Annual Variability in the Cordillera Blanca Snow Accumulation Area Between 1988 and 2023 Using a Cloud Processing Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Images
2.2.2. Meteorological Parameters
2.3. Methods
2.3.1. Processing and Identification of the Snow Accumulation Area by Automatic Method in Google Earth Engine
2.3.2. Validation and Accuracy Assessment
3. Results
3.1. Accuracy Assessment of Snow Accumulation Areas
3.2. The Accumulation Area Variability in the Two Cordillera Blanca Sectors
3.3. The Total Glacial Area Variation
3.4. Correlation of El Niño, Accumulation Area, and Climatic Parameters
4. Discussion
4.1. Uncertainties of Automatic Glacial Area Accumulation
4.2. Climatic Control of Changes in Snow Accumulation Areas at Regional Scale
4.3. Contrasting Responses of Accumulation Area and Total Area Changes in Amazonian and Pacific Sectors
4.4. Potential and Limitations of the Methodology
5. Conclusions
- (a)
- There may be significant overestimations, particularly for smaller glaciers (<1 km2), because medium-resolution sensors (30 m) are not well-suited for capturing details in small glaciers such as Yanamarey. This limitation can increase the uncertainty due to spectral mixing. Furthermore, it is crucial to analyze the debris cover over glaciers and shadowed areas, as these factors may result in underestimating the accumulation area values.
- (b)
- Regarding the total area (MapBiomas data), the western and eastern sectors presented a significant decrease of 21~22% of the area (1988–2022), representing a mean loss of 0.74~0.75%/year. The most significant losses occurred in the first period of the series (1987/88–1997/98) for both sectors. The losses by elevation range are consistent with those of other studies. On the eastern side, no glaciers were observed below 4400 m after 2022.
- (c)
- In the Pacific sector, the decrease in the accumulation area over time was primarily driven by the rising temperature trend—particularly during the dry season—and by the variability of El Niño 3.4, PDO, temperature, and snowfall. The period between 1999/00 and 2008/09 presented lower rates of decrease as well as greater rates of accumulation area. This could be associated with the low intensities of El Niño during this period, with lower warming trends and a decrease in snowfall trends after the 2000s. The anti-correlation between the accumulation area and El Niño 3.4 was stronger in this sector, with 1997/1998 and 2015/2016 showing some of the lowest recorded accumulation values.
- (d)
- The accumulation area in the Amazon has experienced a significant decrease in snowfall, correlated with rising temperatures. The eastern side, which has lower elevations, may be closer to moisture sources and potentially face higher levels of water vapor.
- (e)
- El Niño seems to lead to a greater decrease in accumulation during wet seasons. The year 2015/16, with high ENSO anomalies in the Pacific sector, presented the lowest accumulation area. Owing to the correlations between temperature, snowfall, and precipitation, even minor changes in temperature during the dry season could lead to changes in the accumulation area compared to the wet period.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport_small.pdf (accessed on 31 March 2023).
