The High-Precision Monitoring of Mining-Induced Overburden Fractures Based on the Full-Space Inversion of the Borehole Resistivity Method: A Case Study
Abstract
1. Introduction
2. Case Study Area and Methods
2.1. Geological Setting of the Case Study
2.2. Numerical Simulation
2.2.1. Numerical Simulation Model
2.2.2. Numerical Simulation Scheme
2.3. Similarity Physical Simulation
2.4. UIDWLO Monitoring Method
2.5. BRM Based on BPNN-FSI Monitoring Method
2.5.1. Working Principle and Advantages of BRM
2.5.2. Engineering Design of BRM
2.5.3. BRM Based on BPNN-FSI
- (1)
- BPNN-FSI model structure
- (2)
- Model Training and Testing
3. Results
3.1. Numerical Simulation Results
3.2. Similarity Physical Simulation Results
3.3. UIDWLO Results
3.4. BRM Based on BPNN-FSI Results
4. Discussion
5. Conclusions
- (1)
- Comprehensive results from numerical simulation, similarity physical modeling, UIDWLO, and the BRM based on BPNN-FSI consistently demonstrate that MIOFs from the No. 9 coal seam did not propagate to the No. 5 coal seam, confirming the structural integrity of the No. 5 coal seam’s floor without rupture occurrence.
- (2)
- BPNN-FSI achieved high-precision dynamic monitoring of fracture development height (relative error < 1%), showing significant advantages over traditional empirical formulas, numerical simulation, and similarity physical modeling approaches.
- (3)
- The monitoring accuracy of the proposed BRM based on BPNN-FSI depends on initial geoelectric model construction, suggesting that future research should incorporate artificial intelligence algorithms for model optimization.
- (4)
- The research outcomes not only provide technical support for dynamic monitoring of MIOFs, but also offer methodological references for similar open-pit slope engineering. Under thin soft–hard interbedded roof strata, these findings significantly guide safe and efficient coal mining operations by effectively preventing roof water inrush and gas disasters, while providing a scientific basis for sustainable ecological development in mining areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MIOF | Mining-induced overburden fracture |
BPNN-FSI | Back-Propagation Neural Network full-space inversion |
BRM | Borehole resistivity method |
HMIOF | Height of mining-induced overburden fractures |
UIDWLO | Underground inclined drilling water-loss observations |
References
- Ren, B.; Ding, K.; Wang, L.; Wang, S.; Jiang, C.; Guo, J. Research on an Intelligent Mining Complete System of a Fully Mechanized Mining Face in Thin Coal Seam. Sensors 2023, 23, 9034. [Google Scholar] [CrossRef]
- Wang, J.L.; Jiang, L.J.; Cang, T.C.; Zhou, X.Z.; Wang, B.C. Simulation of a Multi-Stage Stress Field and Regional Prediction of Structural Fractures in the Tucheng Syncline, Western Guizhou, China. Geosciences 2025, 15, 132. [Google Scholar] [CrossRef]
- Nejati, H.R.; Ghazvinian, A. Brittleness Effect on Rock Fatigue Damage Evolution. Rock Mech. Rock Eng. 2014, 47, 1839–1848. [Google Scholar] [CrossRef]
- Liu, Y.B.; Cheng, J.L.; Jiao, J.J.; Gao, Z.; Cheng, P. Influences of the Hard Rock Proportion Coefficient on the Evolution Pattern and Fractal Characteristics of Mining Fractures in a Composite Roof. Int. J. Geomech. 2024, 24, 04024038. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Q.Z.; Zhang, J.Z.; Zhou, X.P. Influences of Mechanical Contrast on Failure Characteristics of Layered Composite Rocks Under True-Triaxial Stresses. Rock Mech. Rock Eng. 2023, 56, 5363–5381. [Google Scholar] [CrossRef]
