Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area
Abstract
:1. Introduction
2. The Pietrabbondante Study Area
2.1. Historical and Artistic Framework
2.2. The Effect of Instability Phenomena on Cultural Assets
- Emergency Management in 2006
2.3. Geotechnical Characterization of the Area
- Layer A: chaotic colluvial deposits, composed of brown clayey silts embracing plant residues and occasional calcarenitic fragments;
- Layer B: weathered and reworked deposits due to creep and solifluction processes. They consist of brown and grey silty clays characterized by a weak scaly/schistose structure. These deposits embrace organic matter as well as occasional marly and calcarenitic fragments and are often iron-oxidated and decalcified;
- Layer C: grey scaly silty clays interbedded with centimetric to decametric marly and calcarenitic levels.
3. Description of the Analyses
3.1. Physically Based Landslide Forecasting Model
- -
- soil mechanical properties, c′, φ′ (hypothesis: γs is constant);
- -
- soil saturated hydraulic conductivity ks and soil stiffness Eed (hypothesis: the soil cover is in fully saturated conditions)
- -
- soil cover layer thickness, h (hypothesis: the high resolution of DTM allows to consider the other geometrical parameters as accurate and without uncertainty).
3.2. Mechanical Variables
3.3. Rainfall Data and Variables
- CNRM-CERFACS-CNRM-CM5_r1i1p1_CLMcom-CCLM4-8-17, hereinafter H1;
- ICHEC-EC-EARTH_r12i1p1_CLMcom-CCLM4-8-17, hereinafter H2;
- IPSL-IPSL-CM5A-MR_r1i1p1_IPSL-INERIS-WRF331F, hereinafter H3;
- MOHC-HadGEM2-ES_r1i1p1_SMHI-RCA4, hereinafter H4;
- MPI-M-MPI-ESM-LR_r1i1p1_SMHI_RCA4, hereinafter H5.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirvani Dastgerdi, A.; Sargolini, M.; Broussard Allred, S.; Chatrchyan, A.; De Luca, G. Climate change and sustaining heritage resources: A framework for boosting cultural and natural heritage conservation in Central Italy. Climate 2020, 8, 26. [Google Scholar] [CrossRef]
- Salciarini, D.; Brocca, L.; Camici, L.; Ciabatta, L.; Volpe, E.; Massini, R.; Tamagnini, C. Physically based approach for rainfall-induced landslide projections in a changing climate. Proc. Inst. Civ. Eng. Geotech. Eng. 2019, 172, 481–490. [Google Scholar] [CrossRef]
- Salciarini, D.; Volpe, E.; Kelley, S.; Brocca, L.; Camici, S.; Fanelli, G.; Tamagnini, C. Modeling the Effects Induced by the Expected Climatic Trends on Landslide Activity at Large Scale. In Proceedings of the 6th Italian Conference of Researchers in Geotechnical Engineering, CNRIG 2016, Bologna, Italy, 22–23 September 2016; Volume 158, pp. 541–545, Code 123733. [Google Scholar]
- Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Tidblad, J.; Kozlowski, R.; Drdácký, M.; Saiz-Jimenez, C.; Grøntoft, T.; Wainwright, I.; Ariño, X. Global climate change impact on built heritage and cultural landscapes. In Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC 2006, Madrid, Spain, 21–24 June 2006; pp. 395–401. [Google Scholar]
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Chang. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Melillo, M. Rainfall and landslide initiation. In Rainfall; Elsevier: Amsterdam, The Netherlands, 2022; pp. 427–450. [Google Scholar]
- Comegna, L.; Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Field hydrological monitoring of a sloping shallow pyroclastic deposit. Can. Geotech. J. 2016, 53, 1125–1137. [Google Scholar] [CrossRef]
- Cigna, F.; Harrison, A.; Tapete, D.; Lee, K. Understanding geohazards in the UNESCO WHL site of the Derwent Valley Mills (UK) using geological and remote sensing data. In Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos, Cyprus, 4–8 April 2016; SPIE: Bellingham, WA, USA, 2016; pp. 604–613. [Google Scholar]
