Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides
Abstract
:1. Introduction
2. Method
2.1. Slope Stability Model
+ ρm Hm2 sin (β/2 − ϕ/2)/(ρr sin β cos β/2 + ϕ/2) = 0
2.2. Mechanical Properties of Volcanic Rocks
2.3. Modeling Hydroclimatic Variations
2.4. Pressure Variation in the Magma Reservoir
3. Results
3.1. Influence of Water Column Loading on Slope Stability
3.2. Influence of the Pore Pressure on Slope Stability
3.3. Competing Influence of Sea Level Loading vs. Pore Pressure Variations over Time on Slope Stability
4. Discussion
4.1. Rock Weathering and Slope Instability
4.2. Weakness Zones and Geological Inheritance
4.3. Sea Level Variation Effect on Landslides and Volcanic Activity
4.4. Pore Pressure Variation
4.5. Climate Variation and Correlation with Giant Landslides
Volcano | Age (ka) | References |
---|---|---|
Canary Islands (El Hierro, El Golfo) | 10–17 | [60] |
La Réunion | 20–68 | [61] |
Hawaii (Alika phase 1) | 112 | [43] |
Hawaii (Alika phase 2) | 127 ± 10 | [43] |
Canary Islands (El Hierro, El Golfo) | 134 ± 6 | [3] |
Hawaii (Southern Lanai) | 135 | [62] |
Canary Islands (Tenerife) | 150–170 | [63] [64] |
Hawaii (Southern Lanai) | 240 | [62] |
La Réunion | 290–320 | [61] |
Martinique | 337 ± 5 | [65] |
Canary Islands (La Palma) | 537 ± 8 | [66] [67] |
Guadeloupe | 629 ± 13 | [68] |
Hawaii (Haleakala, Hana) | 860 | [69] |
Tahiti-Nui (north) | 872 ± 10 | [30] |
4.6. Discussion of Giant Landslides Real Cases
4.7. Small Landslides vs. Giant Landslides
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller-Salzburg, L. The Vajont catastrophe—A personnal review. Eng. Geol. 1987, 24, 423–444. [Google Scholar] [CrossRef]
- Keefer, D.K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Carracedo, J.C.; Day, S.J.; Guillou, H.; Pérez Torrado, F.J. Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J. Volcanol. Geotherm. Res. 1999, 94, 169–190. [Google Scholar] [CrossRef]
- Blahüt, J.; Balek, J.; Klimeš, J.; Rowberry, M.; Kusák, M.; Kalina, J. A comprehensive global database of giant landslides on volcanic islands. Landslides 2019, 16, 2045–2052. [Google Scholar] [CrossRef]
- Rodriguez-Losada, J.A.; Hernandez-Gutérrez, L.E.; Olalla, C.; Perucho, A.; Serrano, A.; Eff-Darwich, A. Geomechanical parameters of intact rocks and rock masses from the Canary Islands: Implications on their flank stability. J. Volcanol. Geotherm. Res. 2009, 182, 67–75. [Google Scholar] [CrossRef]
- Cala, M.; Flisiak, J. Slope stability with FLAC and limit equilibrium methods. In FLAC and Numerical Modeling in Geomechanics; Billaux, D., Rachez, X., Detournay, C., Hart, R., Eds.; Balkema: Rotterdam, The Netherlands, 2001; pp. 111–114. [Google Scholar]
- Kilburn, C.R.J.; Petley, D.N. Forecasting giant, catastrophic slope collapse: Lessons from Vajont, Northern Italy. Geomorphology 2003, 54, 21–32. [Google Scholar] [CrossRef]
- Veveakis, E.; Vardoulakis, I.; Di Toro, G. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J. Geophys. Res. 2007, 112, F03026. [Google Scholar] [CrossRef]
- Urgeles, R.; Camerlinghi, A. Submarine landslides of the Mediterrranean Sea: Trigger mechanisms, dynamics, and frequency-magnitude distribution. J. Geophys. Res. 2013, 118, 2600–2618. [Google Scholar] [CrossRef] [Green Version]
- Crozier, M.J. Deciphering the effect of climate change on landsliding activity: A review. Geomorphology 2010, in press. [Google Scholar] [CrossRef]
- Cappa, F.; Guglielmi, Y.; Viseur, S.; Garambois, S. Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening. Geophys. Res. Lett. 2014, 41, 61–66. [Google Scholar] [CrossRef]
- Aslan, G.; De Michele, M.; Raucoules, D.; Bernardie, S.; Cakir, Z. Transient motion of the largest landslide on earth, modulated by hydrological forces. Sci. Rep. 2021, 11, 10407. [Google Scholar] [CrossRef]
- Le Corvec, N.; Walter, T.R. Volcano spreading and fault interaction influenced by rift zone intrusions: Insights from analogue experiments analyzed with digital image correlation technique. J. Volcanol. Geotherm. Res. 2009, 183, 170–182. [Google Scholar] [CrossRef]
