Rockfall Susceptibility Assessment and Landscape Evolution of San Nicola Island (Tremiti Islands, Southern Adriatic Sea, Italy)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Geothematic and Literature Data
3.2. Rockfall Susceptibility Assessment
4. Results
4.1. Geothematic Parameters
4.1.1. Photolineaments
4.1.2. Morphometric Features
4.1.3. Geomorphological Features
4.2. Rockfall Susceptibility Map
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Festa, V.; Teofilo, G.; Tropeano, M.; Sabato, L.; Spalluto, L. New Insights on Diapirism in the Adriatic Sea: The Tremiti Salt Structure (Apulia Offshore, Southeastern Italy). Terra Nova 2014, 26, 169–178. [Google Scholar] [CrossRef]
- Teofilo, G.; Festa, V.; Sabato, L.; Spalluto, L.; Tropeano, M. 3D Modelling of the Tremiti Salt Diapir in the Gargano Offshore (Adriatic Sea, Southern Italy): Constraints in the Tremiti Structure Development. Ital. J. Geosci. 2016, 135, 474–485. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Holocene Uplift Rates and Historical Rapid Sea-level Changes at the Gargano Promontory, Italy. J. Quat. Sci. 2002, 17, 593–606. [Google Scholar] [CrossRef]
- Cocarella, B. Cronica Istoriale di Tremiti; Giovanni Battista Colosino: Venezia, Italy, 1606. [Google Scholar]
- Ceva-Grimaldi, F. Memorie Storiche delle Isole e Badia di Tremiti; Stabilimento tipografico L’Araldo: Napoli, Italy, 1852. [Google Scholar]
- Tellini, A. Osservazioni Geologiche Sulle Isole Tremiti e Sull’Isola di Pianosa Nell’Adriatico. Boll. R. Com. Geol. D’italia 1890, 21, 442–514. [Google Scholar]
- Dell’Aquila, V. Cenni Storici Sulle Isole Di Tremiti Nei Rapporti Amministrativi e Giudiziari; Stamperia Editrice Frattarolo: Lucera, Italy, 1908. [Google Scholar]
- Squinabol, S. Riassunto di uno Studio Geofisico Sulle Tremiti. Atti. della R. Accad. delle Sci. di Torino 1908, 43, 1008–1013. [Google Scholar]
- Zorzi, F. Tremiti. Riv. di Sci. Preist. 1958, 13, 208–209. [Google Scholar]
- Checchia Rispoli, G. Osservazioni Geologiche Sull’Isola di S. Nicola di Tremiti (Mare Adriatico). Boll. R. Uff. Geol. Ital. 1926, 51, 1–3. [Google Scholar]
- Baldacci, O. Ricerche Geografiche Sulle IsoleTremiti. Boll. Soc. Geogr. Ital. 1953, 8, 341–410. [Google Scholar]
- Fumo, P. La Preistoria delle Isole Tremiti: Il Neolitico; Enne: Ferrazzano, Italy, 1980; ISBN 8872130832. [Google Scholar]
- Radicchio, G. L’Isola di San Nicola di Tremiti; Palomar: Bari, Italy, 1993. [Google Scholar]
- Lollino, P.; Pagliarulo, R. The Interplay of Erosion, Instability Processes and Cultural Heritage at San Nicola Island (Tremiti Archipelago, Southern Italy). Geogr. Fis. Din. Quat. 2008, 31, 161–169. [Google Scholar]
- Iadanza, C.; Trigila, A.; Vittori, E.; Serva, L. Landslides in Coastal Areas of Italy. Geol. Soc. Lond. Spec. Publ. 2009, 322, 121–141. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; Natural Hazards, 3; UNESCO: Paris, France, 1984. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide Hazard and Risk Zonation—Why Is It Still so Difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; Thaipham, B.; Bui, T.; Avtar, R.; Boumezbeur, A. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Dong, A.; Dou, J.; Fu, Y.; Zhang, R.; Xing, K. Unraveling the evolution of landslide susceptibility: A systematic review of 30-years of strategic themes and trends. Geocarto Int. 2023, 38, 2256308. [Google Scholar] [CrossRef]
- Ruff, M.; Czurda, K. Landslide Susceptibility Analysis with a Heuristic Approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 2008, 94, 314–324. [Google Scholar] [CrossRef]
- Leoni, G.; Campolo, D.; Falconi, L.; Gioè, C.; Lumaca, S.; Puglisi, C.; Torre, A. Heuristic Method for Landslide Susceptibility Assessment in the Messina Municipality. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar] [CrossRef]
