The Investigation of Trends and Wet and Dry Rainfall Cycles in North Africa (In Morocco, Algeria, and Tunisia) (1970–2023)
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
- -
- The MGCTI (Méthode Graphique Chronologique de Traitement de l’Information/chronological graphic method of information processing)
- (i)
- Very dry, below the first quintile;
- (ii)
- Dry, between the first and the second quintiles;
- (iii)
- Normal with a trend toward drought, between the second quintile and the third quintile;
- (iv)
- Rainy, between the third and the fourth quintiles;
- (v)
- Very rainy, above the fourth quintile.
- -
- The Spectral method: Continuous wavelet analysis and wavelet coherence analysis
3. Results
3.1. The Situation in Algeria
3.2. The Situation in Morocco
3.3. The Situation in Tunisia
4. Discussion
4.1. Synthesis of Rainfall Cycles
- -
- A first wet period, more homogeneous for the precipitation series in Morocco (1970–1980), while in the other two countries, it appears longer and is noted between 1970 and 1986 in Algeria and between 1970 and 1987 in Tunisia.
- -
- The second period is drier, more pronounced in Morocco, and manifests from 1981 to 2001. It was interrupted by a short wet period (three years in the ranges of 1989–1991 and 1996–1997). The climatic drought recorded in Algeria and Tunisia is shorter (1987–2002) and the cycles of deficit years are not only synchronized between the two countries, but also less widespread over time and never exceed three successive dry years (1987–1989, 1993–1994, and 2000–2002).
- -
- The period of precipitation return is widespread in the studied Maghreb region. It began in the early 2000s (2002 in Morocco and 2003 in Algeria and Tunisia). The regional indices show a cycle confirming the return of rains and marking a break from previous periods of climatic drought. In Morocco, this period extends from 2002 to 2010. In Algeria and Tunisia, it extends until 2013.
- -
- The last precipitation cycle begins in 2014 in Algeria and Tunisia and in 2015 in Morocco. This time interval is characterized by a pronounced homogeneous drought, except for the year 2018, which was wet in all three countries. We also note that, during this period, there is a succession of dry years for five years in Morocco (2019–2023) and four years in Algeria and Tunisia (2020–2023).
4.2. Precipitation Variability and Water Sector Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boé, J.; Terray, L.; Habeta, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Tramblay, Y.; Neppel, L.; Carreau, J.; Sanchez-Gomez, E. Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate. Hydrol. Process. 2012, 26, 3934–3944. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.; Merz, B.; Arheimer, B.; Aronica, G. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef]
- Treydte, K.; Liu, L.; Padrón, R.S.; Martínez-Sancho, E.; Babst, F.; Frank, D.C.; Gessler, A.; Kahmen, A.; Poulter, B.; Seneviratne, S.I.; et al. Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years. Nat. Geosci. 2024, 17, 58–65. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Full Report 2021–2024. Available online: https://www.ipcc.ch/report/emissions-scenarios/full-report/ (accessed on 25 September 2024).
- Amyay, M.; Nouaceur, Z.; Tribak, A.; Okba Kh Taous, A. Caractérisation des évènements pluviométriques extrêmes dans le Moyen Atlas marocain et ses marges. In Proceedings of the Actes du XXV ème Colloque International de Climatologie 2012, Grenoble, France, 5–8 September 2012; pp. 75–80. [Google Scholar]
- Laignel, B.; Nouaceur, Z.; Jemai, H.; Abida, H.; Ellouze, M.; Turki, I. Vers un retour des pluies dans le Nord-est tunisien? In Proceedings of the Actes du XXVIIe Colloque de l’Association Internationale de Climatologie, Dijon, France, 2–5 July 2014; pp. 727–732. [Google Scholar]
- Nouaceur, Z.; Laignel, B.; Turki, I. Changements climatiques au Maghreb: Vers des conditions plus humides et plus chaudes sur le littoral algérien? Physio-Géo 2013, 7, 307–323. [Google Scholar] [CrossRef]
- Nouaceur, Z.; Murărescu, O.; Murătoreanu, G. Climatic change in the Maghreb region: The evolution of the pluviometric parameters in the middle atlas and its margins (Morocco) and its relation to the North Atlantic Oscillation (NAO). Air Water Compon. Environ. 2013, 2013, 285–292. [Google Scholar]
- Nouaceur, Z.; Murărescu, O. Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. Int. J. Atmos. Sci. 2016, 2016, 7230450. [Google Scholar] [CrossRef]
- METAP. Available online: https://www.iemed.org/publication/environmental-and-sustainable-development-in-the-mediterranean (accessed on 25 September 2024).
