Landslide Susceptibility Assessment by Machine Learning and Frequency Ratio Methods Using XRAIN Radar-Acquired Rainfall Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landslide Conditioning Factors (LCFs)
2.2.1. Lithology
2.2.2. Land Use
2.2.3. Elevation
2.2.4. Slope Angle
2.2.5. Slope Aspect
2.2.6. Distance to Drainage
2.2.7. Distance to Lineaments
2.2.8. Soil Classification
2.2.9. Rainfall
2.3. XRAIN Radar-Acquired Rainfall Data
2.4. LSM Production Methods
2.4.1. Frequency Ratio (FR) Method
2.4.2. ML Methods
Random Forest (RF) Method
Artificial Neural Network (ANN) Method
Logistic Regression (LR) Method
2.5. Performance Assessment
2.6. Automated Hyperparameter Tuning Based on AUROC Analysis Validation
3. Results
3.1. LCF FR Values
3.2. FR Method LSM
3.3. RF Method LSM
3.4. ANN Method LSM
3.5. LR Method LSM
3.6. LSM Accuracy Comparison
3.7. Impact of XRAIN Radar-Acquired Rainfall Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction. Economic Losses, Poverty and Disasters 1998–2017. 2018, p. 31. Available online: https://www.undrr.org/publication/economic-losses-poverty-disasters-1998-2017 (accessed on 22 June 2023).
- Gariano, S.; Guzzetti, F. Landslides in a CHANGING climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Osanai, N.; Tomita, Y.; Akiyama, K.; Matsushita, T. Technical Note of National Institute for Land and Infrastructure Management No.530; National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2009. [Google Scholar]
- Japan Meteorological Agency. Announcement of Special Warnings in Kyoto and Hyogo Prefectures (Translated Title). 2018. Available online: http://www.jma.go.jp/jma/press/1807/06e/kaisetsu2018070623.pdf (accessed on 15 June 2023).
- Ministry of Land, Infrastructure, Transport and Tourism. Press Release: The 2018 Rain Disasters Result in the Heaviest Economic Damage Ever Since Statistical Data Management (Translated Title). 2019. Available online: https://www.mlit.go.jp/common/001301033.pdf (accessed on 5 May 2024).
- Moriyama, T.; Hirano, M. Relationship of three hours of cumulative rainfall during concentration time of slope and collapsed area of landslide. In Proceedings of the 21st IAHR-APD Congress 2018, Yogyakarta, Indonesia, 2–5 September 2018; pp. 999–1006. [Google Scholar]
- Wu, Y.H.; Nakakita, E. Assessment of landslide hazards using logistic regression with high-resolution radar rainfall observation and geological factor. J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 2019, 75, I_157–I_162. [Google Scholar] [CrossRef] [PubMed]
- Marc, O.; Gosset, M.; Saito, H.; Uchida, T.; Malet, J.-P. Spatial Patterns of Storm-Induced Landslides and Their Relation to Rainfall Anomaly Maps. Geophys. Res. Lett. 2019, 46, 11167–11177. [Google Scholar] [CrossRef]
- Yokoe, Y.; Kita, M.; Uchida, T.; Kawahara, Y. Characteristics of precipitation system in hiroshima prefecture during the heavy rainfall event of July 2018 observed using xrain data. J. JSCE 2021, 9, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Data Integration & Analysis System. XRAIN Realtime Precipitation Data; The University of Tokyo, Sponsored by the Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2020; Available online: https://diasjp.net/ (accessed on 10 June 2022).