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Hoelzle, M.; Trindler, M. Data management and application. In Into the Second Century of Worldwide Glacier Monitoring: Pro-948 Spects and Strategies/Prepared by the World Glacier Monitoring Service; Haeberli, W., Hoelzle, M., Suter, S., Eds.; UNESCO Publications: Paris, France, 1998. [Google Scholar]
- Kaser, G.; Juen, I.; Georges, C.; Gómez, J.; Tamayo, W. The Impact of Glaciers on the Runoff and the Reconstruction of Mass Balance History from Hydrological Data in the Tropical Cordillera Blanca, Perú. J. Hydrol. 2003, 282, 130–144. [Google Scholar] [CrossRef]
- Mark, B.G.; Fernández, A. The Significance of Mountain Glaciers as Sentinels of Climate and Environmental Change. Geogr. Compass 2017, 11, e12318. [Google Scholar] [CrossRef]
- Francou, B.; Vuille, M.; Wagnon, P.; Mendoza, J.; Sicart, J.-E. Tropical Climate Change Recorded by a Glacier in the Central Andes during the Last Decades of the Twentieth Century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Vuille, M.; Franquist, E.; Garreaud, R.; Lavado Casimiro, W.S.; Cáceres, B. Impact of the Global Warming Hiatus on Andean Temperature. J. Geophys. Res. Atmos. 2015, 120, 3745–3757. [Google Scholar] [CrossRef]
- Ames Marquez, A.; Francou, B. Cordillera Blanca—Glaciares en la historia. Bull. L’institut Français D’études Andin. 1995, 24, 37–64. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; et al. Current State of Glaciers in the Tropical Andes: A Multi-Century Perspective on Glacier Evolution and Climate Change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Ordoñez, J. Decadal Changes in Glacier Parameters in the Cordillera Blanca, Peru, Derived from Remote Sensing. J. Glaciol. 2008, 54, 499–510. [Google Scholar] [CrossRef]
- Kaser, G.; Ames, A.; Zamora, M. Glacier Fluctuations and Climate in the Cordillera Blanca, Peru. Ann. Glaciol. 1990, 14, 136–140. [Google Scholar] [CrossRef]
- Georges, C. 20th-Century Glacier Fluctuations in the Tropical Cordillera Blanca, Perú. Arct. Antarct. Alp. Res. 2004, 36, 100–107. [Google Scholar] [CrossRef]
- Hastenrath, S.; Ames, A. Diagnosing the Imbalance of Yanamarey Glacier in the Cordillera Blanca of Peru. J. Geophys. Res. Atmos. 1995, 100, 5105–5112. [Google Scholar] [CrossRef]
- Kaser, G.; Georges, C. Changes of the Equilibrium-Line Altitude in the Tropical Cordillera Blanca, Peru, 1930–1950, and Their Spatial Variations. Ann. Glaciol. 1997, 24, 344–349. [Google Scholar] [CrossRef]
- Seehaus, T.; Malz, P.; Sommer, C.; Lippl, S.; Cochachin, A.; Braun, M. Changes of the Tropical Glaciers throughout Peru between 2000 and 2016—Mass Balance and Area Fluctuations. Cryosphere 2019, 13, 2537–2556. [Google Scholar] [CrossRef]
- Mark, B.G.; Seltzer, G.O. Evaluation of Recent Glacier Recession in the Cordillera Blanca, Peru (AD 1962–1999): Spatial Distribution of Mass Loss and Climatic Forcing. Quat. Sci. Rev. 2005, 24, 2265–2280. [Google Scholar] [CrossRef]
- Bury, J.T.; Mark, B.G.; McKenzie, J.M.; French, A.; Baraer, M.; Huh, K.I.; Zapata Luyo, M.A.; Gómez López, R.J. Glacier Recession and Human Vulnerability in the Yanamarey Watershed of the Cordillera Blanca, Peru. Clim. Change 2011, 105, 179–206. [Google Scholar] [CrossRef]
- Motschmann, A.; Huggel, C.; Carey, M.; Moulton, H.; Walker-Crawford, N.; Muñoz, R. Losses and Damages Connected to Glacier Retreat in the Cordillera Blanca, Peru. Clim. Change 2020, 162, 837–858. [Google Scholar] [CrossRef]
