Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics
Abstract
:1. Introduction
2. Investigation of Slope and Fluvial Dynamics: State-of-the-Art
3. Methodologies and Techniques for Slope and Fluvial Dynamics
3.1. Archive Data
3.2. New Field Data
3.2.1. DInSAR
3.2.2. GNSS
3.2.3. UAV Photogrammetry
3.2.4. UAV LiDAR
3.2.5. TLS
3.2.6. Fixed Cameras
3.2.7. TS
3.2.8. Geotechnical Instruments: Inclinometers, Extensometers
3.2.9. Piezometers
3.3. Integrated Use of Techniques
4. Discussion
- -
- previous data (repository) are resources available for the region such as airborne LiDAR, orthophoto, and PS-InSAR processing;
- -
- meteorological data (repository) are information about the investigated site that can be extrapolated from meteorological stations that are geographically distributed;
- -
- water level (repository) for both the water table and any rivers coming from geographically distributed sensors;
- -
- images (in situ) resource represents any image acquired on site;
- -
- punctual data (in situ) are separated in coordinates, as both periodic and continuous time series, belonging to topographic and GNSS surveys, in-depth movements coming from inclinometers and similar sensors, and point velocities produced by continuous survey and PS-InSAR;
- -
- point clouds and 3D models (in situ) generated with TLS, UAV photogrammetry, and LiDAR;
- -
- DSM, DTM, orthophotos data (in situ) extracted from 3D sources;
- -
- any meteorological and water level information derived by in situ instrumentations;
- -
- benchmark monography represents images, annotations, and any information useful in benchmark identification and use, for both historical and new benchmarks.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scorpio, V.; Cavalli, M.; Steger, S.; Crema, S.; Marra, F.; Zaramella, M.; Borga, M.; Marchi, L.; Comiti, F. Storm characteristics dictate sediment dynamics and geomorphic changes in mountain channels: A case study in the Italian Alps. Geomorphology 2022, 403, 108173. [Google Scholar] [CrossRef]
- Płaczkowska, E. Slope-Fluvial System Structure in the Western Tatra Mountains (Poland): Slope-to-Channel Transition. Arct. Antarct. Alp. Res. 2017, 49, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Van Asch, T.W.; Buma, J.; Van Beek, L.P.H. A view on some hydrological triggering systems in landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Alonso-Rodriguez, A.; Subramanian, S.; Li, W.; Zheng, G.; Dong, X.; Huang, R. Successive landsliding and damming of the Jinsha river in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Cui, Y.; Borthwick, A.G.I. Barrier lake formation due to landslide impacting a river. Appl. Math. Model. 2020, 80, 574–601. [Google Scholar] [CrossRef]
- Schuerch, P.; Densmore, A.L.; McArdell, B.W.; Molnar, P. The influence of landsliding on sediment supply and channel change in a steep mountain catchment. Geomorphology 2006, 78, 222–235. [Google Scholar] [CrossRef]
- Thompson, C.; Fryirs, K.; Croke, J. The disconnected sediment conveyor belt: Patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the Lockyer Valley, southeast Queensland. Australia. River Res. Appl. 2016, 32, 540–551. [Google Scholar] [CrossRef]
- Scorpio, V.; Crema, S.; Marra, F.; Righini, M.; Ciccarese, G.; Borga, M.; Cavalli, M.; Corsini, A.; Marchi, L.; Surian, N.; et al. Basin-scale analysis of the geomorphic effectiveness of flash floods: A study in the northern Apennines (Italy). Sci. Total Environ. 2018, 640–641, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Shmilovitz, Y.; Morin, E.; Rinat, Y.; Haviv, I.; Carmi, G.; Mushkin, A.; Enzel, Y. Linking frequency of rainstorms, runoff generation and sediment transport across hyperarid talus-pediment slopes. Earth Surf. Process. Landf. 2020, 49, 1644–1659. [Google Scholar] [CrossRef]
- Gustavsson, M.; Seijmonsbergen, A.C.; Kolstrup, E. Structure and contents of a new geomorphological GIS database linked to a geomorphological map—With an example from Liden, central Sweden. Geomorphology 2008, 95, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Favretto, A.; Brunello Zanitti, A. Geodatabase to store non homogeneous cartography: An applicatory example. Boll. AIC 2010, 138, 123–130. [Google Scholar]
- Chesnaux, R.; Lambert, M.; Walter, J.; Fillastre, U.; Hay, M.; Rouleau, A.; Daigneault, R.; Moisan, A.; Germaneau, D. Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: Application to the Saguenay–Lac-St.-Jean region, Canada. Comput. Geosci. 2011, 37, 1870–1882. [Google Scholar] [CrossRef]
- Munich Re. NatCat SERVICE Loss Database for Natural Catastrophes Worldwide. 2011. Available online: http://www.munichre.com/en/reinsurance/business/non-life/georisks/natcatservice/default.aspx (accessed on 10 March 2022).
