Numerical Modeling of Extreme Sea Levels on the Laptev Sea Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup of the ADCIRC Circulation Model Setup
2.2. Verification of Model and In Situ Data
2.3. Calculation of Nonharmonic Tidal Components
2.4. Total and Residual Extreme Sea Level Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janout, M.A.; Lenn, Y.D. Semidiurnal tides on the Laptev Sea shelf with implications for shear and vertical mixing. J. Phys. Oceanogr. 2014, 44, 202–219. [Google Scholar] [CrossRef]
- Osadchiev, A.; Medvedev, I.; Shchuka, S.; Kulikov, M.; Spivak, E.; Pisareva, M.; Semiletov, I. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Janout, M.A.; Hölemann, J.; Laukert, G.; Smirnov, A.; Krumpen, T.; Bauch, D.; Timokhov, L. On the variability of stratification in the freshwater-influenced Laptev Sea Region. Front. Mar. Sci. 2020, 7, 543489. [Google Scholar] [CrossRef]
- Ashik, I.; Dvorkin, Y.; Vanda, Y. Extreme oscillations of the sea level in the Laptev Sea. In Land-Ocean Systems in the Siberian Arctic; Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A., Eds.; Springer: Berlin, Germany, 1999; pp. 37–41. [Google Scholar]
- Shevchenko, G.; Ivelskaya, T. Estimation of extreme sea levels for the Russian coasts of the Kuril Islands and the Sea of Okhotsk. Pure Appl. Geophys. 2015, 172, 3537–3555. [Google Scholar] [CrossRef]
- Korovkin, I.P.; Antonov, V.S. Tides in the Khatanga River and the Khatanga Bay. Proc. All-Union Sci. Res. Inst. 1938, 105, 125–141. (In Russian) [Google Scholar]
- Ashik, I.M.; Vanda, Y.A. Catastrophic storm surges in the southern part of the Laptev Sea. Berichte. Zur. Polarforsch. 1995, 176, 43–46. [Google Scholar]
- Squire, V.A.; Kovalev, D.P.; Kovalev, P.D.; Medvedev, I.P.; Kulikov, M.E. A cornucopia of oscillations on the Laptev Sea shelf. Cont. Shelf. Res. 2021, 227, 104514. [Google Scholar] [CrossRef]
- Seredkina, A.I.; Melnikova, V.I. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt. J. Seism. 2018, 22, 1211–1224. [Google Scholar] [CrossRef]
- Imaeva, L.P.; Gusev, G.S.; Imaev, V.S. Dynamics of the Relief and Seismotectonic Activity of the Modern Structures in the Delta of the River Lena. Geotectonics 2019, 5, 62–77. [Google Scholar] [CrossRef]
- Drachev, S.S. Laptev Sea Rifted Continental Margin: Modern Knowledge and Unsolved Questions. Polarforschung 2000, 68, 41–50. [Google Scholar] [CrossRef]
- Avetisov, G.P. Once again on the earthquakes in the Laptev Sea. Geological-geophysical characteristics of Arctic region lithosphere. VNIIOkeangeologiya St. Petersburg 2000, 3, 104–114. (In Russian) [Google Scholar]
- Imaeva, L.P.; Kolodeznikov, I.I. Seismotectonics of the Northeastern Sector of Russian Arctic; Publishing House of the Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2017. (In Russian) [Google Scholar]
- Krylov, A.A.; Lobkovskii, L.I.; Kovachev, S.A.; Baranov, B.V.; Rukavishnikova, D.D.; Tsukanov, N.V.; Dozorova, K.A.; Semiletov, I.P. Geodynamic Regimes in the Laptev Sea Region According to the Latest Seismological Data. Dokl. Earth Sci. 2023, 513, 1338–1343. [Google Scholar] [CrossRef]