- Baraer, M.; Mark, B.G.; McKenzie, J.M.; Condom, T.; Bury, J.; Huh, K.-I.; Portocarrero, C.; Gómez, J.; Rathay, S. Glacier Recession and Water Resources in Peru’s Cordillera Blanca. J. Glaciol. 2012, 58, 134–150. [Google Scholar] [CrossRef]
- Lynch, B.D. Vulnerabilities, Competition and Rights in a Context of Climate Change toward Equitable Water Governance in Peru’s Rio Santa Valley. Glob. Environ. Change 2012, 22, 364–373. [Google Scholar] [CrossRef]
- Emmer, A.; Klimeš, J.; Mergili, M.; Vilímek, V.; Cochachin, A. 882 Lakes of the Cordillera Blanca: An Inventory, Classification, Evolution and Assessment of Susceptibility to Outburst Floods. Catena 2016, 147, 269–279. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S.; Werner, M.; Keimig, F. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. Clim. Change 2003, 59, 75–99. [Google Scholar] [CrossRef]
- Paterson, W.S.B. Physics of Glaciers, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1981. [Google Scholar]
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and Recommendations in Mapping of Glacier Parameters from Space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) Workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef]
- RGI 7.0 Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines, Version 7.0; NSIDC: National Snow and Ice Data Center: Boulder, CO, USA, 2023. [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A Globally Complete Inventory of Glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Kirkbride, M.P. Debris-Covered Glaciers. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 180–182. ISBN 978-90-481-2642-2. [Google Scholar]
- Williams, R.S., Jr.; Hall, D.K.; Benson, C.S. Analysis of Glacier Facies Using Satellite Techniques. J. Glaciol. 1991, 37, 120–128. [Google Scholar] [CrossRef]
- Yousuf, B.; Shukla, A.; Arora, M.K.; Jasrotia, A.S. Glacier Facies Characterization Using Optical Satellite Data: Impacts of Radiometric Resolution, Seasonality, and Surface Morphology. Prog. Phys. Geogr. 2019, 43, 473–495. [Google Scholar] [CrossRef]
- Rau, F.; Braun, M.; Friedrich, M.; Weber, F.; Goßmann, H. Radar Glacier Zones and Their Boundaries as Indicators of Glacier Mass Balance and Climatic Variability. In Proceedings of the 2nd EARSeL Workshop-Special Interest Group Land Ice and Snow, Dresden, Germany, 16–17 June 2000. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Gaddam, V.K.; Boddapati, R.; Kumar, T.; Kulkarni, A.V.; Bjornsson, H. Application of “OTSU”—An Image Segmentation Method for Differentiation of Snow and Ice Regions of Glaciers and Assessment of Mass Budget in Chandra Basin, Western Himalaya Using Remote Sensing and GIS Techniques. Environ. Monit. Assess. 2022, 194, 337. [Google Scholar] [CrossRef]
- Turpo Cayo, E.Y.; Borja, M.O.; Espinoza-Villar, R.; Moreno, N.; Camargo, R.; Almeida, C.; Hopfgartner, K.; Yarleque, C.; Souza, C.M. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine. Remote Sens. 2022, 14, 1974. [Google Scholar] [CrossRef]
- Rabatel, A.; Bermejo, A.; Loarte, E.; Soruco, A.; Gomez, J.; Leonardini, G.; Vincent, C.; Sicart, J.E. Can the Snowline Be Used as an Indicator of the Equilibrium Line and Mass Balance for Glaciers in the Outer Tropics? J. Glaciol. 2012, 58, 1027–1036. [Google Scholar] [CrossRef]