- Sacco, G.M.; Nigrelli, G.; Bosio, A.; Chiarle, M.; Luino, F. Dynamic Taxonomies Applied to a Web-Based Relational Database for Geo-Hydrological Risk Mitigation. Comput. Geosci. 2012, 39, 182–187. [Google Scholar] [CrossRef]
- Menoni, S.; Molinari, D.; Ballio, F.; Minucci, G.; Mejri, O.; Atun, F.; Berni, N.; Pandolfo, C. Flood Damage: A Model for Consistent, Complete and Multipurpose Scenarios. Nat. Hazards Earth Syst. Sci. 2016, 16, 2783–2797. [Google Scholar] [CrossRef] [Green Version]
- Swiss Re. Sigma Natural Catastrophes and Man-Made Disasters. 2017. Available online: http://institute.swissre.com/research/overview/sigma/ (accessed on 10 March 2022).
- Herrera, G.; Mateos, R.M.; García-Davalillo, J.C.; Grandjean, G.; Poyiadji, E.; Maftei, R.; Filipciuc, T.C.; Jemec Auflič, M.; Jež, J.; Podolszki, L.; et al. Landslide Databases in the Geological Surveys of Europe. Landslides 2018, 15, 359–379. [Google Scholar] [CrossRef]
- Napolitano, E.; Marchesini, I.; Salvati, P.; Donnini, M.; Bianchi, C.; Guzzetti, F. LAND-DeFeND—An Innovative Database Structure for Landslides and Floods and Their Consequences. J. Environ. Manag. 2018, 207, 203–218. [Google Scholar] [CrossRef]
- Núñez-Andrés, M.A.; Lantada Zarzosa, N.; Martínez-Llario, J. Spatial Data Infrastructure (SDI) for Inventory Rockfalls with Fragmentation Information. Nat. Hazards 2022, 112, 2649–2672. [Google Scholar] [CrossRef]
- Guzzetti, F.; Tonelli, G. Information System on Hydrological and Geomorphological Catastrophes in Italy (SICI): A Tool for Managing Landslide and Flood Hazards. Nat. Hazards Earth Syst. Sci. 2004, 4, 213–232. [Google Scholar] [CrossRef]
- Boschi, E.; Guidoboni, E.; Ferrari, G.; Valensise, G.; Gasperini, P. Catalogo dei Forti Terremoti in Italia dal 461 aC al 1990, Volume 2; ING-SGA: Bologna, Italy, 1997; p. 644. [Google Scholar]
- Nones, M. On the main components of landscape evolution modelling of river systems. Acta Geophys. 2020, 68, 459–475. [Google Scholar] [CrossRef] [Green Version]
- Newson, M.D.; Sear, D. The role of geomorphology in monitoring and managing river sediment systems. Water Environ. J. 1998, 11, 264–270. [Google Scholar] [CrossRef]
- Miklín, J.; Galia, T. Detailed fluvial-geomorphologic mapping of wadeable streams: A proposal of universal map symbology. J. Maps 2017, 13, 698–706. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Gurnell, A.M.; Buijse, A.D.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Scorpio, V.; Santangelo, N.; Santo, A. Multiscale map analysis in alluvial fan flood prone areas. J. Maps 2016, 12, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Dollar, E.S.J. Fluvial geomorphology. Prog. Phys. Geogr. 2002, 24, 385–406. [Google Scholar] [CrossRef]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; Van de Bund, W. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Scorpio, V.; Piégay, H. Is afforestation a driver of change in italian rivers within the Anthropocene era? Catena 2021, 198, 105031. [Google Scholar] [CrossRef]
- Lisle, T.E.; Nelson, J.M.; Pitlick, J.; Madej, M.A.; Barkett, B.L. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales. Water Resour. Res. 2000, 36, 3743–3755. [Google Scholar] [CrossRef]
- Picco, L.; Mao, L.; Rigon, E.; Moretto, J.; Ravazzolo, D.; Delai, F.; Lenzi, M.A. Medium term fluvial island evolution in relation with flood events in the Piave River. WIT Trans. Eng. Sci. 2012, 73, 161–172. [Google Scholar]
- Picco, L.; Mao, L.; Rainato, R.; Lenzi, M.A. Medium-termfluvial island evolution in a disturbed gravelbed river (Piave River, Northeastern Italian Alps). Geogr. Ann. A Phys. Geogr. 2014, 96, 83–97. [Google Scholar] [CrossRef]
- Picco, L.; Tonon, A.; Ravazzolo, D.; Rainato, R.; Lenzi, M.A. Monitoring river island dynamics using aerial photographs and lidar data: The tagliamento river study case. Appl. Geomat. 2015, 7, 163–170. [Google Scholar] [CrossRef]