- Krylov, A.A.; Kulikov, M.E.; Kovachev, S.A.; Medvedev, I.P.; Lobkovsky, L.I.; Semiletov, I.P. Peculiarities of the HVSR Method Application to Seismic Records Obtained by Ocean-Bottom Seismographs in the Arctic. Appl. Sci. 2022, 12, 9576. [Google Scholar] [CrossRef]
- Krylov, A.A.; Novikov, M.A.; Kovachev, S.A.; Roginskiy, K.A.; Ilinsky, D.A.; Ganzha, O.Y.; Ivanov, V.N.; Timashkevich, G.K.; Samylina, O.S.; Lobkovsky, L.I.; et al. Features of Seismological Observations in the Arctic Seas. J. Mar. Sci. Eng. 2023, 11, 2221. [Google Scholar] [CrossRef]
- Kowalik, Z.; Proshutinsky, A.Y. Diurnal tides in the Arctic Ocean. J. Geophys. Res. Oceans 1993, 98, 16449–16468. [Google Scholar] [CrossRef]
- Ashik, I.M. Numerical prediction of sea surges and ice conditions in the Laptev and East-Siberian seas. In Russian-German Cooperation: Laptev Sea System; Russian-German Cooperation: Moscow, Russia, 1995; pp. 47–54. [Google Scholar]
- Padman, L.; Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef]
- Fofonova, V.; Androsov, A.; Danilov, S.; Janout, M.; Sofina, E.; Wiltshire, K. Semidiurnal tides in the Laptev Sea Shelf zone in the summer season. Cont. Shelf Res. 2014, 73, 119–132. [Google Scholar] [CrossRef]
- Stammer, D.; Ray, R.D.; Andersen, O.B.; Arbic, B.K.; Bosch, W.; Carrère, L.; Cheng, Y.; Chinn, D.S.; Dushaw, B.D.; Egbert, G.D.; et al. Accuracy assessment of global barotropic ocean tide models. Rev. Geophys. 2014, 52, 243–282. [Google Scholar] [CrossRef]
- Kowalik, Z. Storm surges in the Beaufort and Chukchi seas. J. Geophys. Res. Oceans 1984, 89, 10570–10578. [Google Scholar] [CrossRef]
- Kim, J.; Murphy, E.; Nistor, I.; Ferguson, S.; Provan, M. Numerical analysis of storm surges on Canada’s western Arctic coastline. J. Mar. Sci. Eng. 2021, 9, 326. [Google Scholar] [CrossRef]
- Joyce, B.R.; Pringle, W.J.; Wirasaet, D.; Westerink, J.J.; Van der Westhuysen, A.J.; Grumbine, R.; Feyen, J. High resolution modeling of western Alaskan tides and storm surge under varying sea ice conditions. Ocean Model. 2019, 141, 101421. [Google Scholar] [CrossRef]
- Kleptsova, O.; Pietrzak, J.D. High resolution tidal model of Canadian Arctic Archipelago, Baffin and Hudson Bay. Ocean Model. 2018, 128, 15–47. [Google Scholar] [CrossRef]
- Korablina, A.D.; Kondrin, A.T.; Arkhipkin, V.S. Numerical simulations and statistics of surges in the White and Barents seas. Russ. J. Earth Sci. 2017, 17, ES4004. [Google Scholar] [CrossRef]
