Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Data Acquisition
3.2. Bathymetry Data Modeling
3.3. Geomagnetic Data Modeling
3.3.1. Total Magnetic Intensity (TMI) Map Generation
3.3.2. Analytic Signal Amplitude (ASA) Transformation
D Magnetic Modeling
4. Results
4.1. General Morphology of the Nieuwerkerk Volcano Edifice and Surrounding Areas
4.2. Morphology of the Western Part of Nieuwerkerk Volcano
4.3. Morphology of the Eastern Part of Nieuwerkerk Volcano
4.4. Evidence for Potential Landslide Scarps
4.5. Magnetic Anomaly of Nieuwerkerk Volcano
The Subsurface Magnetic Anomaly
5. Discussion
5.1. The Interaction of Volcanic Features/Morphology, Volcanism, Tectonic, and Erosive–Depositional Processes
5.2. Subsurface Condition Beneath Nieuwerkerk Volcano
5.3. Preliminary Hazard Assessment
5.4. Recomendations
6. Conclusions
- The main Nieuwerkerk Volcano edifice extends approximately 80 km in a NE–SW direction, with a maximum width of around 30 km. The volcano exhibits a total relief of about 3460 m, with shallower depths of 350 m below sea level (bsl). The observed discrepancy of over 2000 m between our research and the measurements recorded during Snellius’ expedition in 1930 (which indicated a shallower depth of 2300 m bsl) likely indicates the limitations inherent in the accuracy of the single-beam and lead-line surveys conducted in the 1930s.
- The western part of Nieuwerkerk Volcano consists of what is possibly a crater-like depression or a collapsed sector, or a large-scale sector failure that removed the original summit, measuring between 10 and 12 km in diameter. The traces of lineaments are also revealed within the central part of the depression with a NE–SW orientation. It is proposed that collapse processes could potentially be initiated by a combination of volcanism (eruption) and tectonic factors (including the presence of weak zones or faults).
- The morphology of the eastern part exhibits greater complexity. There are twin peaks, thought to be the most recent eruption centers, that reach depths of 350 and 380 m bsl and are situated approximately 7 to 7.5 km apart. The surrounding slope of these twin peaks ranges from 30° to 45°. This suggests that the latest activities have occurred mainly in the eastern part. Additionally, numerous lineaments are observed in the eastern part, predominantly oriented in a NE–SW direction, with the main fault extending over 20 km.
- The morphological characteristics of Nieuwerkerk Volcano were influenced by the interplay of volcanic activity, tectonic, and erosive–depositional processes. The landscape features include channels, scarps, debris accumulations, and steep slopes, especially in the eastern region, that are associated with geological lineaments such as faults. The largest potential landslide scarp threat measures 12 km in width and 13 km in length. Additionally, tectonic factors, specifically the presence of potential weak zone or faults, played a significant role in the location of the eruption centers.
- The shallow parts (<2 km) of the central Nieuwerkerk edifice are more magnetized than its deeper parts, which can be linked to volcanic deposits, such as lava flows. In contrast, the deeper parts, which exhibit lower magnetization, may indicate the presence of an active magma source. Furthermore, this could also be related to an updomed Nieuwerkerk Volcanic basement or a hydrothermally altered and demagnetized part of the Nieuwerkerk edifice.
- The initial evidence presented herein indicates that Nieuwerkerk Volcano represents a considerable geological hazard, including volcanic eruptions and mass wasting processes (landslides/slope failures/collapses), particularly in the eastern part, which may initiate volcano tsunamis. However, to achieve a more robust interpretation, we suggest conducting a continuing expedition to fill in many gaps and to further investigate the evidence supporting the preliminary results.
