Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate Conditions
2.2. Isotope Analysis
2.3. Artificial Neural Networks
2.4. Isotopic End-Member Mixing Analysis
3. Results and Discussion
3.1. Isotopic Compositions of River Water
3.2. Performance of ANN Models
3.3. Isotopic End-Member Mixing Analysis Results
3.4. Comparative Analysis for River Flow Components
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthold, F.K.; Tyralla, C.; Schneider, K.; Vaché, K.B.; Frede, H.G.; Breuer, L. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Ali, G.A.; Roy, A.G.; Turmel, M.-C.; Courchesne, F. Source-to-stream connectivity assessment through end-member mixing analysis. J. Hydrol. 2010, 392, 119–135. [Google Scholar] [CrossRef]
- Burns, D.A.; McDonnell, J.J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrol. Process. 2001, 15, 1903–1924. [Google Scholar] [CrossRef]
- Tanty, R.; Desmukh, T.S. Application of artificial neural network in hydrology—A review. Int. J. Eng. Technol. Res. 2015, 4, 184–188. [Google Scholar]
- Wang, W.; Van Gelder, P.H.; Vrijling, J.K.; Ma, J. Forecasting daily streamflow using hybrid ANN models. J. Hydrol. 2006, 324, 383–399. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hoefs, J.; Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2009; Volume 285. [Google Scholar]
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and Temporal Distributions of Stable Isotopes in Precipitation over Thailand. Hydrol. Process. 2020, 35, e13995. [Google Scholar] [CrossRef]
- Gat, J.R. Isotope Hydrology: A Study of the Water Cycle; World scientific: Singapore, 2010; Volume 6. [Google Scholar]
- Good, S.P.; Noone, D.; Kurita, N.; Benetti, M.; Bowen, G.J. D/H isotope ratios in the global hydrologic cycle. Geophys. Res. Lett. 2015, 42, 5042–5050. [Google Scholar] [CrossRef]
- Jeelani, G.; Saravana Kumar, U.; Kumar, B. Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. J. Hydrol. 2013, 481, 157–165. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S. Isotopic temporal and spatial variations of tropical rivers in Thailand reflect monsoon precipitation signals. Hydrol. Process. 2021, 35, e14068. [Google Scholar] [CrossRef]
- Haiyan, C.; Yaning, C.; Weihong, L.; Xinming, H.; Yupeng, L.; Qifei, Z. Identifying evaporation fractionation and streamflow components based on stable isotopes in the Kaidu River Basin with mountain–oasis system in north-west China. Hydrol. Process. 2018, 32, 2423–2434. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Li, J.; Jiang, Z.; Li, G.; Liu, L. Evaporative enrichment of stable isotopes (δ 18 O and δD) in lake water and the relation to lake-level change of Lake Qinghai, Northeast Tibetan Plateau of China. J. Arid. Land 2015, 7, 623–635. [Google Scholar] [CrossRef]
- Simpson, H.J.; Herczeg, A.L. Stable isotopes as an indicator of evaporation in the River Murray, Australia. Water Resour. Res. 1991, 27, 1925–1935. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreča, P. Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J. Hydrol. 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Rock, L.; Mayer, B. Isotope hydrology of the Oldman River basin, southern Alberta, Canada. Hydrol. Process. Int. J. 2007, 21, 3301–3315. [Google Scholar] [CrossRef]
- Koeniger, P.; Leibundgut, C.; Stichler, W. Spatial and temporal characterisation of stable isotopes in river water as indicators of groundwater contribution and confirmation of modelling results; a study of the Weser river, Germany. Isot. Environ. Health Stud. 2009, 45, 289–302. [Google Scholar] [CrossRef]