- Myers, E.P.; Baptista, A.M. Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska tsunamis. Nat. Hazards. 2001, 23, 1–28. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Tanaka, S.; Westerink, J.J.; Dawson, C.N.; Luettich, R.A., Jr.; Zijlema, M.; Holthuijsen, L.H.; Smith, J.M.; Westerink, L.G.; Westerink, H.J. Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge. J. Sci. Comput. 2012, 52, 468–497. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries; Report 1, Theory and Methodology of ADCIRC-2DD1 and ADCIRC-3DL.; Technical Report DRP-92-6; US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, November 1992. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meterol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 2014, 27, 2588–2606. [Google Scholar] [CrossRef]
- Myslenkov, S.A.; Arkhipkin, V.S.; Koltermann, K.P. Estimation of the height of swell in the White and Barents seas. Vestnik Moskov. Univ. Ser. Geogr. 2015, 5, 59–66. (In Russian) [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Medvedev, I.P.; Rabinovich, A.B.; Kulikov, E.A. Tidal oscillations in the Baltic Sea. Oceanology 2013, 53, 526–538. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. Oceans 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Raymond, W.H. High-order low-pass implicit tangent filters for use in finite area calculations. Mon. Weather Rev. 1988, 116, 2132–2141. [Google Scholar] [CrossRef]
- Kaiser, J.; Hamming, R. Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. In Proceedings of the ICASSP ’77, IEEE International Conference on Acoustics, Speech, and Signal Processing, Hartford, CT, USA, 9–11 May 1977; Volume 2, pp. 82–85. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar] [CrossRef]
- Williams, J.; Horsburgh, K.J.; Williams, J.A.; Proctor, R.N. Tide and skew surge independence: New insights for flood risk. Geophys. Res. Lett. 2016, 43, 6410–6417. [Google Scholar] [CrossRef]
- Kowalik, Z.; Proshutinsky, A.Y. The Arctic ocean tides. Geophysical monograph series. Geophys. Monogr. Ser. 1994, 85, 137–158. [Google Scholar] [CrossRef]
- Kulikov, M.E.; Medvedev, I.P.; Kondrin, A.T. Seasonal variability of tides in the Arctic Sea. Russ. J. Earth Sci. 2018, 18, ES5003. [Google Scholar] [CrossRef]
- Ashik, I.M.; Ryzhov, I.V. Extreme sea level oscillations in the Arctic seas and their long-term changes. Probl. Arktiki I Antarkt. 2012, 4, 74–89. (In Russian) [Google Scholar]
- Mustafin, N.V. On catastrophic storm surges in the south-eastern part of the Laptev Sea. Probl. Arktiki I Antarkt. 1961, 7, 33–36. (In Russian) [Google Scholar]
- Tawn, J.A. Estimating probabilities of extreme sea-levels. J. R. Stat. Soc. C Appl. Stat. 1992, 41, 77–93. [Google Scholar] [CrossRef]
- Franke, D.; Hinz, K.; Oncken, O. The Laptev sea rift. Mar. Petrol. Geol. 2001, 18, 1083–1127. [Google Scholar] [CrossRef]
- Mazova, R.K.; Kurkin, A.A.; Vinokurov, M.S. Possible tsunamis in the Arctic. Sci. Tsunami Hazards 2022, 41, 245–263. [Google Scholar]
- Kulikov, E.A.; Ivashchenko, A.I.; Medvedev, I.P.; Yakovenko, O.I.; Fine, I.V. Tsunami hazards for the Arctic coast of Russia. Part 2. Numerical tsunami modelling. Georisk World 2019, 13, 6–17. [Google Scholar] [CrossRef]
Station | Data Type | O1 | K1 | M2 | S2 |
---|---|---|---|---|---|
Nordvik Bay | adcirc | 2.8 | 5.9 | 50.8 | 16.3 |
aotim5 | 2.3 | 5.1 | 39.3 | 23.5 | |