- Yilmaz, I. Landslide susceptibility mapping using FR, logistic regression, artificial neural networks, and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating ML and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Youssef, A.H.; Pourghasemi, H.R. Landslide susceptibility mapping using ML algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide susceptibility mapping using ML: A literature survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of ML-based methods in Landslide susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for Landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of Landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based Landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on Landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Palau, R.M.; Hürlimann, M.; Berenguer, M.; Sempere-Torres, D. Debris-Flow Early Warning System at Regional Scale Using Weather Radar and Susceptibility Mapping. Doctoral Dissertation, Colorado School of Mines. Arthur Lakes Library, Golden, CO, USA, 2019. [Google Scholar]
- Rodrigues Neto, J.M.S. Analysis of XRAIN Data and Landslide Distribution in Southern Hiroshima during the July 2018 Heavy Rain-Induced Disasters. Master’s Thesis, Ehime University, Ehime, Japan, 2020. [Google Scholar]
- Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with FR, generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, Y.; Han, Z.; Chen, G. Spatiotemporal Landslide susceptibility mapping incorporating the effects of heavy rainfall: A case study of the heavy rainfall in August 2021 in Kitakyushu, Fukuoka, Japan. Water 2021, 13, 3312. [Google Scholar] [CrossRef]
- Xia, D.; Tang, H.; Sun, S.; Tang, C.; Zhang, B. Landslide susceptibility mapping based on the germinal center optimization algorithm and support vector classification. Remote Sens. 2022, 14, 2707. [Google Scholar] [CrossRef]
- Imtiaz, I.; Umar, M.; Latif, M.; Ahmed, R.; Azam, M. Landslide susceptibility mapping: Improvements in variable weights estimation through machine learning algorithms—A case study of upper Indus River Basin, Pakistan. Environ. Earth Sci. 2022, 81, 112. [Google Scholar] [CrossRef]
- Daviran, M.; Shamekhi, M.; Ghezelbash, R.; Maghsoudi, A. Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: Hyperparameters tuning by genetic optimization algorithm. Int. J. Environ. Sci. Technol. 2023, 20, 259–276. [Google Scholar] [CrossRef]
- Beguería, S. Validation and evaluation of predictive models in hazard assessment and risk management. Nat. Hazards. 2006, 37, 315–329. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of LSMs? Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef]
- Li, B.; Liu, K.; Wang, M.; He, Q.; Jiang, Z.; Zhu, W.; Qiao, N. Global dynamic rainfall-induced Landslide susceptibility mapping using ML. Remote Sens. 2022, 14, 5795. [Google Scholar] [CrossRef]
- Rodrigues Neto, J.M.S.; Bhandary, N.P. Influence of Localized Rainfall Patterns on Landslide Occurrence—A Case Study of Southern Hiroshima with eXtended Radar Information Network Data during the July 2018 Heavy Rain Disasters. Geosciences 2023, 13, 245. [Google Scholar] [CrossRef]
- Yamada, N.; Higashimoto, S.; Mizuno, K.; Hiroshima, T.; Suda, Y. Hiroshima 1:200,000 Geological Map, NI-53-33; Geological Survey of Japan: Tsukuba, Japan, 1986. [Google Scholar]
- Takemura, S.; Sugamori, Y.; Suzuki, S. Maizuru and Ultra-Tamba zones in the eastern Okayama and southwestern Hyogo prefectures, southwest Japan. J. Geol. Soc. Japan 2009, 115 (Suppl.), 123–137. (In Japanese) [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.-H.; Yang, H.; Tanida, Y.; Kamei, A. Preliminary investigation of the 20 August 2014 debris flows triggered by a severe rainstorm in Hiroshima City, Japan. Geoenvironmental Disasters 2015, 2, 17. [Google Scholar] [CrossRef]
- Chigira, M. Micro-sheeting of granite and its relationship with landsliding specifically after the heavy rainstorm in June 1999, Hiroshima Prefecture, Japan. Eng. Geol. 2001, 59, 219–231. [Google Scholar] [CrossRef]
- Kamada, M.; Nakagoshi, N. Landscape structure and the disturbance regime at three rural regions in Hiroshima Prefecture, Japan. Landsc. Ecol. 1996, 11, 15–25. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Average Monthly Precipitation in a Year (Translated Title). 2020. Available online: http://www.data.jma.go.jp/ (accessed on 15 June 2023).