- Carabella, C.; Cinosi, J.; Piattelli, V.; Burrato, P.; Miccadei, E. Earthquake-Induced Landslides Susceptibility Evaluation: A Case Study from the Abruzzo Region (Central Italy). Catena 2022, 208, 105729. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Xu, C. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geosci. Front. 2015, 6, 825–836. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.; Carrara, A.; Agliardi, F. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 2008, 94, 419–437. [Google Scholar] [CrossRef]
- Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall Research: A Bibliometric Analysis and Future Trends. Geosciences 2020, 10, 403. [Google Scholar] [CrossRef]
- Alvioli, M.; Santangelo, M.; Fiorucci, F.; Cardinali, M.; Marchesini, I.; Reichenbach, P.; Rossi, M.; Guzzetti, F.; Peruccacci, S. Rockfall Susceptibility and Network-Ranked Susceptibility along the Italian Railway. Eng. Geol. 2021, 293, 106301. [Google Scholar] [CrossRef]
- Toševski, A.; Pollak, D.; Perković, D. Identification of Rockfall Source Areas Using the Seed Cell Concept and Bivariate Susceptibility Modelling. Bull. Eng. Geol. Environ. 2021, 80, 7551–7576. [Google Scholar] [CrossRef]
- Cignetti, M.; Godone, D.; Bertolo, D.; Paganone, M.; Thuegaz, P.; Giordan, D. Rockfall susceptibility along the regional road network of Aosta Valley Region (northwestern Italy). J. Maps 2021, 17, 54–64. [Google Scholar] [CrossRef]
- Wen, H.; Hu, J.; Zhang, J.; Xiang, X.; Liao, M. Rockfall Susceptibility Mapping Using XGBoost Model by Hybrid Optimized Factor Screening and Hyperparameter. Geocarto. Int. 2022, 37, 16872–16899. [Google Scholar] [CrossRef]
- Bajni, G.; Camera, C.A.S.; Apuani, T. A Novel Dynamic Rockfall Susceptibility Model Including Precipitation, Temperature and Snowmelt Predictors: A Case Study in Aosta Valley (Northern Italy). Landslides 2023, 20, 2131–2154. [Google Scholar] [CrossRef]
- APAT. Rapporto Sulle Frane in Italia–Il Progetto IFFI: Metodologia, Risultati e Rapporti Regionali; Report 78/2007; APAT: Rome, Italy, 2007. [Google Scholar]
- Fortunato, C.; Martino, S.; Prestininzi, A.; Romeo, R.W. New Release of the Italian Catalogue of Earthquake-Induced Ground Failures (CEDIT). Ital. J. Eng. Geol. Environ. 2012, 2, 63–74. [Google Scholar] [CrossRef]
- Caprari, P.; Della Seta, M.; Martino, S.; Fantini, A.; Fiorucci, M.; Priore, T. Upgrade of the Cedit Database of Earthquake-Induced Ground Effects in Italy. Ital. J. Eng. Geol. Environ. 2018, 18, 23–39. [Google Scholar] [CrossRef]
- Audemard, F.; Azuma, T.; Baiocco, F.; Baize, S.; Blumetti, A.M.; Brustia, E.; Clague, J.; Comerci, V.; Esposito, E.; Guerrieri, L.; et al. Earthquake Environmental Effect for Seismic Hazard Assessment: The ESI Intensity Scale and the EEE Catalogue. Memorie Descrittive della Carta Geologica d’Italia; Guerrieri, L., Ed.; Servizio Geologico d’Italia, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA): Rome, Italy, 2015; Volume 97, 182p. [Google Scholar] [CrossRef]
- Miccadei, E.; Orrù, P.; Piacentini, T.; Mascioli, F.; Puliga, G. Geomorphological Map of the Tremiti Islands (Puglia, Southern Adriatic Sea, Italy), Scale 1:15,000. J. Maps 2012, 8, 74–87. [Google Scholar] [CrossRef]
- Buccolini, M.; Carabella, C.; Paglia, G.; Cecili, A.; Chiarolanza, G.; Cioria, C.; Conicella, C.; D’Alonzo, A.; De Viti, L.; Di Carlo, F.; et al. Geomorphological Analysis of the San Domino Island (Tremiti Islands, Southern Adriatic Sea). Results from the 2019 Geomorphological Field Camp of the MSc in Geological Science and Technology (University of Chieti-Pescara). J. Maps 2020, 16, 10–18. [Google Scholar] [CrossRef]
- Piattelli, V.; Cinosi, J.; Esposito, G.; Mancinelli, V.; Paglia, G.; Ciaglia, S.; Colasante, P.; Defilippis, D.; de Iure, F.; Desiderio, S.; et al. Geomorphological Analysis of San Nicola Island (Tremiti Islands, Southern Adriatic Sea). Results from the 2021 and 2022 Environmental Geomorphology Field Camps of the MSc in Geological Sciences and Technologies of Earth and Planets (University ‘G. d’Annunzio’ of Chieti-Pescara). J. Maps 2023, 19, 2164748. [Google Scholar] [CrossRef]