Anabar Bay | adcirc | 4.3 | 6.8 | 34.6 | 12.5 |
aotim5 | 2.4 | 5.5 | 22.3 | 11.5 | |
Olenek Bay | adcirc | 3.4 | 5.1 | 9.8 | 3.1 |
aotim5 | 0.8 | 2.1 | 6.5 | 2.5 | |
Tiksi Bay | adcirc | 2.2 | 3.5 | 16.8 | 5.9 |
aotim5 | 0.4 | 0.7 | 12.6 | 3.8 | |
obs | 1.5 | 2.7 | 10.2 | 5.4 | |
Preobrazheniya Island | adcirc | 3.3 | 6.6 | 47.2 | 17.8 |
aotim5 | 2.8 | 6.1 | 47.0 | 23.2 | |
obs | 2.8 | 5.0 | 35.4 | 16.6 | |
Yana Bay | adcirc | 0.3 | 0.8 | 8.3 | 2.9 |
aotim5 | 0.1 | 0.1 | 5.3 | 0.4 |
Station | Time Series | R | RMSE (cm) |
---|---|---|---|
Preobrazheniya Island | 01.02–30.04.1986 | 0.63 | 9.5 |
01.07–30.09.1986 | 0.29 | 10.6 | |
01.02–30.04.1987 | 0.50 | 16.7 | |
01.07–30.09.1987 | 0.56 | 15.3 | |
01.02–30.04.1988 | 0.71 | 9.5 | |
01.07–30.09.1988 | 0.29 | 14.9 | |
Khatanga Village | 16.07–07.10.1983 | 0.70 | 9.3 |
Tiksi Bay | 01.01.1981–31.12.2000 | 0.75 | 13.2 |
Station | 1 | 2 | 5 | 10 | 20 | 50 | 100 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | NS | SS | NS | SS | NS | SS | NS | SS | NS | SS | NS | SS | NS | |
Khatanga Bay | 205 | −215 | 218 | −234 | 234 | −258 | 247 | −276 | 260 | −294 | 276 | −318 | 289 | −337 |
Anabar Bay | 274 | −251 | 283 | −265 | 294 | −284 | 303 | −298 | 312 | −312 | 324 | −330 | 335 | −344 |
Olenek Bay | 159 | −189 | 194 | −192 | 240 | −195 | 276 | −198 | 311 | −202 | 357 | −222 | 393 | −238 |
Tiksi Bay | 116 | −147 | 134 | −157 | 157 | −172 | 174 | −187 | 191 | −203 | 214 | −225 | 232 | −241 |
Yana Bay | 189 | −127 | 211 | −146 | 240 | −171 | 262 | −190 | 283 | −209 | 312 | −235 | 334 | −254 |
Ebelyakh Bay | 179 | −131 | 205 | −160 | 240 | −199 | 266 | −228 | 292 | −257 | 327 | −296 | 353 | −325 |
Station | Total Sea Level (cm) | Tidal High Water (cm) | Skew Surge (cm) | Time Offset (hours) |
---|---|---|---|---|
Khatanga Bay | 201.6 | 29.5 | 172.1 | 5 |
Anabar Bay | 248.0 | 43.8 | 204.2 | 4 |
Olenek Bay | 267.4 | 12.4 | 255.0 | 4 |
Tiksi Bay | 198.7 | 18.2 | 180.5 | −4 |
Yana Bay | 263.7 | 11.8 | 251.9 | 1 |
Ebelyakh Bay | 276.0 | 11.4 | 265.4 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, M.E.; Arkhipkin, V.S.; Medvedev, I.P.; Kovachev, S.A.; Krylov, A.A. Numerical Modeling of Extreme Sea Levels on the Laptev Sea Coast. Geosciences 2024, 14, 245. https://doi.org/10.3390/geosciences14090245
Kulikov ME, Arkhipkin VS, Medvedev IP, Kovachev SA, Krylov AA. Numerical Modeling of Extreme Sea Levels on the Laptev Sea Coast. Geosciences. 2024; 14(9):245. https://doi.org/10.3390/geosciences14090245
Chicago/Turabian StyleKulikov, Mikhail E., Victor S. Arkhipkin, Igor P. Medvedev, Sergey A. Kovachev, and Artem A. Krylov. 2024. "Numerical Modeling of Extreme Sea Levels on the Laptev Sea Coast" Geosciences 14, no. 9: 245. https://doi.org/10.3390/geosciences14090245
APA StyleKulikov, M. E., Arkhipkin, V. S., Medvedev, I. P., Kovachev, S. A., & Krylov, A. A. (2024). Numerical Modeling of Extreme Sea Levels on the Laptev Sea Coast. Geosciences, 14(9), 245. https://doi.org/10.3390/geosciences14090245