- The integration of additional geophysical data, including gravity, seismic, and SBP surveys, must be performed in the future to obtain more robust results. The magnetic survey should be re-conducted to cover the blank areas based on the last survey. These geophysical datasets can be accompanied by ROV-based surveys, rock sampling, and water characterization (CTD) for a more comprehensive study. Furthermore, meticulous planning regarding expedition timing and vessel selection is very important to ensure efficient and successful data acquisition in the Banda Sea.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VEI | Volcanic Explosivity Index |
ISI | Institute for Scientific Information |
EOC | Emperor of China |
NE | Northeast |
SW | Southwest |
DEM | Digital Elevation Model |
GPS | Global Positioning System |
SVP | Sound Velocity Profile |
GNSS | Global Navigation Satellite System |
NW | Northwest |
SE | Southeast |
bsl | Below Sea Level |
SBP | Sub-Bottom Profiler |
ROV | Remotely Operated Underwater Vehicle |
CTD | Conductivity, Temperature, and Depth |
References
- Day, S.J. Chapter 58—Volcanic Tsunamis. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 993–1009. ISBN 978-0-12-385938-9. [Google Scholar]
- Williams, R.; Rowley, P.; Garthwaite, M.C. Reconstructing the Anak Krakatau Flank Collapse That Caused the December 2018 Indonesian Tsunami. Geology 2019, 47, 973–976. [Google Scholar] [CrossRef]
- Auker, M.R.; Sparks, R.S.J.; Siebert, L.; Crosweller, H.S.; Ewert, J. A Statistical Analysis of the Global Historical Volcanic Fatalities Record. J. Appl. Volcanol. 2013, 2, 2. [Google Scholar] [CrossRef]
- Perttu, A.; Caudron, C.; Assink, J.D.; Metz, D.; Tailpied, D.; Perttu, B.; Hibert, C.; Nurfiani, D.; Pilger, C.; Muzli, M.; et al. Reconstruction of the 2018 Tsunamigenic Flank Collapse and Eruptive Activity at Anak Krakatau Based on Eyewitness Reports, Seismo-Acoustic and Satellite Observations. Earth Planet. Sci. Lett. 2020, 541, 116268. [Google Scholar] [CrossRef]
- Zorn, E.U.; Orynbaikyzy, A.; Plank, S.; Babeyko, A.; Darmawan, H.; Robbany, I.F.; Walter, T.R. Identification and Ranking of Volcanic Tsunami Hazard Sources in Southeast Asia. EGUsphere 2022, 2022, 1–38. [Google Scholar] [CrossRef]
- Fan, T.; Wang, Y.; Xu, Z.; Sun, L.; Wang, P.; Hou, J. A Review of Historical Volcanic Tsunamis: A New Scheme for a Volcanic Tsunami Monitoring System. J. Mar. Sci. Eng. 2024, 12, 278. [Google Scholar] [CrossRef]
- Paris, R.; Switzer, A.D.; Belousova, M.; Belousov, A.; Ontowirjo, B.; Whelley, P.L.; Ulvrova, M. Volcanic Tsunami: A Review of Source Mechanisms, Past Events and Hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Nat. Hazards 2014, 70, 447–470. [Google Scholar] [CrossRef]
- Syamsidik; Benazir; Luthfi, M.; Suppasri, A.; Comfort, L.K. The 22 December 2018 Mount Anak Krakatau Volcanogenic Tsunami on Sunda Strait Coasts, Indonesia: Tsunami and Damage Characteristics. Nat. Hazards Earth Syst. 2020, 20, 549–565. [Google Scholar] [CrossRef]
- Lee, H.S.; Sambuaga, R.D.; Flores, C. Effects of Tsunami Shelters in Pandeglang, Banten, Indonesia, Based on Agent-Based Modelling: A Case Study of the 2018 Anak Krakatoa Volcanic Tsunami. J. Mar. Sci. Eng. 2022, 10, 1055. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J.; Winspear, N.; Bongolan, V.P.; Fisher, S. Tonga Volcanic Eruption and Tsunami, January 2022: Globally the Most Significant Opportunity to Observe an Explosive and Tsunamigenic Submarine Eruption since AD 1883 Krakatau. Geosci. Lett. 2022, 9, 24. [Google Scholar] [CrossRef]
- Gallotti, G.; Zaniboni, F.; Pagnoni, G.; Romagnoli, C.; Gamberi, F.; Marani, M.; Tinti, S. Tsunamis from Prospected Mass Failure on the Marsili Submarine Volcano Flanks and Hints for Tsunami Hazard Evaluation. Bull. Volcanol. 2020, 83, 2. [Google Scholar] [CrossRef]
- Newland, E.L.; Mingotti, N.; Woods, A.W. Dynamics of Deep-Submarine Volcanic Eruptions. Sci. Rep. 2022, 12, 3276. [Google Scholar] [CrossRef]
- Lavayssière, A.; Bazin, S.; Royer, J.-Y. Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase. Geosciences 2024, 14, 170. [Google Scholar] [CrossRef]
- van Padang, M.N. History of the Volcanology in the Former Netherlands East Indies. Scr. Geol. 1983, 71, 1–76. [Google Scholar]
- Cornee, J.J.; Villeneuve, M.; Ferrandini, M.; Hinschberger, F.; Malod, J.A.; Matsumaru, K.; Ribaud-Laurenti, A.; Rehault, J.P. Oligocene reefal deposits in the Pisang Ridge and the origin of the Lucipara Block (Banda Sea, eastern Indonesia). Geo-Mar. Lett. 2002, 22, 66–74. [Google Scholar]
- Tim Pusat Studi Gempa Nasional. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017; Kementrerian Pekerjaan Umum dan Perumahan Rakyat: Jakarta, Indonesia, 2017; ISBN 978-602-5489-01-3. [Google Scholar]
- Badan Informasi Geospasial (BIG). Atlas Nasional Indonesia (e-Atlas Application) MapServer. [PTRA/Atlas_Sebaran_GunungApi (MapServer)]. 2021. Available online: https://atlas.big.go.id/#/ (accessed on 5 May 2025).