- Guzzetti, F.; Cardinali, M.; Reichenbach, P. The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environ. Eng. Geosci. 1996, II, 531–555. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Massari, R. Generalised linear modelling of susceptibility to landsliding in the central apennines, Italy. Comput. Geosci. 1998, 24, 373–385. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Çevik, E.; Topal, T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Peart, M.R.; Ng, K.Y.; Zhang, D.D. Landslides and sediment delivery to a drainage system: Some observations from Hong Kong. J. Asian Earth Sci. 2005, 25, 821–836. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; Geological Survey Circular: Reston, VA, USA, 2008; Volume 1325, 129p. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism. National Land Numerical Information Database (Translated Title); Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2022.
- Geospatial Information Authority of Japan. Database. 2022. Available online: https://www.gsi.go.jp/top.html (accessed on 10 June 2022).
- Gokceoglu, M.E.C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ. Geol. 2002, 41, 720–730. [Google Scholar] [CrossRef]
- Fossen, H. Structural Geology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Ambrosi, C.; Crosta, G.B. Large sackung along major tectonic features in the Central Italian Alps. Eng. Geol. 2006, 83, 183–200. [Google Scholar] [CrossRef]
- Sarkar, S.; Kanungo, D.P. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm. Eng. Remote Sens. 2004, 70, 617–625. [Google Scholar] [CrossRef]
- Tanimoto, T.; Uemoto, S.; Kanazawa, S.; Miyazi, K.; Matsuura, K.; Yoshida, F.; Higashi, T.; Hyodo, H. 1:50,000 Kure Soil Map (NI-53-33-7); Geological Survey of Japan: Tsukuba, Japan, 1985. [Google Scholar]
- Guidicini, G.; Iwasa, O.Y. Tentative correlation between rainfall and landslides in a humid tropical environment. Bull. Int. Assoc. Eng. Geol. 1977, 16, 13–20. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity–duration control of shallow landslides and debris flows. Geogr. Ann. A 1980, 62, 23–27. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Dahal, R.K. Rainfall-induced Landslides in Nepal. Int. J. Eros. Control. Eng. 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Kansakar, S.R.; Hannah, D.M.; Gerrard, J.; Rees, G. Spatial pattern in the precipitation regime of Nepal. Int. J. Clim. 2004, 24, 1645–1659. [Google Scholar] [CrossRef]
- Vélez, A.; Martin-Vide, J.; Royé, D. Spatial analysis of daily precipitation concentration in Puerto Rico. Theor. Appl. Climatol. 2019, 136, 1347–1355. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Tien Bui, D.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards. 2011, 59, 1413–1444. [Google Scholar]
- Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of FR and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters 2016, 3, 1–16. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using FR and logistic regression models. Landslides 2006, 4, 33–41. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, Q.; Ye, S.; Ren, B. A novel hybrid approach for Landslide susceptibility mapping integrating analytical hierarchy process and normalized FR methods with the cloud model. Geomorphology 2018, 327, 170–187. [Google Scholar] [CrossRef]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. ML and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef]