- Climate Change Adaptation in the Water Sector in the Middle East and North Africa, Technical Note Prepared by METAP (Mediterranean Environmental Technical Assistance Program) Under the EC Funded SMAP III Project “Promoting Awareness and Enabling a Policy Framework for Environment and Development Integration in the Mediterranean with a Focus on Integrated Coastal Zone Management”. 2007; 25p. Available online: https://www.fao.org/fileadmin/user_upload/rome2007/docs/Climate_Change_Adaptation_Water_Sector_NENA.pdf (accessed on 18 November 2024).
- Gregoire, G. Climate Change Adaptation in the Water Sector in the Middle East end North Africa: A Review of Main Issues, Technical Note, METAP (Mediterranean Environmental Technical Assistance Program). 2007; 25p. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2000777 (accessed on 18 November 2024).
- Office National de la Météorologie (Algeria). Available online: http://www.meteo.dz/ (accessed on 20 September 2024).
- Institut de la Météorologie Nationale (Tunisia). Available online: http://www.meteo.tn/ (accessed on 23 September 2024).
- Direction de la Météorologie Nationale (Maroc). Available online: http://www.marocmeteo.ma/ (accessed on 24 September 2024).
- Available online: https://www.ncei.noaa.gov/cdo-web/ (accessed on 26 September 2024).
- Available online: https://fr.tutiempo.net/climat/afrique.html (accessed on 21 October 2024).
- Nouaceur, Z.; Laignel, B.; Turki, I. Changement climatique au Sahel: Des conditions plus chaudes et plus humides en Mauritanie? Secheresse 2013, 24, 85–95. [Google Scholar]
- Nouaceur, Z.; Murărescu, O. Rainfall Variability and Trend Analysis of Rainfall in West Africa (Senegal, Mauritania, Burkina Faso). Water 2020, 12, 1754. [Google Scholar] [CrossRef]
- Nouaceur, Z.; Laignel, B. Caracterisation des evenements pluviometriques extremes sur la rive Sud du bassin mediterraneen: Etude du cas du quart nord-est algerien. In Proceedings of the Actes du XXVIII Colloque International de Climatologie, Liege, Belgium, 1–4 July 2015; pp. 573–578. [Google Scholar]
- Bertin, J. Graphique et mathématique: Généralisation du traitement graphique de l’information. Annales. Hist. Sci. Soc. 1969, 24, 70–101. [Google Scholar] [CrossRef]
- Bertin, J. La graphique et le traitement graphique de l’information. In Nouvelle Bibliothèque Scientifique; Flammarion: Paris, France, 1977; p. 277. ISSN 0768-1011. [Google Scholar]
- Bertin, J. Graphics and Graphic Information Processing; De Gruyter: Berlin, Germany; Boston, MA, USA, 1981. [Google Scholar] [CrossRef]
- Labat, D. Oscillations in land surface hydrological cycle. Earth Planet. Sci. Lett. 2006, 242, 143–154. [Google Scholar] [CrossRef]
- Zamrane, Z. Recherche d’indices de variabilité climatique dans des séries hydroclmatiques au Maroc: Identification, positionnement temporel, tendances et liens avec les fluctuations climatiques: Cas des grands bassins de la Moulouya, du Sebou et du Tensift. In Sciences de la Terre; Université Montpellier: Montpellier, France, 2016. [Google Scholar]