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1027. [Google Scholar] [CrossRef]
- Badan Informasi Geospasial (BIG). (n.d.) National Bathymetry of Indonesia Basemap [Basemap Data], InaGeoportal. Available online: https://tanahair.indonesia.go.id/portal-web/webmap (accessed on 4 January 2025).
- Honthaas, C.; Réhault, J.-P.; Maury, R.C.; Bellon, H.; Hémond, C.; Malod, J.-A.; Cornée, J.-J.; Villeneuve, M.; Cotten, J.; Burhanuddin, S.; et al. A Neogene Back-Arc Origin for the Banda Sea Basins: Geochemical and Geochronological Constraints from the Banda Ridges (East Indonesia). Tectonophysics 1998, 298, 297–317. [Google Scholar] [CrossRef]
- Alodia, G.; Nugroho, A.B.; Nurhidayat; Kalambo, Y.; Fadillah, A.; Pratama, A.; Wiguna, T. A Preliminary Magnetic Anomaly Study of the Nieuwerkerk Seamount, Banda Sea, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1163, 012017. [Google Scholar] [CrossRef]
- Febriawan, H.K.; Nugroho, A.B.; Alodia, G.; Hascaryo, A.; Fadillah, A.; Aryanto, N.C.D.; Haryanto, D.; Muljana, B.; Endyana, C.; Purba, N.P. Nieuwerkerk—Emperor of China (NEC) Seamounts (Banda Sea): A Multibeam Seafloor Imagery Analysis. IOP Conf. Ser. Earth Environ. Sci. 2023, 1163, 012018. [Google Scholar] [CrossRef]
- Hamilton, W.B. Tectonics of the Indonesian Region; U.S. Government Publishing Office: Washington, DC, USA, 1979.
- Jolivet, L.; Huchon, P.; Rangin, C. Tectonic Setting of Western Pacific Marginal Basins. Tectonophysics 1989, 160, 23–47. [Google Scholar] [CrossRef]
- Hinschberger, F.; Malod, J.-A.; Réhault, J.-P.; Villeneuve, M.; Royer, J.-Y.; Burhanuddin, S. Late Cenozoic Geodynamic Evolution of Eastern Indonesia. Tectonophysics 2005, 404, 91–118. [Google Scholar] [CrossRef]
- Aryanto, N.C.D.; Kurnio, H.; Tuakia, M.Z.; Tampubolon, A.; Pardiarto, B.; Widi, B.N.; Widodo, W. Kusnawan Quaternary Seabed Sediment Characteristics as an Indication of VMS-Mineral Deposits at the South Banda Basin and Its Surroundings, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1163, 012015. [Google Scholar] [CrossRef]
- Briggs, I.C. Machine Contouring Using Minimum Curvature. Geophysics 1974, 39, 39–48. [Google Scholar] [CrossRef]
- Roest, W.R.; Verhoef, J.; Pilkington, M. Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics 1992, 57, 116–125. [Google Scholar] [CrossRef]
- Blakely, R. Potential Theory in Gravity and Magnetic Applications; Nachdr.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-41508-8. [Google Scholar]
- Fournier, D.; Oldenburg, D.W. Inversion Using Spatially Variable Mixed ℓp Norms. Geophys. J. Int. 2019, 218, 268–282. [Google Scholar] [CrossRef]
- Cockett, R.; Kang, S.; Heagy, L.J.; Pidlisecky, A.; Oldenburg, D.W. SimPEG: An Open Source Framework for Simulation and Gradient Based Parameter Estimation in Geophysical Applications. Comput. Geosci. 2015, 85, 142–154. [Google Scholar] [CrossRef]
- Fournier, D.; Heagy, L.J.; Oldenburg, D.W. Sparse magnetic vector inversion in spherical coordinates. Geophysics 2020, 85, J33–J49. [Google Scholar] [CrossRef]
- UBC-GIF. Sparse and Blocky Norms. 6.7. Sparse and Blocky Norms—GIFtoolsCookbook 1.0 Documentation; UBC-GIF: Vancouver, BC, Canada, 2024; Available online: https://giftoolscookbook.readthedocs.io/en/latest/content/fundamentals/Norms.html (accessed on 17 July 2024).