- Felicísimo, A.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. ML techniques in Landslide susceptibility mapping: A survey and a case study. In Advances in Natural and Technological Hazards Research; Pradhan, S., Vishal, V., Singh, T., Eds.; Landslides: Theory, Practice and Modelling; Springer: Cham, Switzerland, 2019; Volume 50, pp. 283–301. [Google Scholar]
- Wu, X.; Vipin Kumar, J.; Quinlan, R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66, 327–343. [Google Scholar] [CrossRef]
- Garrett, J. Where and why artificial neural networks are applicable in civil engineering. J. Comput. Civ. Eng. 1994, 8, 129–130. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Min, K.; Won, J.S. Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2003, 28, 1361–1376. [Google Scholar] [CrossRef]
- Tolles, J.; Meurer, W.J. Logistic Regression Relating Patient Characteristics to Outcomes. JAMA 2016, 316, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Gautam, P.; Kubota, T.; Sapkota, L.M.; Shinohara, Y. Landslide susceptibility mapping with GIS in high mountain area of Nepal: A comparison of four methods. Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Aslam, B.; Zafar, A.; Khalil, U. Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan. Environ. Dev. Sustain. 2022, 1–28. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Xu, C. Comparison of different machine learning models for landslide susceptibility mapping. In Proceedings of the GARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9318–9321. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Shirzadi, A.; Shahabi, H.; Singh, S.K.; Al-Ansari, N.; Clague, J.J.; Jaafari, A.; Chen, W.; Miraki, S.; Dou, J.; et al. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. Int. J. Environ. Res. Public Health 2020, 17, 2749. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Akgun, A.; Dag, S.; Bulut, F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol. 2008, 54, 1127–1143. [Google Scholar] [CrossRef]
- Himan, S.; Saeed, K.; Baharin, A.; Mazlan, H. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar]
LCF | Variance Inflation Factor (VIF) |
---|---|
Lithology | 2.147 |
Land use | 1.037 |
Altitude | 1.525 |
Slope angle | 1.029 |
Slope aspect | 1.002 |
Distance from drainage | 1.072 |
Distance from lineaments | 1.187 |
Mean annual precipitation | 1.674 |
Data | Format | Source |
---|---|---|
Landslides from July 2018 disasters | Point-type shapefile | Geospatial Information Authority of Japan (GSI) [45]. |
Lithology | Polygon-type shapefile | Hiroshima 1:200,000 geological map (NI-53-33) by Yamada et al. [32]. |
Altitude | 20 m Raster | DEM by GSI [45]. |
Slope angle | 20 m Raster | (Extracted from) DEM by GSI [45]. |
Slope aspect | 20 m Raster | (Extracted from) DEM by GSI [45]. |