- Favier, V.; Wagnon, P.; Ribstein, P. Glaciers of the Outer and Inner Tropics: A Different Behaviour but a Common Response to Climatic Forcing. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Schauwecker, S.; Rohrer, M.; Acuña, D.; Cochachin, A.; Dávila, L.; Frey, H.; Giráldez, C.; Gómez, J.; Huggel, C.; Jacques-Coper, M.; et al. Climate Trends and Glacier Retreat in the Cordillera Blanca, Peru, Revisited. Glob. Planet. Change 2014, 119, 85–97. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Úbeda, J.; Tanarro, L.M.; Naranjo-Fernández, N.; Álvarez-Aldegunde, J.A.; Iparraguirre, J. Climate Patterns and Their Influence in the Cordillera Blanca, Peru, Deduced from Spectral Analysis Techniques. Atmosphere 2022, 13, 2107. [Google Scholar] [CrossRef]
- Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B. ENSO Influence on Surface Energy and Mass Balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere 2015, 9, 1663–1683. [Google Scholar] [CrossRef]
- Kaser, G.; Osmaston, H. Tropical Glaciers; Cambridge University Press: Cambridge, UK, 2002; 230p. [Google Scholar]
- Carvalho, S.; Oliveira, A.; Pedersen, J.S.; Manhice, H.; Lisboa, F.; Norguet, J.; de Wit, F.; Santos, F.D. A Changing Amazon Rainforest: Historical Trends and Future Projections under Post-Paris Climate Scenarios. Glob. Planet. Change 2020, 195, 103328. [Google Scholar] [CrossRef]
- Bottino, M.J.; Nobre, P.; Giarolla, E.; da Silva Junior, M.B.; Capistrano, V.B.; Malagutti, M.; Tamaoki, J.N.; de Oliveira, B.F.A.; Nobre, C.A. Amazon Savannization and Climate Change Are Projected to Increase Dry Season Length and Temperature Extremes over Brazil. Sci. Rep. 2024, 14, 5131. [Google Scholar] [CrossRef]
- Motschmann, A.; Teutsch, C.; Huggel, C.; Seidel, J.; León, C.D.; Muñoz, R.; Sienel, J.; Drenkhan, F.; Weimer-Jehle, W. Current and Future Water Balance for Coupled Human-Natural Systems—Insights from a Glacierized Catchment in Peru. J. Hydrol. Reg. Stud. 2022, 41, 101063. [Google Scholar] [CrossRef]
- USGS. Landsat Collection 2 Surface Reflectance. U.S. Geological Survey, 2020. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archivelandsat-archives-landsat-4-5-tm-collection-2-level-2-science (accessed on 29 March 2023).
- PLANET. Planet Imagery Product Specification–June 2021; Planet Labs, Inc.: San Francisco, CA, USA, 2021; Available online: https://assets.planet.com/docs/Planet_PSScene_Imagery_Product_Spec_June_2021.pdf (accessed on 15 June 2024).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- MapBiomas—Colección 2.0 de la Serie Anual de Mapas de Cobertura y Uso del Suelo de Perú, Consultada el 2024. Available online: https://peru.mapbiomas.org/colecciones-de-mapbiomas-peru/ (accessed on 1 October 2024).
- Bonshoms, M.; Ubeda, J.; Liguori, G.; Körner, P.; Navarro, Á.; Cruz, R. Validation of ERA5-Land Temperature and Relative Humidity on Four Peruvian Glaciers Using on-Glacier Observations. J. Mt. Sci. 2022, 19, 1849–1873. [Google Scholar] [CrossRef]
- NOAA. Cold & Warm Episodes by Season. 2022. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 21 October 2022).
- SENAMHI. El Fenómeno El Niño en el Perú; Servicio Nacional de Meteorología e Hidrología del Perú: Lima, Perú, 2014. [Google Scholar]
- Li, X.; Wang, N.; Wu, Y. Automated Glacier Snow Line Altitude Calculation Method Using Landsat Series Images in the Google Earth Engine Platform. Remote Sens. 2022, 14, 2377. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. In Proceedings of the Sixth International Symposium on Remote Sesning of Environment, Ann Arbor, MI, USA, 13–16 October 1969; p. 97. [Google Scholar]