- Zamrane, Z.; Mahé, G.; Laftouhi, N.-E. Wavelet Analysis of Rainfall and Runoff Multidecadal Time Series on Large River Basins in Western North Africa. Water 2021, 13, 3243. [Google Scholar] [CrossRef]
- Murillo, J.C.R.; Filella, M. Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series. Hydrology 2020, 7, 82. [Google Scholar] [CrossRef]
- Rossi, A. Analyse spatio-temporelle de la variabilité hydrologique du bassin versant du Mississippi: Rôles des fluctuations climatiques et déduction de l’impact des modifications du milieu physique. In Thèse de Géologie—Hydrologie; Université de Rouen: Rouen, France, 2010. [Google Scholar]
- De Mesquita, B.B. The Predictioneer’s Game: Using the Logic of Brazen Self-Interest to See and Shape the Future; Random House: New York, NY, USA, 2009; ISBN 9781400067879. [Google Scholar]
- Labat, D.; Ababou, R.; Mangin, A. Rainfall–runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238, 149–178. [Google Scholar] [CrossRef]
- Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel Rainfall and Worldwide Sea Temperatures. Nature 1986, 320, 602–606. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef]
- Giannini, A.; Biasutti, M.; Verstraete, M. A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Glob. Planet. Change 2008, 64, 119–128. [Google Scholar] [CrossRef]
- Giannini, A.; Salack, S.; Lodunt, T.; Ali, A.; Gaye, A.; Ndiaye, O. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett. 2013, 8, 024010. [Google Scholar] [CrossRef]
- Held, I.; Delworth, T.; Lu, J.; Findell, K.; Knutson, T. Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA 2005, 102, 17891–17896. [Google Scholar] [CrossRef]
- Biasutti, M.; Giannini, A. Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett. 2006, 33, L11706. [Google Scholar] [CrossRef]
- Caminade, C.; Terray, L. Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim. Dyn. 2010, 35, 75–94. [Google Scholar] [CrossRef]
- Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 2013, 118, 1613–1623. [Google Scholar] [CrossRef]
- Biasutti, M. Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e591. [Google Scholar] [CrossRef] [PubMed]
- Boughdadi, S.; Ait Brahim, Y.; El Alaoui El Fels, A.; Saidi, M.E. Rainfall Variability and Teleconnections with Large-Scale Atmospheric Circulation Patterns in West-Central Morocco. Atmosphere 2023, 14, 1293. [Google Scholar] [CrossRef]
- Hakam, O.; Baali, A.; Ait Brahim, Y.; El Kamel, T.; Azennoud, K. Regional and Global Teleconnections Patterns Governing Rainfall in the Western Mediterranean: Case of the Lower Sebou Basin, North-West Morocco. Model. Earth Syst. Environ. 2022, 8, 5107–5128. [Google Scholar] [CrossRef]
- Climate Explorer. Available online: https://climexp.knmi.nl/start.cgi (accessed on 23 October 2024).
- Unibversity of East Anglia. Available online: https://crudata.uea.ac.uk/cru/data/moi/ (accessed on 25 October 2024).