- Huang, W.P.; Li, C.; Zhang, L.W.; Yuan, Q.; Zheng, Y.S.; Liu, Y. In situ identification of water–permeable fractured zone in overlying composite stratum. Int. J. Rock Mech. Min. Sci. 2018, 105, 85–97. [Google Scholar] [CrossRef]
- Ju, J.F.; Xu, J.L.; Zhao, F.Q.; Wang, Y.Z. Surface Subsidence Observations and Strata Breaking Activity Inversion from Underground Coal Mining: A Case Study in Western China. Rock Mech. Rock Eng. 2024, 57, 10935–10952. [Google Scholar] [CrossRef]
- Liu, T.Q. Current Status and Prospects of Coal Mining Technology Under Buildings, Water Bodies, Railways and Above Confined Water. Coal Sci. Technol. 1995, 1, 5–7+62. [Google Scholar] [CrossRef]
- Zhang, C.W.; Jin, Z.X.; Song, X.M.; Feng, G.R.; Li, Z.; Gao, R.; Zhu, D.F.; Li, C. Failure mechanism and fracture aperture characteristics of hard thick main roof based on voussoir beam structure in longwall coal mining. Energy Sci. Eng. 2020, 8, 340–352. [Google Scholar] [CrossRef]
- Xiao, P.; Han, K.; Shuang, H.Q.; Ding, Y.; Kong, X.G.; Lin, H.F. The effects of key rock layer fracturing on gas extraction during coal mining over a large height. Energy Sci. Eng. 2021, 4, 520–534. [Google Scholar] [CrossRef]
- Guo, H.; Yuan, L.; Shen, B.T.; Qu, Q.D.; Xue, J.H. Mining-induced strata stress changes, fractures and gas flow dynamics in multi-seam longwall mining. Int. J. Rock Mech. Min. Sci. 2012, 54, 129–139. [Google Scholar] [CrossRef]
- Han, Y.C.; Cheng, J.L.; Huang, Q.S.; Zou, D.H.S.; Zhou, J.; Huang, S.H.; Long, Y. Prediction of the height of overburden fractured zone in deep coal mining: Case study. Arch. Min. Sci. 2018, 63, 617–631. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhang, Q.; Li, C.; Zhang, L. Comparative simulation study on the influence of double-seam mining on overburden strata in a northern Shaanxi mine. Coal Geol. Explor. 2020, 48, 183–189. [Google Scholar] [CrossRef]
- Yang, D.M.; Guo, W.B.; Zhao, G.B.; Tan, Y.; Yang, W.Q. Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden. J. China Coal Soc. 2019, 44, 3308–3316. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.C.; Zhang, P.S.; Shi, B. Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing. Measurement 2017, 97, 234–241. [Google Scholar] [CrossRef]
- Du, W.G.; Chai, J.; Zhang, D.D.; Lei, W.L. The study of water-resistant key strata stability detected by optic fiber sensing in shallow–buried coal seam. Int. J. Rock Mech. Min. Sci. 2021, 141, 104604. [Google Scholar] [CrossRef]
- Zhang, D.D.; Chen, Q.; Wang, Z.S.; Yang, J.F.; Chai, J. Optical Fiber Frequency Shift Characterization of Overburden Deformation in Short-Distance Coal Seam Mining. Geofluids 2021, 2021, 1751256. [Google Scholar] [CrossRef]
- Zhang, G.C.; Tao, G.Z.; Meng, X.J.; Li, Y.; Qu, Z.; Xu, R.H.; Yu, S.C.; Chen, M.; Zhou, G.L.; Luan, H.J. Failure law of weak overburden stratum under lying extra-thick alluvium. J. China Coal Soc. 2022, 47, 3998–4010. [Google Scholar] [CrossRef]
- Wang, W.X.; Sui, W.H.; Dong, Q.H.; Hu, W.W.; Gu, S.X. Post-mining closure effect of overburden fractures under unconsolidated layers and prediction of overburden failure in repeated mining. J. China Coal Soc. 2013, 38, 1728–1734. [Google Scholar] [CrossRef]
