Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica
Abstract
1. Introduction
2. Materials and Methods
2.1. Drilling, Shipping and Storage
2.2. Line Scanning
2.3. Error Estimate
2.4. Identification of Melt
3. Results
3.1. Line Scan Grey-Scale Data
3.2. Grey-Scale Annual Layer Counting/Age Scale
3.3. Melt
4. Discussion
4.1. Visual Stratigraphy and Grey-Scale
4.2. Benefits of Using Visual Stratigraphy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, E.R.; Gacitúa, G.; Pedro, J.B.; King, A.C.F.; Markle, B.; Potocki, M.; Moser, D.E. Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands. Cryosphere 2021, 15, 1173–1186. [Google Scholar] [CrossRef]
- Moser, D.E.; Jackson, S.; Kjær, H.A.; Markle, B.; Ngoumtsa, E.; Pedro, J.B.; Segato, D.; Spolaor, A.; Tetzner, D.; Vallelonga, P.; et al. An age scale for the first shallow (sub-)Antarctic ice core from Young Island, Northwest Ross Sea. Geosciences 2021, 11, 368. [Google Scholar] [CrossRef]
- Koerner, R.M. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J. Glaciol. 1997, 43, 90–97. [Google Scholar] [CrossRef]
- Moore, J.C.; Grinsted, A.; Kekonen, T.; Pohjola, V. Separation of melting and environmental signals in an ice core with seasonal melt. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Alley, R.B.; Shuman, C.A.; Meese, D.A.; Gow, A.J.; Taylor, K.C.; Cuffey, K.M.; Fitzpatrick, J.J.; Grootes, P.M.; Zielinski, G.A.; Ram, M.; et al. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application. J. Geophys. Res. Ocean. 1997, 102, 26367–26381. [Google Scholar] [CrossRef]
- McGWIRE, K.C.; McCONNELL, J.R.; Alley, R.B.; Banta, J.R.; Hargreaves, G.M.; Taylor, K.C. Dating annual layers of a shallow Antarctic ice core with an optical scanner. J. Glaciol. 2008, 54, 831–838. [Google Scholar] [CrossRef]
- Dey, R.; Thamban, M.; Laluraj, C.M.; Mahalinganathan, K.; Redkar, B.L.; Kumar, S.; Matsuoka, K. Application of visual stratigraphy from line-scan images to constrain chronology and melt features of a firn core from coastal Antarctica. J. Glaciol. 2022, 69, 179–190. [Google Scholar] [CrossRef]
- Sjögren, B.; Brandt, O.; Nuth, C.; Isaksson, E.; Pohjola, V.; Kohler, J.; Van De Wal, R.S. Determination of firn density in ice cores using image analysis. J. Glaciol. 2007, 53, 413–419. [Google Scholar] [CrossRef]
- Winstrup, M.; Svensson, A. Stratigraphical dating of ice cores using high resolution profiles. In IOP Conference Series. Earth and Environmental Science; IOP Publishing: Bristol, UK, 2009. [Google Scholar]
- Westhoff, J.; Sinnl, G.; Svensson, A.; Freitag, J.; Kjær, H.A.; Vallelonga, P.; Vinther, B.; Kipfstuhl, S.; Dahl-Jensen, D.; Weikusat, I. Melt in the Greenland EastGRIP ice core reveals Holocene warming events. Clim. Past Discuss. 2021, 2021, 1–36. [Google Scholar]
- Andersen, K.K.; Svensson, A.; Johnsen, S.J.; Rasmussen, S.O.; Bigler, M.; Röthlisberger, R.; Ruth, U.; Siggaard-Andersen, M.L.; Steffensen, J.P.; Dahl-Jensen, D.; et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 2006, 25, 3246–3257. [Google Scholar] [CrossRef]
- Ahn, J.; Headly, M.; Wahlen, M.; Brook, E.J.; Mayewski, P.A.; Taylor, K.C. CO2 diffusion in polar ice: Observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core. J. Glaciol. 2008, 54, 685–695. [Google Scholar] [CrossRef]