- Racoviteanu, A.E.; Rittger, K.; Armstrong, R. An Automated Approach for Estimating Snowline Altitudes in the Karakoram and Eastern Himalaya From Remote Sensing. Front. Earth Sci. 2019, 7, 220. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error Sources and Guidelines for Quality Assessment of Glacier Area, Elevation Change, and Velocity Products Derived from Satellite Data in the Glaciers_cci Project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef]
- Rastner, P.; Prinz, R.; Notarnicola, C.; Nicholson, L.; Sailer, R.; Schwaizer, G.; Paul, F. On the Automated Mapping of Snow Cover on Glaciers and Calculation of Snow Line Altitudes from Multi-Temporal Landsat Data. Remote Sens. 2019, 11, 1410. [Google Scholar] [CrossRef]
- Gurgiser, W.; Marzeion, B.; Nicholson, L.; Ortner, M.; Kaser, G. Modeling Energy and Mass Balance of Shallap Glacier, Peru. Cryosphere 2013, 7, 1787–1802. [Google Scholar] [CrossRef]
- Fyffe, C.L.; Potter, E.; Fugger, S.; Orr, A.; Fatichi, S.; Loarte, E.; Medina, K.; Hellström, R.Å.; Bernat, M.; Aubry-Wake, C.; et al. The Energy and Mass Balance of Peruvian Glaciers. J. Geophys. Res. Atmos. 2021, 126, e2021JD034911. [Google Scholar] [CrossRef]
- Llactayo, V.; Valdivia, J.; Yarleque, C.; Callañaupa, S.; Villalobos-Puma, E.; Guizado, D.; Alvarado-Lugo, R. Future Changes of Precipitation Types in the Peruvian Andes. Sci. Rep. 2024, 14, 22634. [Google Scholar] [CrossRef]
- Schauwecker, S.; Rohrer, M.; Huggel, C.; Endries, J.; Montoya, N.; Neukom, R.; Perry, B.; Salzmann, N.; Schwarb, M.; Suarez, W. The Freezing Level in the Tropical Andes, Peru: An Indicator for Present and Future Glacier Extents. J. Geophys. Res. Atmos. 2017, 122, 5172–5189. [Google Scholar] [CrossRef]
- Birkel, S.D.; Mayewski, P.A.; Perry, L.B.; Seimon, A.; Andrade-Flores, M. Evaluation of Reanalysis Temperature and Precipitation for the Andean Altiplano and Adjacent Cordilleras. Earth Space Sci. 2022, 9, e2021EA001934. [Google Scholar] [CrossRef]
- Calizaya, E.; Mejía, A.; Barboza, E.; Calizaya, F.; Corroto, F.; Salas, R.; Vásquez, H.; Turpo, E. Modelling Snowmelt Runoff from Tropical Andean Glaciers under Climate Change Scenarios in the Santa River Sub-Basin (Peru). Water 2021, 13, 3535. [Google Scholar] [CrossRef]
- Wagnon, P.; Ribstein, P.; Francou, B.; Sicart, J.E. Anomalous Heat and Mass Budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño Year. J. Glaciol. 2001, 47, 21–28. [Google Scholar] [CrossRef]
- Vuille, M.; Kaser, G.; Juen, I. Glacier Mass Balance Variability in the Cordillera Blanca, Peru and Its Relationship with Climate and the Large-Scale Circulation. Glob. Planet. Change 2008, 62, 14–28. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information, Monthly Global Climate Report for January 2020. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202001 (accessed on 22 November 2024).
- Thirumalai, K.; DiNezio, P.N.; Partin, J.W.; Liu, D.; Costa, K.; Jacobel, A. Future Increase in Extreme El Niño Supported by Past Glacial Changes. Nature 2024, 634, 374–380. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S. Mean Annual Temperature Trends and Their Vertical Structure in the Tropical Andes. Geophys. Res. Lett. 2000, 27, 3885–3888. [Google Scholar] [CrossRef]
- Carrasco, J.F. Decadal Changes in the Near-Surface Air Temperature in the Western Side of the Antarctic Peninsula. Atmos. Clim. Sci. 2013, 3, 275–281. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Bozkurt, D.; Cordero, R.R. A Review of the Observed Air Temperature in the Antarctic Peninsula. Did the Warming Trend Come Back after the Early 21st Hiatus? Polar Sci. 2021, 28, 100653. [Google Scholar] [CrossRef]