- Margottini, C.; Gigli, G.; Ruther, H.; Spizzichino, D. Advances in geotechnical investigations and monitoring in rupestrian settlements inscribed in the UNESCO’s World Heritage List. Procedia Earth Planet. Sci. 2016, 16, 35–51. [Google Scholar] [CrossRef]
- Ravankhah, M.; de Wit, R.; Argyriou, A.V.; Chliaoutakis, A.; Revez, M.J.; Birkmann, J.; Žuvela-Aloise, M.; Sarris, A.; Tzigounaki, A.; Giapitsoglou, K. Integrated assessment of natural hazards, including climate change’s influences, for cultural heritage sites: The case of the historic centre of Rethymno in Greece. Int. J. Disaster Risk Sci. 2019, 10, 343–361. [Google Scholar] [CrossRef]
- Zollo, A.L.; Rianna, G.; Mercogliano, P.; Tommasi, P.; Comegna, L. Validation of a Simulation Chain to Assess Climate Change Impact on Precipitation Induced Landslides. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 287–292. [Google Scholar]
- Sabbioni, C.; Brimblecombe, P.; Cassar, M. The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies; Anthem Press: London, UK, 2010. [Google Scholar]
- Rianna, G.; Zollo, A.; Tommasi, P.; Paciucci, M.; Comegna, L.; Mercogliano, P. Evaluation of the effects of climate changes on landslide activity of Orvieto clayey slope. Procedia Earth Planet. Sci. 2014, 9, 54–63. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Trigila, A.; Frattini, P.; Casagli, N.; Catani, F.; Crosta, G.; Esposito, C.; Iadanza, C.; Lagomarsino, D.; Mugnozza, G.S.; Segoni, S.; et al. Landslide susceptibility mapping at national scale: The Italian case study. In Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–295. [Google Scholar]
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S.; Piva, F. Il Bilancio Idrologico Gis Based a Scala Nazionale Su Griglia Regolare–BIGBANG: Metodologia e Stime. Rapporto Sulla Disponibilità Naturale Della Risorsa Idrica; ISPRA: Rome, Italy, 2021. (In Italian)
- Walters, R.J.; Elliott, J.R.; D’Agostino, N.; England, P.C.; Hunstad, I.; Jackson, J.A.; Parsons, B.; Phillips, R.J.; Roberts, G. The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Osipova, E.; Emslie-Smith, M.; Osti, M.; Murai, M.; Åberg, U.; Shadie, P. IUCN World Heritage Outlook 3; IUCN: Gland, Switzerland, 2020; ISBN 978-2-8317-2085-2. [Google Scholar]
- Cecchi, R.; Gasparoli, P. Attività di prevenzione e cura su un patrimonio di eccellenza: Il caso delle aree archeologiche di Roma e Ostia Antica. Pensare La Prev. 2010, 1–10. [Google Scholar]
- Lollino, G.; Arattano, M.; Allasia, P.; Giordan, D. Time response of a landslide to meteorological events. Nat. Hazards Earth Syst. Sci. 2006, 6, 179–184. [Google Scholar] [CrossRef]
- Canuti, P.; Margottini, C.; Fanti, R.; Bromhead, E.N. Cultural heritage and landslides: Research for risk prevention and conservation. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 401–433. [Google Scholar]
- Salciarini, D.; Volpe, E.; Di Pietro, L.; Cattoni, E. A case-study of sustainable countermeasures against shallow landslides in central Italy. Geosciences 2020, 10, 130. [Google Scholar] [CrossRef]
- Cecconi, M.; Pane, V.; Napoli, P.; Cattoni, E. Deep roots planting for surface slope protection. Electron. J. Geotech. Eng. U 2012, 17, 2809–2820. [Google Scholar]
- Salciarini, D.; Fanelli, G.; Tamagnini, C. A probabilistic model for rainfall—Induced shallow landslide prediction at the regional scale. Landslides 2017, 14, 1731–1746. [Google Scholar] [CrossRef]
- Salciarini, D.; Volpe, E.; Cattoni, E. Probabilistic vs. deterministic approach in landslide triggering prediction at large–scale. In Geotechnical Research for Land Protection and Development: Proceedings of CNRIG, Lecco, Italy, 3–5 July 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 62–70. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS: A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0; US Geological Survey: Reston, VA, USA, 2008.