- Koerner, R.M. Ice core evidence for extensive melting of the Greenland ice sheet in the last interglacial. Science 1989, 244, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Orsi, A.J.; Kawamura, K.; Fegyveresi, J.M.; Headly, M.A.; Alley, R.B.; Severinghaus, J.P. Differentiating bubble-free layers from melt layers in ice cores using noble gases. J. Glaciol. 2015, 61, 585–594. [Google Scholar] [CrossRef]
- MacDonell, S.; Fernandoy, F.; Villar, P.; Hammann, A. Stratigraphic Analysis of Firn Cores from an Antarctic Ice Shelf Firn Aquifer. Water 2021, 13, 731. [Google Scholar] [CrossRef]
- Wegner, A.; Fischer, H.; Delmonte, B.; Petit, J.R.; Erhardt, T.; Ruth, U.; Svensson, A.; Vinther, B.; Miller, H. The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. J. Geophys. Res. Atmos. 2015, 120, 9916–9931. [Google Scholar] [CrossRef]
- Kinnard, C.; Koerner, R.M.; Zdanowicz, C.M.; Fisher, D.A.; Zheng, J.; Sharp, M.J.; Nicholson, L.; Lauriol, B. Stratigraphic analysis of an ice core from the Prince of Wales Icefield, Ellesmere Island, Arctic Canada, using digital image analysis: High-resolution density, past summer warmth reconstruction, and melt effect on ice core solid conductivity. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Hörhold, M.W.; Kipfstuhl, S.; Wilhelms, F.; Freitag, J.; Frenzel, A. The densification of layered polar firn. J. Geophys. Res. Earth Surf. 2011, 116, F01001. [Google Scholar] [CrossRef]
- Bory, A.; Wolff, E.; Mulvaney, R.; Jagoutz, E.; Wegner, A.; Ruth, U.; Elderfield, H. Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet. Earth Planet. Sci. Lett. 2010, 291, 138–148. [Google Scholar] [CrossRef]
- Albani, S.; Mahowald, N.M.; Delmonte, B.; Maggi, V.; Winckler, G. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Clim. Dyn. 2011, 38, 1731–1755. [Google Scholar] [CrossRef]
- Neff, P.D.; Bertler, N.A. Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. J. Geophys. Res. Atmos. 2015, 120, 9303–9322. [Google Scholar] [CrossRef]
- Colbeck, S.C. Growth of Faceted Crystals in a Snow Cover; Cold Regions Research and Engineering Lab.: Hanover, NH, USA, 1982. [Google Scholar]
- Joughin, I.; Alley, R.B. Stability of the West Antarctic ice sheet in a warming world. Nat. Geosci. 2011, 4, 506–513. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D.; Rignot, E. Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
Site | Date Drilled | Peaks | Bottom Depth | Bottom Age | Bottom Age [1] |
---|---|---|---|---|---|
Mount Siple | 11/02/17 | 18 | 24.38 ± 0.1 | 1999 ± 1 | 1998 ± 6 |
Mount Siple with melt removed | 11/02/17 | 19 | 24.38 ± 0.1 | 1998 ± 1 | 1998 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.W.; Moser, D.E.; Emanuelsson, D.B.; Thomas, E.R. Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences 2023, 13, 85. https://doi.org/10.3390/geosciences13030085
Brown JW, Moser DE, Emanuelsson DB, Thomas ER. Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences. 2023; 13(3):85. https://doi.org/10.3390/geosciences13030085
Chicago/Turabian StyleBrown, Joseph W., Dorothea E. Moser, Daniel B. Emanuelsson, and Elizabeth R. Thomas. 2023. "Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica" Geosciences 13, no. 3: 85. https://doi.org/10.3390/geosciences13030085
APA StyleBrown, J. W., Moser, D. E., Emanuelsson, D. B., & Thomas, E. R. (2023). Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences, 13(3), 85. https://doi.org/10.3390/geosciences13030085