- Golden Software. Kriging, Version 29.3. Available online: https://surferhelp.goldensoftware.com/griddata/idd_grid_data_kriging.htm (accessed on 11 March 2025).
- Moore, J.G.; Clague, D.A.; Holcomb, R.T.; Lipman, P.W.; Normark, W.R.; Torresan, M.E. Prodigious Submarine Landslides on the Hawaiian Ridge. J. Geophys. Res. Solid Earth 1989, 94, 17465–17484. [Google Scholar] [CrossRef]
- Paguican, E.M.R.; van Wyk de Vries, B.; Lagmay, A.M.F. Hummocks: How They Form and How They Evolve in Rockslide-Debris Avalanches. Landslides 2014, 11, 67–80. [Google Scholar] [CrossRef]
- Lagmay, A.M.F.; Escape, C.M.; Ybañez, A.A.; Suarez, J.K.; Cuaresma, G. Anatomy of the Naga City Landslide and Comparison with Historical Debris Avalanches and Analog Models. Front. Earth Sci. 2020, 8, 312. [Google Scholar] [CrossRef]
- Miller, C.A.; Schaefer, L.N.; Kereszturi, G.; Fournier, D. Three-dimensional mapping of mt. Ruapehu volcano, new zealand, from aeromagnetic data inversion and hyperspectral imaging. J. Geophys. Res. 2020, 125, e2019JB018247. [Google Scholar] [CrossRef]
- Hantoro, W.S.; Pirazzoli, P.A.; Jouannic, C.; Faure, H.; Hoang, C.T.; Radtke, U.; Causse, C.; Best, M.B.; Lafont, R.; Bieda, S.; et al. Quaternary Uplifted Coral Reef Terraces on Alor Island, East Indonesia. Coral Reefs 1994, 13, 215–223. [Google Scholar] [CrossRef]
- Jouannic, C.; Hoang, C.-T.; Soepri Hantoro, W.; Delinom, R.M. Uplift Rate of Coral Reef Terraces in the Area of Kupang, West Timor: Preliminary Results. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1988, 68, 259–272. [Google Scholar] [CrossRef]
- Major, J.; Harris, R.; Chiang, H.-W.; Cox, N.; Shen, C.-C.; Nelson, S.T.; Prasetyadi, C.; Rianto, A. Quaternary Hinterland Evolution of the Active Banda Arc: Surface Uplift and Neotectonic Deformation Recorded by Coral Terraces at Kisar, Indonesia. J. Asian Earth Sci. 2013, 73, 149–161. [Google Scholar] [CrossRef]
- Nguyen, N.; Duffy, B.; Shulmeister, J.; Quigley, M. Rapid Pliocene Uplift of Timor. Geology 2013, 41, 179–182. [Google Scholar] [CrossRef]
- Roosmawati, N.; Harris, R. Surface Uplift History of the Incipient Banda Arc-Continent Collision: Geology and Synorogenic Foraminifera of Rote and Savu Islands, Indonesia. Tectonophysics 2009, 479, 95–110. [Google Scholar] [CrossRef]
- Alawiyah, S.; Kadir, W.G.A.; Santoso, D.; Wahyudi, E.J.; Aji, W.; Gunawan, I. Modeling of Subsurface Structure by Using Magnetic Methods in the Area of Mt. Pandan, Indonesia. Arab. J. Geosci. 2022, 15, 1330. [Google Scholar] [CrossRef]
- Biasi, J.; Tivey, M.; Fluegel, B. Volcano Monitoring With Magnetic Measurements: A Simulation of Eruptions at Axial Seamount, Kīlauea, Bárðarbunga, and Mount Saint Helens. Geophys. Res. Lett. 2022, 49, e2022GL100006. [Google Scholar] [CrossRef]
- Fluegel, B.; Tivey, M.; Biasi, J.; Chadwick, W.W., Jr.; Nooner, S.L. The Magnetization of an Underwater Caldera: A Time-Lapse Magnetic Anomaly Study of Axial Seamount. Geophys. Res. Lett. 2022, 49, e2022GL100008. [Google Scholar] [CrossRef]
- Finn, C.A.; Morgan, L.A. High-Resolution Aeromagnetic Mapping of Volcanic Terrain, Yellowstone National Park. J. Volcanol. Geotherm. Res. 2002, 115, 207–231. [Google Scholar] [CrossRef]