Distance to drainage | Polygon-type shapefile | (Extracted from) DEM by GSI [45]. |
Distance to lineament | Polygon-type shapefile | Extracted from geological map (Yamada et al. [32]). |
Land use | Polygon-type shapefile | NLID, MLIT of Japan [44]. |
Soil class | Polygon-type shapefile | 1:50,000 Kure soil map (NI-53-33-7) by Tanimoto et al. [51]. |
Mean annual precipitation (2016–2021) | Polygon-type shapefile | XRAIN radar-acquired data, Ministry of Education, Culture, Sports, Science and Technology (MEXT), University of Tokyo’s Data Integration & Analysis System (DIAS) (2018). |
Parameters and Classes | Landslides | Area (km2) | Landslides (%) | Area (%) | FR | |
---|---|---|---|---|---|---|
Lithology | Argillite | 5 | 3.55 | 0.47 | 2.10 | 0.22 |
Porphyre granite | 31 | 9.97 | 2.89 | 5.88 | 0.49 | |
Clastics | 29 | 8.53 | 2.71 | 5.03 | 0.54 | |
Gravel | 2 | 0.45 | 0.19 | 0.26 | 0.71 | |
Hiroshima granite | 317 | 64.73 | 29.60 | 38.19 | 0.78 | |
Granitic rock | 106 | 12.87 | 9.90 | 7.59 | 1.30 | |
Rhyolites | 581 | 69.40 | 54.25 | 40.94 | 1.32 | |
Land use | deforested area | 200 | 32.58 | 18.67 | 19.20 | 0.97 |
forest | 751 | 106.49 | 70.12 | 62.76 | 1.12 | |
crop field | 15 | 13.06 | 1.40 | 7.70 | 0.18 | |
rice field | 1 | 4.91 | 0.09 | 2.90 | 0.03 | |
others | 104 | 12.64 | 9.71 | 7.45 | 1.30 | |
Altitude (m) | 0–152 | 27 | 20.98 | 2.52 | 12.24 | 0.21 |
153–236 | 70 | 36.01 | 6.54 | 21.01 | 0.31 | |
237–320 | 194 | 36.36 | 18.11 | 21.21 | 0.85 | |
321–404 | 378 | 33.82 | 35.29 | 19.73 | 1.79 | |
405–488 | 279 | 20.48 | 26.05 | 11.95 | 2.18 | |
489–572 | 103 | 10.88 | 9.62 | 6.35 | 1.52 | |
573–824 | 12 | 6.81 | 1.12 | 3.97 | 0.28 | |
>825 | 8 | 6.03 | 0.75 | 3.52 | 0.21 | |
Slope angle (degrees) | 20–24 | 3 | 4.51 | 0.28 | 2.63 | 0.11 |
25–29 | 42 | 16.08 | 3.92 | 9.38 | 0.42 | |
30–34 | 230 | 38.76 | 21.48 | 22.61 | 0.95 | |
35–39 | 487 | 61.39 | 45.47 | 35.82 | 1.27 | |
40–44 | 261 | 39.52 | 24.37 | 23.06 | 1.06 | |
45–49 | 47 | 10.34 | 4.39 | 6.04 | 0.73 | |
≥50 | 1 | 0.76 | 0.09 | 0.45 | 0.21 | |
Slope aspect | NNE | 144 | 18.86 | 13.45 | 11.00 | 1.22 |
ENE | 127 | 19.19 | 11.86 | 11.20 | 1.06 | |
ESE | 119 | 23.01 | 11.11 | 13.43 | 0.83 | |
SSE | 102 | 24.38 | 9.52 | 14.22 | 0.67 | |
SSW | 126 | 24.63 | 11.76 | 14.37 | 0.82 | |
WSW | 141 | 21.50 | 13.17 | 12.55 | 1.05 | |
WNW | 169 | 20.37 | 15.78 | 11.89 | 1.33 | |
NNW | 143 | 19.41 | 13.35 | 11.33 | 1.18 | |
Distance to drainage (m) | <50 | 368 | 59.77 | 34.36 | 34.87 | 0.99 |
50–99 | 185 | 25.84 | 17.27 | 15.08 | 1.15 | |
100–149 | 178 | 20.54 | 16.62 | 11.98 | 1.39 | |
150–199 | 113 | 15.32 | 10.55 | 8.94 | 1.18 | |
200–249 | 79 | 11.42 | 7.38 | 6.66 | 1.11 | |
250–299 | 50 | 8.82 | 4.67 | 5.15 | 0.91 | |
300–349 | 32 | 6.61 | 2.99 | 3.86 | 0.77 | |
350–399 | 25 | 5.06 | 2.33 | 2.95 | 0.79 | |
400–449 | 15 | 4.01 | 1.40 | 2.34 | 0.60 | |
≥450 | 26 | 13.97 | 2.43 | 8.15 | 0.30 | |
Distance to lineament (m) | <250 | 71 | 9.71 | 6.63 | 5.66 | 1.17 |
240–399 | 96 | 11.21 | 8.96 | 6.54 | 1.37 | |
400–549 | 44 | 5.98 | 4.11 | 3.49 | 1.18 | |
550–699 | 90 | 11.78 | 8.40 | 6.87 | 1.22 | |
700–849 | 38 | 5.46 | 3.55 | 3.18 | 1.11 | |
