GeoEng 2000 at the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 19–24 November 2000; pp. 1422–1446. [Google Scholar]
- Sonmez, H.; Ulusay, R. Modifications to the Geological Strength Index (GSI) and Their Applicability to Stability of Slopes. Int. J. Rock Mech. Min. Sci. 1999, 36, 743–760. [Google Scholar] [CrossRef]
- Ruiz-Carulla, R.; Corominas, J. Analysis of Rockfalls by Means of a Fractal Fragmentation Model. Rock Mech. Rock Eng. 2020, 53, 1433–1455. [Google Scholar] [CrossRef]
- Giacomini, A.; Buzzi, O.; Renard, B.; Giani, G.P. Experimental Studies on Fragmentation of Rock Falls on Impact with Rock Surfaces. Int. J. Rock Mech. Min. Sci. 2009, 46, 708–715. [Google Scholar] [CrossRef]
- Giacomini, A.; Thoeni, K.; Lambert, C.; Booth, S.; Sloan, S.W. Experimental Study on Rockfall Drapery Systems for Open Pit Highwalls. Int. J. Rock Mech. Min. Sci. 2012, 56, 171–181. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Migliazza, M.; Pirulli, M. Advance Survey and Modelling Technologies for the Study of the Slope Stability in an Alpine Basin. Nat. Hazards 2014, 76, 303–326. [Google Scholar] [CrossRef]
- Wang, Y.; Tonon, F. Discrete Element Modeling of Rock Fragmentation upon Impact in Rock Fall Analysis. Rock Mech. Rock Eng. 2010, 44, 23–35. [Google Scholar] [CrossRef]
- Wang, Y.; Tonon, F. Dynamic Validation of a Discrete Element Code in Modeling Rock Fragmentation. Int. J. Rock Mech. Min. Sci. 2011, 48, 535–545. [Google Scholar] [CrossRef]
- Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical Estimates of Rock Mass Strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Tian, D.; Zheng, H. The Generalized Mohr-Coulomb Failure Criterion. Appl. Sci. 2023, 13, 5405. [Google Scholar] [CrossRef]
- Thornton, C. Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres. J. Appl. Mech. 1997, 64, 383–386. [Google Scholar] [CrossRef]
- Buzzi, O.; Giacomini, A.; Spadari, M. Laboratory Investigation on High Values of Restitution Coefficients. Rock Mech. Rock Eng. 2012, 45, 35–43. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhao, J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef]
- German, R.M. Fragmentation Behaviour in Particulate Materials Processing. Powder Metall. 2009, 52, 196–204. [Google Scholar] [CrossRef]
- Oppikofer, T.; Saintot, A.; Hermanns, R.L.; Böhme, M.; Scheiber, T.; Gosse, J.; Dreiås, G.M. From Incipient Slope Instability through Slope Deformation to Catastrophic Failure—Different Stages of Failure Development on the Ivasnasen and Vollan Rock Slopes (Western Norway). Geomorphology 2017, 289, 96–116. [Google Scholar] [CrossRef]
- De Blasio, F.V.; Crosta, G.B. Fragmentation and Boosting of Rock Falls and Rock Avalanches. Geophys. Res. Lett. 2015, 42, 8463–8470. [Google Scholar] [CrossRef]
- Scesi, L.; Gattinoni, P. Water Circulation in Rocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Nocilla, N.; Evangelista, A.; Scotto Di Santolo, A. Fragmentation during Rock Falls: Two Italian Case Studies of Hard and Soft Rocks. Rock Mech. Rock Eng. 2008, 42, 815–833. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Maruvanchery, V.; Liu, G. Water Effects on Rock Strength and Stiffness Degradation. Acta Geotech. 2015, 11, 713–737. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Ván, P. Influence of Water Content on the Strength of Rock. Eng. Geol. 2006, 84, 70–74. [Google Scholar] [CrossRef]