- Selli, R. Isole Tremiti e Pianosa. In Note Illustrative della Carta Geologica d’Italia alla Scala 1:100,000 Foglio 156 “S. Marco in Lamis”; Cremonini, G., Elmi, C., Selli, R., Eds.; Servizio Geologico d’Italia: Rome, Italy, 1971. [Google Scholar]
- Andriani, G.F.; Walsh, N.; Pagliarulo, R. The Influence of the Geological Setting on the Morphogenetic Evolution of the Tremiti Archipelago (Apulia, Southeastern Italy). Nat. Hazards Earth Syst. Sci. 2005, 5, 29–41. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Piacentini, T. Quaternary Geomorphological Evolution of the Tremiti Islands (Puglia, Italy). Quat. Int. 2011, 233, 3–15. [Google Scholar] [CrossRef]
- Favali, P.; Funiciello, R.; Mattietti, G.; Mele, G.; Salvini, F. An Active Margin across the Adriatic Sea (Central Mediterranean Sea). Tectonophysics 1993, 219, 109–117. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Pierri, P.; Frepoli, A.; Calcagnile, G.; Venisti, N.; Cimini, G.B. A Critical Revision of the Seismicity of Northern Apulia (Adriatic Microplate—Southern Italy) and Implicationsfor the Identification of Seismogenic Structures. Tectonophysics 2007, 436, 9–35. [Google Scholar] [CrossRef]
- Di Bucci, D.; Ravaglia, A.; Seno, S.; Toscani, G.; Fracassi, U.; Valensise, G. Modes of Fault Reactivation from Analogue Modeling Experiments: Implications for the Seismotectonics of the Southern Adriatic Foreland (Italy). Quat. Int. 2007, 171–172, 2–13. [Google Scholar] [CrossRef]
- Miccadei, E.; Carabella, C.; Paglia, G. Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features. Geosciences 2021, 11, 397. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, R.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0.; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Andriani, G.F.; Guerricchio, A. Caratteri Litostratigrafico-Tessiturali e Geomeccanici Delle Rocce Affioranti Nell’Isola Di S. Nicola (Isole Tremiti). Geol. Appl. E Idrogeol. 1996, 31, 97–105. [Google Scholar]
- Ridente, D.; Trincardi, F. Eustatic and Tectonic Control on Deposition and Lateral Variability of Quaternary Regressive Sequences in the Adriatic Basin (Italy). Mar. Geol. 2002, 184, 273–293. [Google Scholar] [CrossRef]
- Parlagreco, L.; Mascioli, F.; Miccadei, E.; Antonioli, F.; Gianolla, D.; Devoti, S.; Leoni, G.; Silenzi, S. New Data on Holocene Relative Sea Level along the Abruzzo Coast (Central Adriatic, Italy). Quat. Int. 2011, 232, 179–186. [Google Scholar] [CrossRef]
- Romano, E.; Bergamin, L.; Berto, D.; Chiocci, F.L.; Miccadei, E.; Paglia, G.; Piattelli, V.; Pierfranceschi, G.; Rampazzo, F.; Sorci, A.; et al. Geomorphological, Sedimentological, and Ecological Characterization of Marine Caves from Capraia Island (Tremiti Archipelago, Southern Adriatic Sea, Italy): An Integrated Approach. Mar. Geol. 2023, 455, 106952. [Google Scholar] [CrossRef]
- Cotecchia, V.; Guerricchio, A.; Melidoro, G. Geologia e Processi di Demolizione Costiera Dell’isola di S. Nicola (Tremiti). Mem. Soc. Geol. Ital. 1996, 51, 595–606. [Google Scholar]
- Coco, L.; Buccolini, M. The Effect of Morphometry, Land-Use and Lithology on Landslides Susceptibility: An Exploratory Analysis. In Geotechnical Safety and Risk V; IOS Press: Amsterdam, The Netherlands, 2015; pp. 779–784. [Google Scholar]
- ISPRA. Guida Alla Rappresentazione Cartografica della Carta Geomorfologica d’Italia in Scala 1:50,000; Quaderni Serie III; ISPRA: Rome, Italy, 2007. [Google Scholar]
- Smith, M.J.; Paron, P.; Griffiths, J.S. Geomorphological Mapping: Methods and Applications; Shroder, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- Seijmonsbergen, A.C. The Modern Geomorphological Map. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 35–52. [Google Scholar]