850–999 | 67 | 10.67 | 6.26 | 6.22 | 1.00 | |
1000–1149 | 40 | 5.24 | 3.73 | 3.06 | 1.22 | |
1150–1299 | 75 | 9.79 | 7.00 | 5.71 | 1.23 | |
1300–1449 | 35 | 4.49 | 3.27 | 2.62 | 1.25 | |
≥1500 | 515 | 97.05 | 48.09 | 56.62 | 0.85 | |
Soil class | Mih-1 | 35 | 1.37 | 3.16 | 0.12 | 2.56 |
ZZ3 | 9 | 0.48 | 0.81 | 0.04 | 1.89 | |
Fut-1 | 15 | 1.01 | 1.36 | 0.09 | 1.48 | |
Har-1 | 518 | 39.07 | 46.84 | 3.53 | 1.33 | |
Ser-1 | 9 | 0.70 | 0.81 | 0.06 | 1.28 | |
Fjs | 2 | 0.18 | 0.18 | 0.02 | 1.11 | |
Swa | 7 | 0.79 | 0.63 | 0.07 | 0.89 | |
Tsm | 4 | 0.55 | 0.36 | 0.05 | 0.73 | |
Gsa-1 | 344 | 50.44 | 31.10 | 4.56 | 0.68 | |
Isi-1 | 47 | 9.14 | 4.25 | 0.83 | 0.51 | |
Har-2 | 63 | 13.00 | 5.70 | 1.18 | 0.48 | |
Tuc | 9 | 2.10 | 0.81 | 0.19 | 0.43 | |
Trg | 2 | 0.59 | 0.18 | 0.05 | 0.34 | |
Gsa-2 | 24 | 10.03 | 2.17 | 0.91 | 0.24 | |
Kmi | 1 | 0.50 | 0.09 | 0.05 | 0.20 | |
Urt | 9 | 5.13 | 0.81 | 0.46 | 0.18 | |
Ngz | 1 | 0.80 | 0.09 | 0.07 | 0.13 | |
Une-3 | 1 | 1.25 | 0.09 | 0.11 | 0.08 | |
Une-1 | 1 | 1.36 | 0.09 | 0.12 | 0.07 | |
ZZ2 | 5 | 8.88 | 0.45 | 0.80 | 0.06 | |
Ebe | 0 | 0.65 | 0.00 | 0.06 | 0.00 | |
Gos | 0 | 0.22 | 0.00 | 0.02 | 0.00 | |
Km | 0 | 0.41 | 0.00 | 0.04 | 0.00 | |
Kri-1 | 0 | 0.48 | 0.00 | 0.04 | 0.00 | |
Kyt | 0 | 0.09 | 0.00 | 0.01 | 0.00 | |
Kzs | 0 | 0.18 | 0.00 | 0.02 | 0.00 | |
Okk | 0 | 0.05 | 0.00 | 0.00 | 0.00 | |
Tdn | 0 | 0.24 | 0.00 | 0.02 | 0.00 | |
Tns | 0 | 0.07 | 0.00 | 0.01 | 0.00 | |
Ttr | 0 | 0.02 | 0.00 | 0.00 | 0.00 | |
Yad | 0 | 0.03 | 0.00 | 0.00 | 0.00 | |
Znt | 0 | 0.05 | 0.00 | 0.00 | 0.00 | |
ZZ | 0 | 0.08 | 0.00 | 0.01 | 0.00 | |
Mean Annual Precipitation (mm) | <2100 | 14 | 6.28 | 1.31 | 3.66 | 0.36 |
2100–2195 | 136 | 50.26 | 12.70 | 29.32 | 0.43 | |
2196–2291 | 381 | 65.62 | 35.57 | 38.28 | 0.93 | |
2292–2386 | 233 | 21.41 | 21.76 | 12.49 | 1.74 | |
2387–2482 | 133 | 10.84 | 12.42 | 6.33 | 1.96 | |
2483–2578 | 91 | 7.38 | 8.50 | 4.31 | 1.97 | |
2579–2674 | 53 | 5.82 | 4.95 | 3.40 | 1.46 | |
2675–2769 | 27 | 3.38 | 2.52 | 1.97 | 1.28 | |
2770–2865 | 3 | 0.37 | 0.28 | 0.22 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues Neto, J.M.d.S.; Bhandary, N.P. Landslide Susceptibility Assessment by Machine Learning and Frequency Ratio Methods Using XRAIN Radar-Acquired Rainfall Data. Geosciences 2024, 14, 171. https://doi.org/10.3390/geosciences14060171
Rodrigues Neto JMdS, Bhandary NP. Landslide Susceptibility Assessment by Machine Learning and Frequency Ratio Methods Using XRAIN Radar-Acquired Rainfall Data. Geosciences. 2024; 14(6):171. https://doi.org/10.3390/geosciences14060171
Chicago/Turabian StyleRodrigues Neto, José Maria dos Santos, and Netra Prakash Bhandary. 2024. "Landslide Susceptibility Assessment by Machine Learning and Frequency Ratio Methods Using XRAIN Radar-Acquired Rainfall Data" Geosciences 14, no. 6: 171. https://doi.org/10.3390/geosciences14060171
APA StyleRodrigues Neto, J. M. d. S., & Bhandary, N. P. (2024). Landslide Susceptibility Assessment by Machine Learning and Frequency Ratio Methods Using XRAIN Radar-Acquired Rainfall Data. Geosciences, 14(6), 171. https://doi.org/10.3390/geosciences14060171