- Gargani, J.; Geoffroy, L.; Gac, S.; Cravoisier, S. Fault slip and Coulomb stress variations around a pressured magma reservoir: Consequences on seismicity and magma intrusion. Terra Nova 2006, 18, 403–411. [Google Scholar] [CrossRef]
- Hampel, A.; Hetzel, R. Slip reversals on active normal faults related to the inflation and deflation of magma chambers: Numerical modeling with application to the Yellowstone-Teton region. Geophys. Res. Lett. 2008, 35, L07301. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Watts, P.; Fryer, G.J.; Smith, J.R.; Imamura, F. Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar. Geol. 2004, 203, 219–233. [Google Scholar] [CrossRef]
- Cervelli, P.; Segall, P.; Johnson, K.; Lisowski, M.; Miklius, A. Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature 2002, 415, 1014–1018. [Google Scholar] [CrossRef]
- De Ritis, R.; Passaro, S.; Pensa, A. Editorial for Special Issue “Present and Past Submarine Volcanic Activity (1)”. Geosciences 2022, 12, 458. [Google Scholar] [CrossRef]
- Nicolosi, I.; Caracciolo, F.; Branca, S.; Ventura, G.; Chiappini, M. Volcanic conduit migration over a basement landslide at Mount Etna (Italy). Sci. Rep. 2014, 4, 5293. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.B.; van Wyke de Vries, B. Basement sliding and the formation of fault systems on Mt. Etna volcano. J. Volcanol. Geotherm. Res. 2022, 428, 107573. [Google Scholar] [CrossRef]
- Du, Y.; Xie, M.; Jia, J. Stepped settlement: A possible mechanism for translational, landslides. Catena 2019, 187, 104365. [Google Scholar] [CrossRef]
- Du, Y.; Chen, C. Data Mining for Landslide Genetic Mechanism Analysis in the Yunnan Province of China. Geotech. Geol. Eng. 2022, 40, 5631–5642. [Google Scholar] [CrossRef]
- Quidelleur, X.; Hildenbrand, A.; Samper, A. Causal link between Quaternary paleoclimatic changes and volcanic islands evolution. Geophys. Res. Lett. 2008, 35, L02303. [Google Scholar] [CrossRef]
- Gargani, J.; Bache, F.; Jouannic, G.; Gorini, C. Slope destabilization during the Messinian Salinity Crisis. Geomorphology 2014, 213, 128–138. [Google Scholar] [CrossRef]
- Bigot-Cornier, F.; Montgomery, D.R. Valles Marineris landslides: Evidence for a strength limit to Martian relief? Earth Planet. Sci. Lett. 2007, 260, 179–186. [Google Scholar] [CrossRef]
- Du, Y.; Xie, M.-W.; Jiang, Y.-J.; Li, B.; Chicas, S. Experimental Rock Stability Assessment Using the Frozen–Thawing Test. Rock Mech. Rock Eng. 2017, 50, 1049–1053. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, F.; Liu, M.; Wang, Z.; Wang, J.; Dong, T. Fracture characteristics and anisotropic strength criterion of bedded sandstone. Front. Earth Sci. 2022, 10, 879332. [Google Scholar] [CrossRef]
- Champel, B.; van der Beck, P.; Mugnier, J.-L.; Leturny, P. Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. J. Geophys. Res. 2002, 107, 2111. [Google Scholar] [CrossRef]
- Hürlimann, M.; Garcia-Piera, J.O.; Ledesma, A. Causes and mobility of large volcanic landslides: Application to Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 2000, 103, 121–134. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Gillot, P.-Y.; Le Roy, I. Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth Planet. Sci. Lett. 2004, 217, 349–365. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Gillot, P.-Y.; Marlin, C. Geomorphological study of long-term erosion on a tropical volcanic ocean island: Tahiti-Nui (French Polynesia). Geomorphology 2008, 93, 460–481. [Google Scholar] [CrossRef]
- Gargani, J. Modelling the mobility and dynamics of a large Tahitian landslide using runout distance. Geomorphology 2020, 370, 107354. [Google Scholar] [CrossRef]
- Gargani, J. Isostatic Adjustment, Vertical Motion Rate Variation and Potential Detection of Past Abrupt Mass Unloading. Geosciences 2022, 12, 302. [Google Scholar] [CrossRef]