- Ciccacci, S.; D’Alessandro, L.; Dramis, F.; Miccadei, E. Geomorphologic evolution and neotectonics of the Sulmona intramontane basin (Abruzzi Apennine, Central Italy). Z. Für Geomorphol. 1999, 118, 27–40. [Google Scholar]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR Interferometric Analysis to Support Geomorphological Interpretation of Slow-Moving Coastal Landslides (Malta, Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef]
- Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. Database Macrosismico Italiano (DBMI15)–Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- ISIDe Working Group, ISIDe Working Group Italian Seismological Instrumental and Parametric Database (ISIDe); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2007. [CrossRef]
- Gupta, R.P.; Saha, A.K.; Arora, M.K.; Kumar, A. Landslide Hazard Zonation in a Part of the Bhagirathi Valley, Garhwal Mimalyas, using integrated remote sensing–GIS. Himal. Geol. 1999, 20, 71–85. [Google Scholar]
- Çevik, E.; Topal, T. GIS-Based Landslide Susceptibility Mapping for a Problematic Segment of the Natural Gas Pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-Based Comparative Study of Frequency Ratio, Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide Susceptibility Mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Marsala, V.; Galli, A.; Paglia, G.; Miccadei, E. Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean). Geosciences 2019, 9, 493. [Google Scholar] [CrossRef]
- Montoya-Montes, I.; Rodríguez-Santalla, I.; Sánchez-García, M.J.; Alcántara-Carrió, J.; Martín-Velázquez, S.; Gómez-Ortiz, D.; Martín-Crespo, T. Mapping of Landslide Susceptibility of Coastal Cliffs: The Mont-Roig del Camp Case Study. Geol. Acta 2012, 10, 439–455. [Google Scholar]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Katalinić, M.; Parunov, J. Comprehensive Wind and Wave Statistics and Extreme Values for Design and Analysis of Marine Structures in the Adriatic Sea. J. Mar. Sci. Eng. 2021, 9, 522. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS Techniques and Statistical Models in Evaluating Landslide Hazard. Earth Surf. Process Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Esposito, G.; Carabella, C.; Paglia, G.; Miccadei, E. Relationships between Morphostructural/Geological Framework and Landslide Types: Historical Landslides in the Hilly Piedmont Area of Abruzzo Region (Central Italy). Land 2021, 10, 287. [Google Scholar] [CrossRef]
- Vanneschi, C.; Rindinella, A.; Salvini, R. Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data. Remote Sens. 2022, 14, 1438. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E.; Di Michele, R.; Sciarra, N.; Mataloni, G. Geomorphological analysis applied to rock falls in Italy: The case of the San Venanzio gorges (Aterno river, Abruzzo, Italy). Ital. J. Eng. Geol. Environ. 2013, 6, 467–479. [Google Scholar] [CrossRef]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide Susceptibility Modeling Assisted by Persistent Scatterers Interferometry (PSI): An Example from the Northwestern Coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef]
- Liguori, V.; Manno, G.; Placenti, V. Sinkholes Risk Analysis: Case History of Marsala (Sicily, Italy). In Proceedings of the Risk Analysis V: Simulation and Hazard Mitigation, Lisbonne, Portugal, 23–25 June 2020; WIT Press: Southampton, UK, 2006; pp. 107–118. [Google Scholar]
- Khatun, M.; Hossain, A.T.M.S.; Sayem, H.M.; Moniruzzaman, M.; Ahmed, Z.; Rahaman, K.R. Landslide Susceptibility Mapping Using Weighted-Overlay Approach in Rangamati, Bangladesh. Earth Syst. Environ. 2023, 7, 223–235. [Google Scholar] [CrossRef]
- Chalkias, C.; Polykretis, C.; Ferentinou, M.; Karymbalis, E. Integrating Expert Knowledge with Statistical Analysis for Landslide Susceptibility Assessment at Regional Scale. Geosciences 2016, 6, 14. [Google Scholar] [CrossRef]