- Palutikof, J.P.; Conte, M.; Casimiro Mendes, J.; Goodess, C.M.; Espirito Santo, F. Climate and climate change. In Mediterranean Desertification and Land Use; Brandt, C.J., Thornes, J.B., Eds.; John Wiley and Sons: London, UK, 1996. [Google Scholar]
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean Oscillation. In Impact on Precipitation and Hydrology in Italy; Publications of the Academy of Finland: Helsinki, Finland, 1989. [Google Scholar]
- Criado-Aldeanueva, F.; Soto-Navarro, J. Climatic Indices over the Mediterranean Sea: A Review. Appl. Sci. 2020, 10, 5790. [Google Scholar] [CrossRef]
- Palutikof, J.P. Analysis of Mediterranean climate data: Measured and modelled. In Mediterranean Climate: Variability and Trends; Bolle, H.J., Ed.; Springer: Berlin, Germany, 2003. [Google Scholar]
- Brunetti, M.; Maugeri, M.; Nanni, T. Atmospheric circulation and precipitation in Italy for the last 50 years. Int. J. Climatol. 2002, 22, 1455–1471. [Google Scholar] [CrossRef]
- Maheras, P.; Xoplaki, E.; Kutiel, H. Wet and dry monthly anomalies across the Mediterranean basin and their relationship with circulation, 1860–1990. Theor. Appl. Climatol. 1999, 64, 189–199. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation dynamics of Mediterranean precipitation variability 1948–1998. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Lopez-Bustins, J.A.; Lemus-Canovas, M. The influence of the Western Mediterranean Oscillation upon the spatio-temporal variability of precipitation over Catalonia (northeastern of the Iberian Peninsula). Atmos. Res. 2020, 236, 104819. [Google Scholar] [CrossRef]
- Sušelj, K.; Bergant, K. Mediterranean Oscillation Index. Geophys. Res. Abstr. 2006, 8, 02145. [Google Scholar]
- Maraun, D. What Can We Learn from Climate Data? Methods for Fluctuation Time/Scale and Phase Analysis. Ph.D. Thesis, Universitât Postdam, Potsdam, Germany, 2006; p. 127. [Google Scholar]
- Royaume du Maroc, Ministere de la Transition Energetique et du Developpment Durable—Departement du Developpement Durable. Available online: https://www.environnement.gov.ma/fr/ (accessed on 10 October 2024).
- Ministère de L’agriculture et du Développement Rural, Algerie. Available online: https://fr.madr.gov.dz (accessed on 10 October 2024).
- El Jihad, M.D.; Taabni, M. L’eau au Maghreb: Quel “mix” hydrique face aux effets du changement climatique? Zeineddine Nouaceur. In Eau et Climat en Afrique du Nord et au Moyen Orient; Nouaceur, Z., Ed.; Ed. Transversal: Targoviste, Romania, 2017; pp. 11–25. ISBN 978-606-605-166-8. [Google Scholar]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.M. The state of desalinisation and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Dioha, E.C.; Chung, E.S.; Ayugi, B.O.; Babaousmail, H.; Sian, K.T.C.L.K. Quantifying the Added Value in the NEX-GDDP-CMIP6 Models as Compared to Native CMIP6 in Simulating Africa’s Diverse Precipitation Climatology. Earth Syst. Environ. 2024, 8, 417–436. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Chung, E.-S.; Babaousmail, H.; Sian, K.T.C.L.K. Characterizing the performances of different observational precipitation products and their uncertainties over Africa. Environ. Res. Lett. 2024, 19, 064009. [Google Scholar] [CrossRef]