- Navelot, V.; Géraud, Y.; Favier, A.; Diraison, M.; Corsini, M.; Lardeaux, J.-M.; Verati, C.; Mercier de Lépinay, J.; Legendre, L.; Beauchamps, G. Petrophysical properties of volcanic rocks and impacts of hydrothermal alteration in the Guadeloupe Archipelago (West Indies). J. Volcanol. Geotherm. Res. 2018, 360, 1–21. [Google Scholar] [CrossRef]
- Gargani, J.; Rigollet, C. Mediterranean Sea level variations during the Messinian Salinity Crisis. Geophys. Res. Lett. 2007, 34, L10405. [Google Scholar] [CrossRef] [Green Version]
- Gargani, J.; Moretti, I.; Letouzey, J. Evaporite accumulation during the Messinian Salinity Crisis: The Suez Rift Case. Geophysical Research Letters 2008, 35, L02401. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 2005, 20, 1003. [Google Scholar]
- Gargani, J.; Stab, O.; Cojan, I.; Brulhet, J. Modelling the long-term fluvial erosion of the river Somme during the last million years. Terra Nova 2006, 18, 118–129. [Google Scholar] [CrossRef]
- Saar, M.O.; Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 2003, 214, 605–618. [Google Scholar] [CrossRef]
- Sternai, P.; Caricchi, L.; Garcia-Castellanos, D.; Jolivet, L.; Sheldrake, T.E.; Castelltort, S. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nat. Geosci. 2017, 10, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Jull, M.; McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. 1996, 101, 21815–21828. [Google Scholar] [CrossRef]
- Saez, A.; Valero-Garces, B.L.; Giralt, S.; Moreno, A.; Bao, R.; Pueyo, J.J.; Hernandez, A.; Casas, D. Glacial Holocene slimate changes in SE Pacific. The Raraku Lake sedimentary record (Easter Island, 27°S). Quat. Sci. Rev. 2009, 28, 2743–2759. [Google Scholar] [CrossRef] [Green Version]
- McMurtry, G.M.; Herrero-Bervera, E.; Cremer, M.; Resig, J.; Sherman, C.; Smith, J.R.; Torresan, M.E. Stratigraphic constraints on the timing and emplacement of the Alika 2 giant Hawaiian submarine landslide. J. Volcanol. Geotherm. Res. 1999, 94, 35–58. [Google Scholar] [CrossRef]
- Hevia-Cruz, F.; Hildenbrand, A.; Sheldon, N. Enhanced Weathering of Volcanic Islands during Glacial-Interglacial Transitions: Insights from Well-Dated Paleosols Spanning the Last Million Year in Sao Miguel Island, Eastern Azores; Conférence “Climat et impacts”: Orsay, France, 2022. [Google Scholar]
- Hildenbrand, A.; Gillot, P.-Y.; Bonneville, A. Offshore evidence for a huge landslide of the northern flank of Tahiti-Nui (French Polynesia). Geochem. Geophys. Geosystems 2006, 7, Q03006. [Google Scholar] [CrossRef]
- Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes. Nature 2008, 451, 453–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egholm, D.L.; Clausen, O.R.; Sandiford, M.; Kristensen, M.B.; Korstgard, J.A. The mechanics of clay smearing along fault. Geology 2008, 36, 787–790. [Google Scholar] [CrossRef]
- Abers, G.A. Slip on shallow-dipping normal faults. Geology 2009, 37, 767–768. [Google Scholar] [CrossRef]
- Gargani, J. Poincaré, le Hasard et L’étude des Systèmes Complexes; L’Harmattan: Paris, France, 2012; 124p. [Google Scholar]
- Ye, F.Y.; Barriot, J.P.; Carretier, S. Initiation and recession of the fluvial knickpoints of the Island of Tahiti (French Polynesia). Geomorphology 2013, 186, 162–173. [Google Scholar] [CrossRef]
- Pinel, V.; Jaupart, C. The effect of edifice load on magma ascent beneath a volcano. Philos. R. Soc. London Ser. A 2000, 358, 1515–1532. [Google Scholar] [CrossRef]
- Pinel, V.; Jaupart, C. Magma chamber behavior beneath a volcanic edifice. J. Geophys. Res. 2003, 108, 2072. [Google Scholar] [CrossRef]
- Longpré, M.A.; Troll, V.R.; Walter, T.R.; Hansteen, T.H. Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: Some repercussions of giant landslides on ocean island magmatism. Geochem. Geophys. Geosyst. 2009, 10, Q12017. [Google Scholar] [CrossRef] [Green Version]