- Volpe, E.; Ciabatta, L.; Salciarini, D.; Camici, S.; Cattoni, E.; Brocca, L. The impact of probability density functions assessment on model performance for slope stability analysis. Geosciences 2021, 11, 322. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Mass-movements and climate change. Treatise Geomorphol. Second. Ed. 2022, 5, 546–558. [Google Scholar] [CrossRef]
- Ciabatta, L.; Camici, S.; Brocca, L.; Ponziani, F.; Stelluti, M.; Berni, N.; Moramarco, T. Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region, Italy. J. Hydrol. 2016, 541, 285–295. [Google Scholar] [CrossRef]
- Peres, D.J.; Cancelliere, A. Modeling impacts of climate change on return period of landslide triggering. J. Hydrol. 2018, 567, 420–434. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Wang, H. Projection of Landslides in China during the 21st Century under the RCP8. 5 Scenario. J. Meteorol. Res. 2019, 33, 138–148. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Glade, T.; Zhang, J.; Zhang, Y. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China. Clim. Chang. 2020, 162, 761–779. [Google Scholar] [CrossRef]
- Lin, Q.; Steger, S.; Pittore, M.; Zhang, J.; Wang, L.; Jiang, T.; Wang, Y. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ. 2022, 850, 158049. [Google Scholar] [CrossRef]
- Araújo, J.R.; Ramos, A.M.; Soares, P.M.M.; Melo, R.; Oliveira, S.C.; Trigo, R.M. Impact of extreme rainfall events on landslide activity in Portugal under climate change scenarios. Landslides 2022, 19, 2279–2293. [Google Scholar] [CrossRef]
- Jakob, M. Landslides in a changing climate. In Landslide Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2022; pp. 505–579. [Google Scholar]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of climate change on landslide hazard in Central Italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef]
- Volpe, E.; Marra, A.; La Regina, A.; Fabbrocino, G. A multidisciplinary approach to the safety assessment of the archaeological site of Pietrabbondante. In Proceedings of the IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo, Lecce, Italy, 23–25 October 2017; International Measurement Confederation (IMEKO): Budapest, Hungary, 2019; pp. 274–279. [Google Scholar]
- Patacca, E.; Scandone, P. Geology of the southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Robustelli, G.; Corbi, I.; De Silvio, D. Carta Geologica d’Italia in Scala 1:50.000-Foglio 393 Trivento; Ispra: Rome, Italy, 2010.
- Trigila, A.; Iadanza, C.; Guerrieri, L. The IFFI project (Italian landslide inventory): Methodology and results. Guidel. Mapp. Areas Risk Landslides Eur. 2007, 23, 15. [Google Scholar]
- National Institute of Archeology and Art History. 2023. Available online: https://www.inasaroma.org/patrimonio/archivio-storico (accessed on 17 September 2014).
- Comune di Pietrabbondante. Piano di Riqualificazione Territoriale in Variante al Vigente Piano di Fabbricazione; Comune di Pietrabbondante: Pietrabbondante, Italy, 2019. [Google Scholar]
- Studio Tecnico Associato di Geologia Applicata Geoconsul. Progettazione del Complesso Archeologico di Pietrabbondante; Studio Tecnico Associato di Geologia Applicata Geoconsul: Pietrabbondante, Italy, 2007. [Google Scholar]
- Fenton, G.A.; Griffiths, D.V. Risk Assessment in Geotechnical Engineering; John Wiley & Sons: New York, NY, USA, 2008; Volume 461. [Google Scholar]
- Lacasse, S.; Nadim, F. Model uncertainty in pile axial capacity calculations. In Offshore Technology Conference; OnePetro: Richardson, TX, USA, 1996. [Google Scholar]
- Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F. Improving predictive power of physically based rainfall-induced shallow landslide models: A probabilistic approach. Geosci. Model. Dev. 2014, 7, 495–514. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope Stability Analysis; US Geological Survey open-file report 424; US Geological Survey: Reston, VA, USA, 2002; Volume 38.
- De Ghislain, M. Quantitative Hydrogeology; Groundwater Hydrology for Engineers; U.S. Department of EnergyOffice of Scientific and Technical Information: Oak Ridge, TN, USA, 1986.
- Tobutt, D.C. Monte Carlo simulation methods for slope stability. Comput. Geosci. 1982, 8, 199–208. [Google Scholar] [CrossRef]
- Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Lumb, P. Safety factors and the probability distribution of soil strength. Can. Geotech. J. 1970, 7, 225–242. [Google Scholar] [CrossRef]
- Skempton, A.W. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique 1985, 35, 3–18. [Google Scholar] [CrossRef]
- Bowles, J.E. Foundation Analysis and Design; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Carman, P.C. Fluid fow through granular beds. Trans. Inst. Chem. Eng. 1937, 75, 150–166. [Google Scholar]
- Carman, P.C. Determination of the specic surface of powders. J. Soc. Chem. Ind. Trans. 1938, CVII, 225. [Google Scholar]
- Carman, P.C. Permeability of saturated sands, soils and clays. J. Agric. Sci. 1939, 29, 263–273. [Google Scholar] [CrossRef]
- Carman, P.C. Flow of Gasses through Porous Media; Butterworths: London, UK, 1956. [Google Scholar]
- Dosio, A. EU High Resolution Temperature and Precipitation; European Commission, Joint Research Centre (JRC): Briussels, Belgium, 2018; Available online: http://data.europa.eu/89h/jrc-liscoast-10011 (accessed on 17 September 2014).