- Cheng, J.L.; Song, G.D.; Sun, X.Y.; Wen, L.F.; Li, F. Research Developments and Prospects on Microseismic Source Location in Mines. Engineering 2018, 4, 653–660. [Google Scholar] [CrossRef]
- Hou, W.G.; Cheng, J.L.; Li, D.; Zhang, P.; Qin, J.H.; Chen, T. Determination of gas drainage layer in overburden rock of coal seam based on dynamic monitoring by borehole resistivity method: A case study of Liyazhuang coal mine. Sci. Technol. Eng. 2021, 21, 7046–7052. [Google Scholar] [CrossRef]
- Zhang, P.S.; Xu, S.A.; Guo, L.Q.; Wu, R.X. Research progress and prospects of monitoring technology for deformation and failure of stope surrounding rock. Coal Sci. Technol. 2020, 48, 14–48. [Google Scholar] [CrossRef]
- Li, S.; Fan, C.J.; Luo, M.K.; Yang, Z.H.; Lan, T.W.; Zhang, H.F. Structure and deformation measurements of shallow overburden during top coal caving longwall mining. Int. J. Min. Sci. Technol. 2017, 27, 1081–1085. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.X.; Zhang, C.; Han, P.H. A model to estimate the height of the water-conducting fracture zone for longwall panels in Western China. Mine Water Environ. 2020, 39, 823–838. [Google Scholar] [CrossRef]
- Yu, J.H.; Liu, J.J.; Zhang, H.H.; Lu, H.T. Research and application of wavelet neural network in electrical resistivity imaging inversion. J. Appl. Geophys. 2023, 215, 105114. [Google Scholar] [CrossRef]
- Yue, J.H.; Zhang, H.R.; Yang, H.Y. Electrical prospecting methods for advance detection: Progress, problems, and prospects in Chinese coal mines. IEEE Geosci. Remote Sens. Mag. 2019, 7, 94–106. [Google Scholar] [CrossRef]
- Cheng, J.L.; Yu, S.J. Simulation experiment on the response of resistivity to deformation and failure of overburden. Chin J. Geophys. 2000, 43, 699–706. [Google Scholar] [CrossRef]
- Brace, W.F.; Orange, A.S. Electrical Resistivity Changes in Saturated Rock under Stress. Science 1966, 153, 1525–1526. [Google Scholar] [CrossRef] [PubMed]
- Kaselow, A.; Shapiro, S.A. Stress sensitivity of elastic moduli and electrical resistivity in porous rocks. J. Geophys. Eng. 2004, 1, 1–11. [Google Scholar] [CrossRef]
- Kahraman, S.; Yeken, T. Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks. Bull. Mater. Sci. 2010, 33, 731–735. [Google Scholar] [CrossRef]
- Wu, R.X.; Hu, Z.A.; Hu, X.W. Principle of using borehole electrode current method to monitor the overburden stratum failure after coal seam mining and its application. J. Appl. Geophys. 2020, 179, 104111. [Google Scholar] [CrossRef]
- Tao, T.; Han, P.; Ma, H.; Tan, H.D. 3D Time–lapse resistivity inversion. Chin. J. Geophys. 2024, 67, 3973–3988. [Google Scholar] [CrossRef]
- Liu, Y.B.; Cheng, J.L.; Jiao, J.J.; Meng, X.X. Feasibility study on multi-seam upward mining of multi-layer soft–hard alternate complex roof. Environ. Earth Sci. 2022, 81, 424. [Google Scholar] [CrossRef]
- Bai, X.X.; Cao, A.Y.; Wang, C.B.; Liu, Y.Q.; Xue, C.C.; Yang, X.; Yang, Y.; Wang, S.W.; Hao, Q. The focal mechanism and field investigations of mining-induced earthquake by super-thick and weak cementation overburden strata fracturing. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 7. [Google Scholar] [CrossRef]
- Cheng, J.L.; Chen, T.; Cheng, P.; Liu, Y.B.; Zhang, Y.Q.; Xu, Z.Z.; Cheng, Q. A Borehole Resistivity Full-Space Imaging Method for Monitoring the Evolution of Overburden Fractures in Coal Seams. CN 115680612 A, 13 December 2024. [Google Scholar]