- Fujii, M.; Okino, K.; Honsho, C.; Dyment, J.; Szitkar, F.; Mochizuki, N.; Asada, M. High-Resolution Magnetic Signature of Active Hydrothermal Systems in the Back-Arc Spreading Region of the Southern Mariana Trough. J. Geophys. Res. Solid Earth 2015, 120, 2821–2837. [Google Scholar] [CrossRef]
- Cocchi, L.; Caratori Tontini, F.; Muccini, F.; De Ronde, C.E.J. Magnetic Expression of Hydrothermal Systems Hosted by Submarine Calderas in Subduction Settings: Examples from the Palinuro and Brothers Volcanoes. Geosciences 2021, 11, 504. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Z.; Han, X.; Wang, Y.; Zhang, J.; Wang, Q. The Structure and Near-Bottom Magnetic Anomaly Characteristics of the Daxi Vent Field on the Carlsberg Ridge, Northwestern Indian Ocean. J. Mar. Sci. Eng. 2025, 13, 488. [Google Scholar] [CrossRef]
- Karson, J.A.; Farrell, J.A.; Chutas, L.A.; Nanfito, A.F.; Proett, J.A.; Runnals, K.T.; Sæmundsson, K. Rift-Parallel Strike-Slip Faulting Near the Iceland Plate Boundary Zone: Implications for Propagating Rifts. Tectonics 2018, 37, 4567–4594. [Google Scholar] [CrossRef]
- Gallotti, G.; Zaniboni, F.; Arcangeli, D.; Angeli, C.; Armigliato, A.; Cocchi, L.; Muccini, F.; Zanetti, M.; Tinti, S.; Ventura, G. The Tsunamigenic Potential of Landslide-Generated Tsunamis on the Vavilov Seamount. J. Volcanol. Geotherm. Res. 2023, 434, 107745. [Google Scholar] [CrossRef]
- Bischoff, A.; Barrier, A.; Beggs, M.; Nicol, A.; Cole, J.; Sahoo, T. Volcanoes buried in Te Riu-a-Māui/Zealandia sedimentary basins. N. Z. J. Geol. Geophys. 2020, 63, 378–401. [Google Scholar] [CrossRef]
- Paoletti, V.; Di Maio, R.; Cella, F.; Florio, G.; Motschka, K.; Roberti, N.; Secomandi, M.; Supper, R.; Fedi, M.; Rapolla, A. The Ischia volcanic island (Southern Italy): Inferences from potential field data interpretation. J. Volcanol. Geotherm. Res. 2009, 179, 69–86. [Google Scholar] [CrossRef]
- Desonie, D.L. Geologic and Geochemical Reconnaissance of Isla San Esteban: Post-Subduction Orogenic Volcanism in the Gulf of California. J. Volcanol. Geotherm. Res. 1992, 52, 123–140. [Google Scholar] [CrossRef]
- Špičák, A.; Matějková, R.; Vaněk, J. Seismic Response to Recent Tectonic Processes in the Banda Arc Region. J. Asian Earth Sci. 2013, 64, 1–13. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, P.; White, M.C.A.; Pickle, R.; Miller, M.S. A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine-Learning Phase Picker and an Automated Workflow. Seism. Rec. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Sammartini, M.; Camerlenghi, A.; Budillon, F.; Insinga, D.D.; Zgur, F.; Conforti, A.; Iorio, M.; Romeo, R.; Tonielli, R. Open-Slope, Translational Submarine Landslide in a Tectonically Active Volcanic Continental Margin (Licosa Submarine Landslide, Southern Tyrrhenian Sea). Geol. Soc. 2019, 477, 133–150. [Google Scholar] [CrossRef]
- Talling, P.; Clare, M.; Urlaub, M.; Pope, E.; Hunt, J.; Watt, S. Large Submarine Landslides on Continental Slopes: Geohazards, Methane Release, and Climate Change. Oceanography 2014, 27, 32–45. [Google Scholar] [CrossRef]
- Pratama, A.; Nurfiani, D.; Suryanata, P.B.; Ismail, T.; Bunga Naen, G.N.R.; Abdurrachman, M.; Supriyadi Banggur, W.F.; Asri, N.S.; Nareswari, R.B.; Bijaksana, S.; et al. Magma Storage Conditions beneath Krakatau, Indonesia: Insight from Geochemistry and Rock Magnetism Studies. Front. Earth Sci. 2023, 11, 1128798. [Google Scholar] [CrossRef]