- Jemai, H.; Ellouze, M.; Abida, H.; Laignel, B. Spatial and temporal variability of rainfall: Case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab. J. Geosci. 2018, 11, 177. [Google Scholar] [CrossRef]
- Achite, M.; Wałęga, A.; Toubal, A.K.; Mansour, H.; Krakauer, N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water 2021, 13, 3103. [Google Scholar] [CrossRef]
- Bouras, E.H.; Jarlan, L.; Er-Raki, S.; Balaghi, R.; Amazirh, A.; Richard, B.; Khabba, S. Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sens. 2021, 13, 3101. [Google Scholar] [CrossRef]
- Djebbar, A.; Goosse, H.; Klein, F. Robustesse du lien entre les précipitations en Afrique du Nord et les modes standards de variabilité atmosphérique au cours du dernier millénaire. Climate 2020, 8, 62. [Google Scholar] [CrossRef]
Station | Q1 | Q2 | Q3 | Q4 | Me | Min | |
---|---|---|---|---|---|---|---|
1 | ORAN | 256.5 | 299.5 | 379.9 | 429.5 | 338.3 | 171.7 |
2 | BEJAIA | 615 | 737.3 | 792 | 948 | 767.5 | 320 |
3 | DAR EL BEIDA | 456.8 | 551 | 704.7 | 761.9 | 612.1 | 280 |
4 | ECHLEF | 274.3 | 334 | 404.9 | 474.1 | 373.5 | 188.7 |
5 | El Bayed | 206.1 | 256.2 | 277.4 | 327.9 | 270.1 | 106.7 |
6 | Djelfa | 236 | 291 | 328.9 | 387.1 | 318.9 | 142.2 |
7 | Biskra | 63.8 | 92.4 | 128 | 185.4 | 103.3 | 27.7 |
8 | Batna | 219.6 | 283.6 | 327.7 | 393.7 | 299 | 159.2 |
9 | Tébessa | 278.3 | 346.7 | 380.9 | 444.8 | 370.4 | 192 |
10 | ANNABA | 530.1 | 584.4 | 655.8 | 749.5 | 621 | 349.5 |
11 | Constantine | 371.3 | 463.5 | 514 | 641.2 | 481.6 | 247.6 |
12 | SKIKDA | 606 | 666.3 | 750.6 | 844.1 | 729.8 | 330.5 |
13 | TETOUAN | 427.7 | 496.1 | 640.2 | 756.6 | 574.5 | 304.8 |
14 | TAZA | 386.4 | 451.7 | 555 | 689.4 | 535.3 | 114.1 |
15 | MEKNES | 354.4 | 409.2 | 503.6 | 629.2 | 467.6 | 181.5 |
16 | FES | 342.7 | 416.4 | 507 | 596.2 | 457.3 | 210.1 |
17 | RABAT | 349 | 439.7 | 502.5 | 565.4 | 502.5 | 208.8 |
18 | CASABLANCA | 259.7 | 340.1 | 413.8 | 505.1 | 368.1 | 107.7 |
19 | SAFI | 216.1 | 272.8 | 330.2 | 441 | 318.5 | 104.4 |
20 | MARRAKECH | 131.9 | 196.8 | 244.3 | 309.9 | 225 | 67.3 |
21 | OUARZAZET | 70.3 | 93.7 | 115 | 154.3 | 107.2 | 25.1 |
22 | TOUZEUR | 50 | 74.7 | 86.7 | 106.4 | 84.1 | 22.7 |
23 | SFAX | 142.9 | 182.2 | 227.5 | 290.3 | 202.3 | 69.1 |
24 | GAFSA | 108 | 132.7 | 165.8 | 216.4 | 143.3 | 36.6 |
25 | TUNIS | 320.5 | 419.6 | 498.5 | 585.2 | 460.1 | 252.1 |
26 | BIZERTE | 467.4 | 549.2 | 689.3 | 768.4 | 655.2 | 351 |
27 | TABARKA | 807.5 | 944.8 | 1023.6 | 1161.9 | 989.8 | 574.5 |
28 | JENDOUBA | 336.5 | 410.5 | 484.4 | 566.3 | 460.3 | 244.9 |
29 | KAIRAOUANE | 221.5 | 280.4 | 323.4 | 367.4 | 299.7 | 128.8 |
Thresholds | Q1 | Q2 | Median | Q3 | Q4 |
Distribution of values | <Q1 | Q1–Q2 | Q2–Median | Q3–Q4 | >Q4 |
(%) | (0–20%) | (20–40%) | (40–50%)’ Median–Q3 (50–60%) | (60–80%) | (80–100%) |
Annual rainfall | Very dry | Dry | Median | Wet | Very wet |
Trend at station |
Annual rainfall | Very dry | Dry | Median | Wet | Very wet |
Trend at station | 1 | 2 | 3 | 4 | 5 |