- Ganeshram, R.S.; Pedersen, T.F. Glacial-interglacial variability in upwelling and bioproductivity off NW Mexiso: Implications for Quaternary paleoclimate. Paleoceanography 1998, 13, 634–645. [Google Scholar] [CrossRef]
- Chiang, J.C.H. The Tropics of Paleoclimate. Ann. Rev. Earth Planet. Sci. 2009, 37, 263–297. [Google Scholar] [CrossRef]
- Guiot, J.; Pons, A.; de Beaulieu, J.L.; Reille, M. A 140000 year continental climate reconstruction from two European pollen records. Nature 1989, 338, 309–313. [Google Scholar] [CrossRef]
- Curtis, J.H.; Brenner, M.; Hodell, D.A. Climate change in the circum-Caribbean (Late Pleistocene to Present) and implications for Regional Biogeography. In Biogeography of the West Indies; Charles, A.W., Florence, E.S., Eds.; CRC Press: Boca Raton, FL, USA, 2001; 608p. [Google Scholar] [CrossRef]
- Costa, K.M.; Russel, J.M.; Vogel, H.; Bijaksana, S. Hydrological connectivity and mixing of Lake Towati, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 417, 467–475. [Google Scholar] [CrossRef]
- Russell, J.M.; Vogel, H.; Konecky, B.L.; King, J.W. Glacial forcing of central Indonesian hydroclimate since 80000 yr B.P. Proc. Natl. Acad. Sci. USA 2014, 111, 5100–5105. [Google Scholar] [CrossRef] [Green Version]
- Gee, M.J.; Watts, A.B.; Masson, D.G.; Mitchell, N.C. Landslides and the evolution of El Hierro in the Canary Islands. Mar. Geol. 2001, 177, 271–293. [Google Scholar] [CrossRef]
- Lenat, J.F.; Labazuy, P. Growth and collapse of the Reunion Island volcanoes. Bull. Volcanol. 2008, 70, 717–742. [Google Scholar]
- Rubin, K.H.; Fletcher, C.H., III; Sherman, C. Fossiliferous Lanai deposits formed by multiple events rather than a single giant tsunami. Nature 2000, 408, 675–681. [Google Scholar] [CrossRef]
- Hunt, J.E.; Wynn, R.B.; Masson, D.G.; Talling, P.J.; Teagle, D.A.H. Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands. Geochem. Geophys. Geosystems 2011, 12, Q12007. [Google Scholar] [CrossRef]
- Masson, D.G.; Watts, A.B.; Gee, M.J.R.; Urgeles, R.; Mitchell, N.C.; Le Bas, T.P.; Canals, M. Slope failures on the flanks of the western Canary Islands. Earth-Sci. Rev. 2002, 57, 1–35. [Google Scholar] [CrossRef]
- Quidelleur, X.; Samper, A.; Boudon, G.; Le Friant, A.; Komorowski, J.C. Radiometric dating of large volume flank collapses in the Lesser Antilles Arc. Eos Trans. AGU 2004, 85. [Google Scholar]
- Guillou, H.; Carracedo, J.C.; Duncan, R.A. K-Ar, 40Ar/39Arages and magnetostratigraphy of Brunhes and Matuyama lava sequencesfrom La Palma Island. J. Volcanol. Geotherm. Res. 2001, 106, 175–194. [Google Scholar] [CrossRef]
- Groom, S.; Barfod, D.N.; Millar, I.; Downes, H. The Cumbre Nueva collapse (La Palma, Canary Islands): New age determinations and evidence of an isotopic excursion. J. Volcanol. Geotherm. Res. 2022, 433, 107708. [Google Scholar] [CrossRef]
- Samper, A.; Quidelleur, X.; Lahitte, P.; Mollex, D. Timing ofeffusive volcanism and collapse events within an oceanic arc island:Basse Terre, Guadeloupe archipelago (Lesser Antilles Arc). Earth Planet. Sci. Lett. 2007, 258, 175–191. [Google Scholar] [CrossRef]
- Moore, J.G.; Clague, D.A. Volcano growth and evolution of the island of Hawaii. Geol. Soc. Am. Bull. 1992, 104, 1471–1484. [Google Scholar] [CrossRef]
- Gargani, J. Relative sea level and abrupt mass unloading in Barbados during the Holocene. Geomorphology 2022, 413, 108353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargani, J. Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides. Geosciences 2023, 13, 113. https://doi.org/10.3390/geosciences13040113
Gargani J. Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides. Geosciences. 2023; 13(4):113. https://doi.org/10.3390/geosciences13040113
Chicago/Turabian StyleGargani, Julien. 2023. "Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides" Geosciences 13, no. 4: 113. https://doi.org/10.3390/geosciences13040113
APA StyleGargani, J. (2023). Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides. Geosciences, 13(4), 113. https://doi.org/10.3390/geosciences13040113