- Fathani, T.F.; Legono, D.; Karnawati, D. A Numerical Model for the Analysis of Rapid Landslide Motion. Geotech. Geol. Eng. 2017, 35, 2253–2268. [Google Scholar] [CrossRef]
- Yang, H.Q.; Lan, Y.F.; Lu, L.; Zhou, X.P. A Quasi-Three-Dimensional Spring-Deformable-Block Model for Runout Analysis of Rapid Landslide Motion. Eng. Geol. 2015, 185, 20–32. [Google Scholar] [CrossRef]
Parameters | Set 1 | Set 2 | Set 3 |
---|---|---|---|
Fragmentation | −9999 (off) | 0.30 | 0.65 |
Kna [-] | 19.50 | ||
Knb [-] | −1.03 | ||
Kta [-] | 200 | ||
Rock Density [kg/m3] | 2400 | ||
Na1 [-] | 0.003 | ||
Na2 [-] | 0.75 | ||
b1 [-] | 0.92 | ||
b2 [-] | −0.52 | ||
q1 [-] | −0.51 | ||
q2 [-] | 1.0 | ||
Cone [°] | 45° | ||
Seed | 12345-56789-11111-12131 | 12345-56789-11111-12131 | 12345-56789-11111-12131 |
Station | Rock-Wall | Group | Trend/Plunge | Spacing | Volume | RMR | SMR | Class | Quality | Stability | GSI |
---|---|---|---|---|---|---|---|---|---|---|---|
(°) | (°) | (m) | (m3) | ||||||||
ST1 | 360/88 | K1 | 134/82 | 0.43 | 2 | 45 | 60 | III | Moderate | Fairly stable | 40–45 |
K2 | 181/86 | 0.58 | |||||||||
K3 | 214/66 | 1.07 | |||||||||
ST2 | 215/75 | K1 | 125/8 | 1.10 | 2 | 60 | 31 | IV | Moderate | Weak | 50–55 |
K3 | 211/71 | 0.41 | |||||||||
S | 328/64 | 0.39 | |||||||||
ST3 | 130/65 | K1 | 120/79 | 0.26 | 3 | 40 | 55 | III | Poor | Fairly stable | 35–40 |
K3 | 211/79 | 0.16 | |||||||||
ST4 | 360/75 | K2 | 182/87 | 0.81 | 5 | 54 | 60 | III | Poor | Fairly stable | 35–40 |
S | 282/24 | 0.85 | |||||||||
ST5 | 030/82 | K1 | 96/42 | 1.30 | 5 | 44 | 59 | III | Poor | Fairly stable | 35–40 |
K2 | 350/85 | 0.17 | |||||||||
K3 | 235/74 | 0.44 | |||||||||
ST6 | 360/62 | K1 | 166/71 | 0.16 | 2 | 45 | 60 | III | Poor | Fairly stable | 35–40 |
K2 | 31/67 | 0.15 | |||||||||
K3 | 359/70 | 0.16 | |||||||||
ST7 | 360/80 | K1 | 132/76 | 0.81 | 2 | 42 | 51 | III | Poor | Fairly stable | 35–40 |
K2 | 179/85 | 0.39 | |||||||||
S | 277/76 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zito, C.; Mangifesta, M.; Francioni, M.; Guerriero, L.; Di Martire, D.; Calcaterra, D.; Cencetti, C.; Pasculli, A.; Sciarra, N. Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case. Geosciences 2025, 15, 354. https://doi.org/10.3390/geosciences15090354
Zito C, Mangifesta M, Francioni M, Guerriero L, Di Martire D, Calcaterra D, Cencetti C, Pasculli A, Sciarra N. Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case. Geosciences. 2025; 15(9):354. https://doi.org/10.3390/geosciences15090354
Chicago/Turabian StyleZito, Claudia, Massimo Mangifesta, Mirko Francioni, Luigi Guerriero, Diego Di Martire, Domenico Calcaterra, Corrado Cencetti, Antonio Pasculli, and Nicola Sciarra. 2025. "Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case" Geosciences 15, no. 9: 354. https://doi.org/10.3390/geosciences15090354
APA StyleZito, C., Mangifesta, M., Francioni, M., Guerriero, L., Di Martire, D., Calcaterra, D., Cencetti, C., Pasculli, A., & Sciarra, N. (2025). Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case. Geosciences, 15(9), 354. https://doi.org/10.3390/geosciences15090354