- Magri, O.; Mantovani, M.; Pasuto, A.; Soldati, M. Geomorphological investigation and monitoring of lateral spreading along the north-west coast of Malta. Geogr. Fis. E Din. Quat. 2008, 31, 171–180. [Google Scholar]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide-controlled landscape of the northwestern coast of Malta. In Landscapes and Landforms of the Maltese Islands; Springer: Cham, Switzerland, 2019; pp. 167–178. [Google Scholar] [CrossRef]
- Colica, E.; Galone, L.; D’Amico, S.; Gauci, A.; Iannucci, R.; Martino, S.; Pistillo, D.; Iregbeyen, P.; Valentino, G. Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images. Remote Sens. 2023, 15, 1465. [Google Scholar] [CrossRef]
- Mateos, R.; Ezquerro, P.; Azañón, J.; Gelabert, B.; Herrera, G.; Fernández-Merodo, J.A.; Spizzichino, D.; Sarro, R.; García-Moreno, I.; Béjar-Pizarro, M. Coastal lateral spreading in the world heritage site of the Tramuntana Range (Majorca, Spain). The use of PSInSAR monitoring to identify vulnerability. Landslides 2018, 15, 797–809. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Liu, Q.; Xiao, R. A Numerical Study of Wave Propagation and Cracking Processes in Rock-Like Material under Seismic Loading Based on the Bonded-Particle Model Approach. Engineering 2022, 17, 140–145. [Google Scholar] [CrossRef]
- DISS Working Group Database of Individual Seismogenic Sources (DISS). Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021. [Google Scholar] [CrossRef]
Parameter | Source | Class | Weight |
---|---|---|---|
Slope [°] [61,62,63,64] | DTM | 0–20 | 0 |
20–30 | 1 | ||
30–35 | 2 | ||
35–40 | 3 | ||
40–45 | 5 | ||
45–60 | 7 | ||
60–70 | 9 | ||
70–80 | 11 | ||
80–90 | 12 | ||
Slope aspect [65,66] | DTM | Plain | 0 |
North | 2 | ||
Northeast | 2 | ||
East | 1 | ||
Southeast | 3 | ||
South | 1 | ||
Southwest | 0 | ||
West | 0 | ||
Northwest | 0 | ||
Outcropping lithologies [68,69] | Field surveys | Dolomitic limestones | 10 |
Marls | 7 | ||
Breccias and conglomerates | 7 | ||
Anthropic deposits | 0 | ||
Sandy shore deposits | 0 | ||
Rockfall deposits | 0 | ||
Structural discontinuities density [70] | Field surveys; geomechanical investigations and data from [Cotecchia] | Very low | 0 |
Low | 3 | ||
Medium | 5 | ||
High | 8 | ||
Very high | 12 | ||
Distance from landslide scarps [72] | Stereoscopic aerial-photos interpretation; field surveys | Buffer zone (radius: 10 m downward, 2 m landward) | 5 |
Presence of anthropic caves [73] | Field surveys | Buffer zone (radius: 15 m) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinosi, J.; Piattelli, V.; Paglia, G.; Sorci, A.; Ciavattella, F.; Miccadei, E. Rockfall Susceptibility Assessment and Landscape Evolution of San Nicola Island (Tremiti Islands, Southern Adriatic Sea, Italy). Geosciences 2023, 13, 352. https://doi.org/10.3390/geosciences13110352
Cinosi J, Piattelli V, Paglia G, Sorci A, Ciavattella F, Miccadei E. Rockfall Susceptibility Assessment and Landscape Evolution of San Nicola Island (Tremiti Islands, Southern Adriatic Sea, Italy). Geosciences. 2023; 13(11):352. https://doi.org/10.3390/geosciences13110352
Chicago/Turabian StyleCinosi, Jacopo, Valerio Piattelli, Giorgio Paglia, Adelmo Sorci, Francesco Ciavattella, and Enrico Miccadei. 2023. "Rockfall Susceptibility Assessment and Landscape Evolution of San Nicola Island (Tremiti Islands, Southern Adriatic Sea, Italy)" Geosciences 13, no. 11: 352. https://doi.org/10.3390/geosciences13110352
APA StyleCinosi, J., Piattelli, V., Paglia, G., Sorci, A., Ciavattella, F., & Miccadei, E. (2023). Rockfall Susceptibility Assessment and Landscape Evolution of San Nicola Island (Tremiti Islands, Southern Adriatic Sea, Italy). Geosciences, 13(11), 352. https://doi.org/10.3390/geosciences13110352