Annual rainfall | Very dry | Dry | Median | Wet | Very wet |
Regional trend | Negatif index (−) Drought conditions | Not expressed | Positif index (+) Wet conditions |
Variability Mode | 1–2 | 2–4 | 4–8 | 8–16 | 16–32 |
Dar El Beida (Algeria) | 73.93 | 75.05 | 72.88 | 62.35 | 59 |
Casablanca (Morocco) | 72.11 | 64,64 | 61.38 | 71.58 | 61.64 |
Tunis (Tunisia) | 72.55 | 76.49 | 70.61 | 79.40 | 74.43 |
Variability Mode | 1–2 | 2–4 | 4–8 | 8–16 | 16–32 |
Dar El Beida (Algeria) | 93.28 | 64.04 | 69.38 | 59.73 | 81.08 |
Casablanca (Morocco) | 96.22 | 78.46 | 66.28 | 69.18 | 76.4 |
Tunis (Tunisia) | 92.57 | 67.46 | 68.07 | 61.53 | 70.36 |
Country | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 |
---|---|---|---|---|
Algeria | Wet phase (1970–1986) Regional index + 0.26 | Drought phase (1987–2002) Intercalary wet phases in 1990–1992, 1996, 1997, and 1999 Regional index - 0.20 | Wet phase (2003–2013) Succession of surplus years, except for the year 2008 (index—0.40) Regional index + 0.57 | Drought phase (2014–2023), only the year 2018 is humid (+0.85) Regional index–0.76 |
Maroc | Wet phase (1970–1980) Shorter, but the trend is more homogeneous Regional index + 0.53 | Drought phase (1981–2001) Intercalary wet phases in 1989–1991 and 1996–1997 The years 1998, 2000, and 2001 are drier Regional index –0.28 | Wet phase (2002–2014) marked by a variability in annual accumulations Between 2008 and 2010, a succession of wet years (with a negative index of +2.14 in 2010) Regional index + 0.48 | Drought phase (2015–2023) that starts one year later than in other countries—only one truly wet year (2018 with +1.35) Regional index–0.94 |
Tunisia | Wet phase (1970–1987) Longer, and marked by strong variability + 0.07 | Drought phase (1988–2002) Intercalary wet phases in 1990–1992, 1996, 1997, and 1999 Regional index - 0.16 | Wet phase (2003–2013) Succession of surplus years, except for the year 2008 (index—1.30) Regional index + 0.46 | Drought phase (2014–2023)—only the year 2018 is humid (+0.86) Regional index–0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouaceur, Z.; Murarescu, O.; Muratoreanu, G. The Investigation of Trends and Wet and Dry Rainfall Cycles in North Africa (In Morocco, Algeria, and Tunisia) (1970–2023). Geosciences 2025, 15, 80. https://doi.org/10.3390/geosciences15030080
Nouaceur Z, Murarescu O, Muratoreanu G. The Investigation of Trends and Wet and Dry Rainfall Cycles in North Africa (In Morocco, Algeria, and Tunisia) (1970–2023). Geosciences. 2025; 15(3):80. https://doi.org/10.3390/geosciences15030080
Chicago/Turabian StyleNouaceur, Zeineddine, Ovidiu Murarescu, and George Muratoreanu. 2025. "The Investigation of Trends and Wet and Dry Rainfall Cycles in North Africa (In Morocco, Algeria, and Tunisia) (1970–2023)" Geosciences 15, no. 3: 80. https://doi.org/10.3390/geosciences15030080
APA StyleNouaceur, Z., Murarescu, O., & Muratoreanu, G. (2025). The Investigation of Trends and Wet and Dry Rainfall Cycles in North Africa (In Morocco, Algeria, and Tunisia) (1970–2023). Geosciences, 15(3), 80. https://doi.org/10.3390/geosciences15030080