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- Dosio, A.; Paruolo, P.; Rojas, R. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Dosio, A.; Fischer, E.M. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 C, 2 C, and 3 C global warming. Geophys. Res. Lett. 2018, 45, 935–944. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113, D20119. [Google Scholar] [CrossRef]
Borehole | Depth (m) | Laboratory Tests |
---|---|---|
S1 | 12.3–12.8 | Particle-size analysis |
Atterberg limits | ||
Expansion index test | ||
S2 | 1.8–2.3 | Granulometric analysis |
Atterberg limits | ||
Triaxial shear test (TX-CU) | ||
5.0–5.5 | Direct shear test | |
Granulometric analysis | ||
Atterberg limits | ||
S3 | 1.5–2.0 | Granulometric analysis |
Atterberg limits | ||
Lateral expansion test | ||
4.5–5.0 | Granulometric analysis | |
Atterberg limits | ||
Triaxial strength test (TX-UU) | ||
Direct shear test | ||
Lateral expansion test | ||
5.0–5.5 | Direct shear test | |
Granulometric analysis | ||
Atterberg limits | ||
Lateral expansion test | ||
S5 | 1.5–2.0 | Granulometric analysis |
Atterberg limits | ||
Triaxial strength test (TX-UU) | ||
12.0–12.5 | Granulometric analysis | |
Atterberg limits | ||
Direct shear test | ||
20.0–20.5 | Granulometric analysis | |
Atterberg limits | ||
Direct shear test |
Variable | Symbol | Unit | Mean | |
---|---|---|---|---|
Effective friction angle | Φ′ | (deg.) | Normal | 28 |
Residual friction angle | Φr | (deg) | Normal | 18 |
Saturated hydraulic conductivity | ks | (m/s) | Log Normal | 1.76 × 10−6 |
Oedometric modulus | Eed | (kPa) | Beta | 1.00 × 104 |
Thickness of the soil cover | h | (m) | Gauss distribution | 3 |
Dataset ID | RCP 4.5 | RCP 8.5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2011–2040 | 2041–2070 | 2071–2100 | 2011–2040 | 2041–2070 | 2071–2100 | |||||||
AV | COV | AV | COV | AV | COV | AV | COV | AV | COV | AV | COV | |
H1 | 1.7 | 2.52 | 1.6 | 2.42 | 1.7 | 2.49 | 1.6 | 2.50 | 1.6 | 2.51 | 1.5 | 2.69 |
H2 | 1.7 | 2.59 | 1.6 | 2.63 | 1.7 | 2.69 | 1.6 | 2.66 | 1.5 | 2.84 | 1.4 | 3.03 |
H3 | 1.7 | 2.44 | 1.8 | 2.47 | 1.7 | 2.47 | 1.7 | 2.44 | 1.6 | 2.67 | 1.6 | 2.62 |
H4 | 1.7 | 2.46 | 1.7 | 2.56 | 1.6 | 2.69 | 1.7 | 2.66 | 1.6 | 2.65 | 1.4 | 2.83 |
H5 | 1.7 | 2.45 | 1.8 | 2.41 | 1.6 | 2.53 | 1.6 | 2.44 | 1.6 | 2.49 | 1.6 | 2.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpe, E.; Gariano, S.L.; Ciabatta, L.; Peiro, Y.; Cattoni, E. Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area. Geosciences 2023, 13, 270. https://doi.org/10.3390/geosciences13090270
Volpe E, Gariano SL, Ciabatta L, Peiro Y, Cattoni E. Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area. Geosciences. 2023; 13(9):270. https://doi.org/10.3390/geosciences13090270
Chicago/Turabian StyleVolpe, Evelina, Stefano Luigi Gariano, Luca Ciabatta, Yaser Peiro, and Elisabetta Cattoni. 2023. "Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area" Geosciences 13, no. 9: 270. https://doi.org/10.3390/geosciences13090270
APA StyleVolpe, E., Gariano, S. L., Ciabatta, L., Peiro, Y., & Cattoni, E. (2023). Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area. Geosciences, 13(9), 270. https://doi.org/10.3390/geosciences13090270