- Nurfiani, D.; Ismail, T.; Pratama, A.; Rukmini, N.A.; Abdurrachman, M.; Kurniawan, I.A.; Draniswari, W.A.; Banggur, W.F.S.; Suryanata, P.B. Geochemical Characteristics of Anak Krakatau’s (Indonesia) Lava in the Past Half-Century. Front. Earth Sci. 2024, 12, 1245001. [Google Scholar] [CrossRef]
- Hamada, M.; Hanyu, T.; McIntosh, I.M.; Tejada, M.L.G.; Chang, Q.; Kaneko, K.; Kimura, J.-I.; Kiyosugi, K.; Miyazaki, T.; Nakaoka, R.; et al. Evolution of Magma Supply System beneath a Submarine Lava Dome after the 7.3-Ka Caldera-Forming Kikai-Akahoya Eruption. J. Volcanol. Geotherm. Res. 2023, 434, 107738. [Google Scholar] [CrossRef]
- Madden-Nadeau, A.L.; Cassidy, M.; Pyle, D.M.; Mather, T.A.; Watt, S.F.L.; Engwell, S.L.; Abdurrachman, M.; Nurshal, M.E.M.; Tappin, D.R.; Ismail, T. The Magmatic and Eruptive Evolution of the 1883 Caldera-Forming Eruption of Krakatau: Integrating Field- to Crystal-Scale Observations. J. Volcanol. Geotherm. Res. 2021, 411, 107176. [Google Scholar] [CrossRef]
- Allen, R.W.; Berry, C.; Henstock, T.J.; Collier, J.S.; Dondin, F.J.-Y.; Rietbrock, A.; Latchman, J.L.; Robertson, R.E.A. 30 Years in the Life of an Active Submarine Volcano: A Time-Lapse Bathymetry Study of the Kick-’em-Jenny Volcano, Lesser Antilles. Geochem. Geophy. Geosyst. 2018, 19, 715–731. [Google Scholar] [CrossRef]
- Mastin, M.; Cathalot, C.; Fandino, O.; Giunta, T.; Donval, J.-P.; Guyader, V.; Germain, Y.; Scalabrin, C.; Dehez, S.; Jouenne, S.; et al. Strong Geochemical Anomalies Following Active Submarine Eruption Offshore Mayotte. Chem. Geol. 2023, 640, 121739. [Google Scholar] [CrossRef]
- Kurniawan, R.; Habibie, M.N.; Suratno, S. Variasi Bulanan Gelombang Laut di Indonesia. J. Meteorol. Geofis. 2011, 12, 221–232. [Google Scholar] [CrossRef]
- Kusumawati, I. Pemodelan Dinamika Arus Perairan Indonesia Yang Disebabkan Oleh Angin. J. Perinakan Trop. 2016, 3, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratama, A.; Aufaristama, M.; Luthfian, A.; Tuakia, M.Z.; Nareswari, R.B.; Suryanata, P.B.; Bunga Naen, G.N.R.; Fadhilah, A.; Nurhidayat. Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation. Geosciences 2025, 15, 353. https://doi.org/10.3390/geosciences15090353
Pratama A, Aufaristama M, Luthfian A, Tuakia MZ, Nareswari RB, Suryanata PB, Bunga Naen GNR, Fadhilah A, Nurhidayat. Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation. Geosciences. 2025; 15(9):353. https://doi.org/10.3390/geosciences15090353
Chicago/Turabian StylePratama, Aditya, Muhammad Aufaristama, Alutsyah Luthfian, Muhammad Zain Tuakia, Ratika Benita Nareswari, Putu Billy Suryanata, Gabriela Nogo Retnaningtyas Bunga Naen, Affan Fadhilah, and Nurhidayat. 2025. "Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation" Geosciences 15, no. 9: 353. https://doi.org/10.3390/geosciences15090353
APA StylePratama, A., Aufaristama, M., Luthfian, A., Tuakia, M. Z., Nareswari, R. B., Suryanata, P. B., Bunga Naen, G. N. R., Fadhilah, A., & Nurhidayat. (2025). Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation. Geosciences, 15(9), 353. https://doi.org/10.3390/geosciences15090353