- Halder, J.; Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. The Global Network of Isotopes in Rivers (GNIR): Integration of water isotopes in watershed observation and riverine research. Hydrol. Earth Syst. Sci. 2015, 12, 3419–3431. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Laonamsai, J.; Putthividhya, A. Preliminary Assessment of Groundwater and Surface Water Characteristics in the Upper Chao Phraya River Basin Land Using a Stable Isotope Fingerprinting Technique. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; pp. 367–386. [Google Scholar]
- Putthividhya, A.; Laonamsai, J. Hydrological assessment using stable isotope fingerprinting technique in the Upper Chao Phraya river basin. Lowl. Technol. Int. Off. J. Int. Assoc. Lowl. Technol. 2017, 19, 27–40. [Google Scholar]
- Kim, M.-S.; Lim, B.R.; Jeon, P.; Hong, S.; Jeon, D.; Park, S.Y.; Hong, S.; Yoo, E.J.; Kim, H.S.; Shin, S. Innovative approach to reveal source contribution of dissolved organic matter in a complex river watershed using end-member mixing analysis based on spectroscopic proxies and multi-isotopes. Water Res. 2023, 230, 119470. [Google Scholar] [CrossRef]
- Lv, Y.; Gao, L.; Geris, J.; Verrot, L.; Peng, X. Assessment of water sources and their contributions to streamflow by end-member mixing analysis in a subtropical mixed agricultural catchment. Agric. Water Manag. 2018, 203, 411–422. [Google Scholar] [CrossRef]
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci. Total Environ. 2020, 715, 136909. [Google Scholar] [CrossRef]
- Soulsby, C.; Birkel, C.; Geris, J.; Dick, J.; Tunaley, C.; Tetzlaff, D. Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resour. Res. 2015, 51, 7759–7776. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Mukherjee, A.; Hussain, S.A.; Jamal, M.S.; Das, K.; Shaw, A.; Layek, M.K.; Sengupta, P. Stable isotope dynamics of groundwater interactions with Ganges river. Hydrol. Process. 2021, 35, e14002. [Google Scholar] [CrossRef]
- Putthividhya, A.; Laonamsai, J. Assessment of Surface and Ground-water Interactions using Stable Isotope Fingerprinting Technique in Thailand. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 464–474. [Google Scholar]
- Benison, K.C.; Bowen, B.B. The evolution of end-member continental waters: The origin of acidity in southern Western Australia. GSA Today 2015, 25, 4–10. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Macías, F.; Olías, M.; López, R.P.; Nieto, J.M. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain). J. Hydrol. 2017, 550, 590–602. [Google Scholar] [CrossRef]
- Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw. Biol. 1999, 41, 333–345. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Okuku, C.O.; Njau, E.N. Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya. Complex 2020, 2020, 9570789. [Google Scholar] [CrossRef]
- Reisenbüchler, M.; Bui, M.D.; Rutschmann, P. Reservoir Sediment Management Using Artificial Neural Networks: A Case Study of the Lower Section of the Alpine Saalach River. Water 2021, 13, 818. [Google Scholar] [CrossRef]
- Debbarma, S.; Choudhury, P. River flow prediction with memory-based artificial neural networks: A case study of the Dholai river basin. Int. J. Adv. Intell. Paradig. 2020, 15, 51–62. [Google Scholar] [CrossRef]
- Mitrović, T.; Antanasijević, D.; Lazović, S.; Perić-Grujić, A.; Ristić, M. Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: A case study of Danube River (Serbia). Sci. Total Environ. 2019, 654, 1000–1009. [Google Scholar] [CrossRef]
- Bridhikitti, A.; Prabamroong, T.; Yu, G.-A. Problem identification on surface water quality in the Mun River Basin, Thailand. Sustain. Water Resour. Manag. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand. Nat. Hazards 2019, 97, 891–911. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K.; Tomun, N. Application of Stable Isotopic Compositions of Rainfall Runoff for Evaporation Estimation in Thailand Mekong River Basin. Water 2022, 14, 2803. [Google Scholar] [CrossRef]