- McClain, M.E.; Naiman, R.J. Andean Influences on the Biogeochemistry and Ecology of the Amazon River. BioScience 2008, 58, 325–338. [Google Scholar] [CrossRef]
- dos Reis, R.S.; Ribeiro, R.d.R.; Delmonte, B.; Ramirez, E.; Dani, N.; Mayewski, P.A.; Simões, J.C. Relationships between Andean Glacier Ice-Core Dust Records and Amazon Basin Riverine Sediments. Cryosphere Discuss. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Smith, J.A. The Least-Squares Mixing Models to Generate Fraction Images Derived from Remote Sensing Multispectral Data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [Google Scholar] [CrossRef]
- Klein, A.G.; Isacks, B.L. Spectral Mixture Analysis of Landsat Thematic Mapper Images Applied to the Detection of the Transient Snowline on Tropical Andean Glaciers. Glob. Planet. Change 1999, 22, 139–154. [Google Scholar] [CrossRef]
Collection Name | GEE Image Collection ID | Analysis Period | Spatial Resolution |
---|---|---|---|
Landsat 5 | LANDSAT/LT05/C01/T1_L2 | 1 April 1988–31 August 2011 | 30 m |
Landsat 8 | LANDSAT/LC08/C01/T1_L2 | 1 April 2013–31 August 2023 | 30 m |
ERA5—Monthly | ECMWF/ERA5_LAND/MONTHLY_AGGR | 1 April 1988–31 August 2023 | ~1.1 km |
ERA5—Daily | ECMWF/ERA5_LAND/DAILY_AGGR | 1 April 1988–31 August 2023 | ~1.1 km |
NASA SRTM | USGS/SRTMGL1_003 | 11 February 2000 | 30 m |
Glacier | Manual Planet Scope (km2) | Automatic Method (km2) | RMSE (km2) | Relative Uncertainty (%) | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | STD | Mean | Min | Max | STD | ||||
Artesonraju (n = 9) | 4.50 | 4.18 | 4.81 | 0.2 | 4.4 | 4.16 | 4.91 | 0.24 | 0.16 | 3.55 | 0.71 |
Shallap (n = 9) | 4.37 | 3.58 | 4.79 | 0.41 | 3.90 | 3.19 | 4.39 | 0.43 | 0.51 | 11.67 | 0.76 |
Yanamarey (n = 10) | 0.15 | 0.09 | 0.20 | 0.04 | 0.16 | 0.06 | 0.22 | 0.04 | 0.01 | 6.67 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, J.L.; Rosa, K.K.d.; Ribeiro, R.d.R.; Encarnación, R.C.; Racoviteanu, A.; Aita, F.; Hillebrand, F.L.; Lopez, J.G.; Simões, J.C. Annual Variability in the Cordillera Blanca Snow Accumulation Area Between 1988 and 2023 Using a Cloud Processing Platform. Geosciences 2025, 15, 223. https://doi.org/10.3390/geosciences15060223
Lorenz JL, Rosa KKd, Ribeiro RdR, Encarnación RC, Racoviteanu A, Aita F, Hillebrand FL, Lopez JG, Simões JC. Annual Variability in the Cordillera Blanca Snow Accumulation Area Between 1988 and 2023 Using a Cloud Processing Platform. Geosciences. 2025; 15(6):223. https://doi.org/10.3390/geosciences15060223
Chicago/Turabian StyleLorenz, Júlia Lopes, Kátia Kellem da Rosa, Rafael da Rocha Ribeiro, Rolando Cruz Encarnación, Adina Racoviteanu, Federico Aita, Fernando Luis Hillebrand, Jesus Gomez Lopez, and Jefferson Cardia Simões. 2025. "Annual Variability in the Cordillera Blanca Snow Accumulation Area Between 1988 and 2023 Using a Cloud Processing Platform" Geosciences 15, no. 6: 223. https://doi.org/10.3390/geosciences15060223
APA StyleLorenz, J. L., Rosa, K. K. d., Ribeiro, R. d. R., Encarnación, R. C., Racoviteanu, A., Aita, F., Hillebrand, F. L., Lopez, J. G., & Simões, J. C. (2025). Annual Variability in the Cordillera Blanca Snow Accumulation Area Between 1988 and 2023 Using a Cloud Processing Platform. Geosciences, 15(6), 223. https://doi.org/10.3390/geosciences15060223