- Lang, J.; He, Q.Q.; Fan, X.M.; Huang, P.F.; Zhang, X.X. Prediction of airflow classification effect of wet coal based on BP neural network. J. China Coal Soc. 2021, 46, 1001–1010. [Google Scholar] [CrossRef]
- Wen, Z.J.; Xu, C.L.; Gong, F.Q.; Zuo, Y.J.; Song, Z.Q. Mechanical response and impact tendency index correction of gangue-coal combined structure. J. Cent. South Univ. 2025, 32, 2288–2306. [Google Scholar] [CrossRef]
- Mahetaji, M.; Brahma, J. A Critical Review of Rock Failure Criteria: A Scope of Machine Learning Approach. Eng. Fail. Anal. 2024, 159, 107998. [Google Scholar] [CrossRef]
- Barthwal, H.; Mirko, V.D.B. Microseismicity observed in an underground mine: Source mechanisms and possible causes. Geomech. Energy Envir. 2020, 22, 100167. [Google Scholar] [CrossRef]
- Himanshu, B.; Frank, J.C.; Mirko, V.D.B. 3-D attenuation tomography from microseismicity in a mine. Geophys. J. Int. 2019, 219, 1805–1817. [Google Scholar] [CrossRef]
Lithology | Average Tensile Strength/MPa | Young’s Modulus /GPa | Cohesion /MPa | Friction Angle/(°) | Poisson Ratio | Density/(kg/m3) | Compressive Strength/MPa |
---|---|---|---|---|---|---|---|
Limestone | 2.70 | 8.69 | 11.4 | 38 | 0.18 | 2800 | 34.18 |
Mudstone | 2.48 | 0.81 | 2.8 | 30 | 0.29 | 2699 | 17.8 |
Sandy mudstone | 3.65 | 1.99 | 7.8 | 32 | 0.28 | 2600 | 18.15 |
Coarse sandstone | 4.34 | 7.92 | 3.0 | 40 | 0.15 | 2700 | 49.35 |
Coal seam | 0.20 | 1.12 | 0.2 | 31 | 0.30 | 1410 | 4.7 |
Fine sandstone | 8.50 | 3.58 | 9.2 | 33 | 0.26 | 2570 | 59.96 |
Medium sandstone | 3.50 | 3.92 | 5.0 | 34 | 0.22 | 2560 | 39.4 |
No. | Diameter (mm) | Orientation Angle (°) | Elevation Angle (°) | Drilling Depth (m) | Measured Height (m) |
---|---|---|---|---|---|
No. 2 hole | 73~89 | 56 | 45 | 94 | 66 |
No. | Diameter (mm) | Orientation Angle (°) | Elevation Angle (°) | Drilling Depth (m) | Measured Height (m) |
---|---|---|---|---|---|
No. 1 hole | 73~89 | 56 | 50 | 105 | 72 |
Equation | HMIOF (m) | Relative Error (%) | |||
---|---|---|---|---|---|
Empirical formula [8] | 39.11 | 42.25 | 24.26 | 18.18 | |
Numerical simulation | 50 | 3.18 | |||
Similarity physical simulation | 45 | 12.84 | |||
BRM based on BPNN-FSI | 52 | 0.7 | |||
UIDWLO | 51.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Cheng, J.; Zhao, H. The High-Precision Monitoring of Mining-Induced Overburden Fractures Based on the Full-Space Inversion of the Borehole Resistivity Method: A Case Study. Geosciences 2025, 15, 320. https://doi.org/10.3390/geosciences15080320
Xu Z, Cheng J, Zhao H. The High-Precision Monitoring of Mining-Induced Overburden Fractures Based on the Full-Space Inversion of the Borehole Resistivity Method: A Case Study. Geosciences. 2025; 15(8):320. https://doi.org/10.3390/geosciences15080320
Chicago/Turabian StyleXu, Zhongzhong, Jiulong Cheng, and Hongpeng Zhao. 2025. "The High-Precision Monitoring of Mining-Induced Overburden Fractures Based on the Full-Space Inversion of the Borehole Resistivity Method: A Case Study" Geosciences 15, no. 8: 320. https://doi.org/10.3390/geosciences15080320
APA StyleXu, Z., Cheng, J., & Zhao, H. (2025). The High-Precision Monitoring of Mining-Induced Overburden Fractures Based on the Full-Space Inversion of the Borehole Resistivity Method: A Case Study. Geosciences, 15(8), 320. https://doi.org/10.3390/geosciences15080320