- Akter, A.; Babel, M.S. Hydrological modeling of the Mun River basin in Thailand. J. Hydrol. 2012, 452, 232–246. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. IAEA/GNIP Precipitation Sampling Guide V2; International Atomic Energy Agency: Vienna, Austria, 2 September 2014. [Google Scholar]
- Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 1994, 41, 327. [Google Scholar]
- Hafezparast, M.; Marabi, S. Prediction of Discharge Using Artificial Neural Network and IHACRES Models Due to Climate Change. J. Renew. Energy Environ. 2021, 8, 75–85. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Poursaeid, M. An optimized Extreme Learning Machine by Evolutionary Computation for River Flow Prediction and Simulation of Water Pollution in Colorado River Basin, USA. Expert Syst. Appl. 2023, 233, 120998. [Google Scholar] [CrossRef]
- Mutlu, E.; Chaubey, I.; Hexmoor, H.; Bajwa, S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol. Process. Int. J. 2008, 22, 5097–5106. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F. Isotope evidence for quantifying river evaporation and recharge processes in the lower reaches of the Yellow River. Environ. Earth Sci. 2017, 76, 1–15. [Google Scholar] [CrossRef]
- Xia, C.-A.; Pasetto, D.; Hu, B.X.; Putti, M.; Guadagnini, A. Integration of moment equations in a reduced-order modeling strategy for Monte Carlo simulations of groundwater flow. J. Hydrol. 2020, 590, 125257. [Google Scholar] [CrossRef]
- Laonamsai, J.; Pawana, V.; Chipthamlong, P.; Chomcheawchan, P.; Kamdee, K.; Kimmany, B.; Julphunthong, P. Groundwater Quality Variations in Multiple Aquifers: A Comprehensive Evaluation for Public Health and Agricultural Use. Geosciences 2023, 13, 195. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Chipthamlong, P.; Pawana, V.; Chomchaewchan, P.; Kamdee, K.; Tomun, N.; Kimmany, B. Hydrochemical characteristics and salt intrusion in groundwater of the lower Chao Phraya river basin: Insights from stable isotopes and hydrochemical analysis. Groundw. Sustain. Dev. 2023, 23, 101044. [Google Scholar] [CrossRef]
- Putthividhya, A.; Laonamsai, J. SWAT and MODFLOW modeling of spatio-temporal runoff and groundwater recharge distribution. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 51–65. [Google Scholar]
- Zhong, J.; Chen, S.; Wang, W.; Yan, Z.; Ellam, R.M.; Li, S.L. Unravelling the hydrological effects on spatiotemporal variability of water chemistry in mountainous rivers from Southwest China. Hydrol. Process. 2020, 34, 5595–5605. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Alduchov, O.A.; Froehlich, K.O.; Araguas-Araguas, L.J.; Sturchio, N.C.; Kurita, N. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Chen, K.; Hu, Y.; Zhou, J.; Liu, Y.; Mei, J. Stable Isotope Characteristics for Precipitation Events and Their Responses to Moisture and Environmental Changes during the Summer Monsoon Period in Southwestern China. Pol. J. Environ. Stud. 2020, 29, 2429–2445. [Google Scholar] [CrossRef]
- Yang, Y.-G.; Hu, J.; Xiao, H.; Zou, S.; Yin, Z. Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region. Huan Jing Ke Xue Huanjing Kexue 2013, 34, 3797–3803. [Google Scholar]
- Yang, K.; Han, G. Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun River catchment, northeast Thailand: Implications for the water cycle. Hydrogeol. J. 2020, 28, 1021–1036. [Google Scholar] [CrossRef]
- Crawford, J.; Hollins, S.E.; Meredith, K.T.; Hughes, C.E. Precipitation stable isotope variability and subcloud evaporation processes in a semi-arid region. Hydrol. Process. 2017, 31, 20–34. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K. Controls on Stable Isotopic Characteristics of Water Vapor over Thailand. Hydrol. Process. 2021, 35, e14202. [Google Scholar] [CrossRef]
- Jackisch, D.; Yeo, B.X.; Switzer, A.D.; He, S.; Cantarero, D.L.M.; Siringan, F.P.; Goodkin, N.F. Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions. Nat. Hazards Earth Syst. Sci. 2022, 22, 213–226. [Google Scholar] [CrossRef]
- Fritz, M.; Wetterich, S.; McAlister, J.; Meyer, H. A new local meteoric water line for Inuvik (NT, Canada). Earth Syst. Sci. Data 2021, 14, 57–63. [Google Scholar] [CrossRef]
- Terzer-Wassmuth, S.; Araguás-Araguás, L.J.; Wassenaar, L.I.; Stumpp, C. Global and local meteoric water lines for δ17O/δ18O and the spatiotemporal distribution of Δ′17O in Earth’s precipitation. Sci. Rep. 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Wang, S.; Zhou, T. A simplified method of developing a local meteoric water line equation for Beijing, China. J. Radioanal. Nucl. Chem. 2018, 315, 523–532. [Google Scholar] [CrossRef]
- Welch, C.; Smith, A.A.; Stadnyk, T.A. Linking physiography and evaporation using the isotopic composition of river water in 16 Canadian boreal catchments. Hydrol. Process. 2018, 32, 170–184. [Google Scholar] [CrossRef]
- Sang, L.; Zhu, G.-F.; Xu, Y.; Sun, Z.; Zhang, Z.; Tong, H.-L. Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic Processes in the Arid Shiyang River Basin, Northwest China. Water Resour. Res. 2023, 59, e2022WR033519. [Google Scholar] [CrossRef]
- Zanial, W.N.C.W.; Malek, M.B.A.; Reba, M.N.M.; Zaini, N.A.; Ahmed, A.N.; Sherif, M.; Elshafie, A. River flow prediction based on improved machine learning method: Cuckoo Search-Artificial Neural Network. Appl. Water Sci. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Yu, G.; Yu, H.; Bridhikitti, A.; Su, T. Trends of runoff variation and effects of main causal factors in Mun River, Thailand during 1980–2018. Water 2020, 12, 831. [Google Scholar] [CrossRef]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth Planet. Sci. Lett. 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Vallet-Coulomb, C.; Seraphin, P.; Gonçalves, J.C.d.S.I.; Radakovitch, O.; Cognard-Plancq, A.-L.; Crespy, A.; Babic, M.; Charron, F. Irrigation return flows in a mediterranean aquifer inferred from combined chloride and stable isotopes mass balances. Appl. Geochem. 2017, 86, 92–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A.; You, J.-J.; Jing, X. Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China. J. Geogr. Sci. 2021, 31, 1102–1122. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Kotova, E.I. Pollution of Russian Northern Seas with Heavy Metals: Comparison of Atmospheric Flux and River Flow. Izv. Atmos. Ocean. Phys. 2019, 55, 695–704. [Google Scholar] [CrossRef]
Details | Chi River Basin | Mun River Basin |
---|---|---|
Watershed area (km2) | 49,274 | 69,701 |
River length (km) | 765 | 640 |
Average rainfall (mm/year) | 1309 | 1686 |
Average flow (m3/s) | 290.57 | 451.33 |
Average elevation (msl) | 416 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomcheawchan, P.; Pawana, V.; Julphunthong, P.; Kamdee, K.; Laonamsai, J. Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis. Geosciences 2024, 14, 150. https://doi.org/10.3390/geosciences14060150
Chomcheawchan P, Pawana V, Julphunthong P, Kamdee K, Laonamsai J. Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis. Geosciences. 2024; 14(6):150. https://doi.org/10.3390/geosciences14060150
Chicago/Turabian StyleChomcheawchan, Phornsuda, Veeraphat Pawana, Phongthorn Julphunthong, Kiattipong Kamdee, and Jeerapong Laonamsai. 2024. "Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis" Geosciences 14, no. 6: 150. https://doi.org/10.3390/geosciences14060150
APA StyleChomcheawchan, P., Pawana, V., Julphunthong, P., Kamdee, K., & Laonamsai, J. (2024). Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis. Geosciences, 14(6), 150. https://doi.org/10.3390/geosciences14060150