- Turowski, J.M.; Yager, E.M.; Badoux, A.; Rickenmann, D.; Molnar, P. The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel. Earth Surf. Process. Landf. 2009, 34, 1661–1673. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Mao, L.; Cavalli, M.; Comiti, F.; Marchi, L.; Lenzi, M.A.; Arattano, M. Sediment transfer processes in two Alpine catchments of contrasting morphological settings. J. Hydrol. 2009, 364, 88–98. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G.R.; Lenzi, M.A. Three decades of monitoring in the Rio Cordon instrumented basin. Sediment budget and temporal trend of sediment yield. Geomorphology 2017, 291, 45–56. [Google Scholar] [CrossRef]
- Steger, S.; Scorpio, V.; Comiti, F.; Cavalli, M. Data-driven modelling of joint debris flow release susceptibility and connectivity. Earth Surf. Process. Landf. 2022, 1–25. [Google Scholar] [CrossRef]
- David, M.; Labenne, A.; Carozza, J.M.; Valette, P. Evolutionary trajectory of channel planforms in the middle Garonne River (Toulouse SW France) over a 130-year period: Contribution of mixed multiple factor analysis (MFAmix). Geomorphology 2016, 258, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Gesch, B.; Muller, J.; Farr, T.G. The shuttle radar topography mission-Data validation and applications. Photogramm. Eng. Remote Sens. 2006, 72, 233–235. [Google Scholar]
- Ziliani, L.; Surian, N. Evolutionary trajectory of channelmorphology and controlling factors in a large gravel-bed river. Geomorphology 2012, 173–174, 104–117. [Google Scholar] [CrossRef]
- Pasuto, A.; Soldati, M. Geomorphological hazard. In Environmental Geomorphology, 1st ed.; Panizza, M., Ed.; Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 1996; Volume 4, pp. 35–196. [Google Scholar]
- Gutiérrez, F.; Soldati, M.; Audemard, F.; Bălteanu, D. Recent advances in landslide investigation: Issues and perspectives. Geomorphology 2010, 124, 95–101. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Piegay, H. Fluvial Remote Sensing for Science and Management; Wiley: Chichester, UK, 2012. [Google Scholar]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2012, 137, 74–86. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P.; Buytaert, W.; Matgen, P.; Pappenberger, F. A data assimilation approach to discharge estimation from space. Hydrol. Process. 2009, 3649, 3641–3649. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Allievi, J. Damage to buildings in large slope rock instabilities monitored with the PSInSAR™ technique. Remote Sens. 2013, 5, 4753–4773. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, K.; Kavoura, K.; Depountis, N.; Kyriou, A.; Argyropoulos, N.; Koukouvelas, I.; Sabatakakis, N. Preliminary results from active landslide monitoring using multidisciplinary surveys. Eur. J. Remote. Sens. 2017, 50, 280–299. [Google Scholar] [CrossRef] [Green Version]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Huuppä, H.; Alho, P. Seamless mapping of river channels at high resolution using mobile liDAR and UAVphotography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Kasprak, A.; Sear, D.; Vericat, D. Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river. J. Geophys. Res. Earth Surf. 2013, 118, 759–779. [Google Scholar] [CrossRef] [Green Version]
- Pirot, G.; Straubhaar, J.; Renard, P. Simulation of braided river elevation model time series with multiple-point statistics. Geomorphology 2014, 214, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Kaiser, A.; Abellan, A.; Schindewolf, M. Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring. Earth Surf. Process. Landf. 2017, 42, 2240–2253. [Google Scholar] [CrossRef]
- Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S.W.; Giacomini, A. Preliminary tests of a new low-cost photogrammetric system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 229. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silvano, S. Measurement of landslide displacements using a wire extensometer. Eng. Geol. 2000, 55, 149–166. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y. Modeling and Precision Control of Systems with Hysteresis; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Christenson, J. Sensors and Transducers. In Handbook of Biomechatronics; Segil, J., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 61–93. [Google Scholar]
- Chaulya, S.K.; Prasad, G.M. Sensing and Monitoring Technologies for Mines and Hazardous Areas. Monitoring and Prediction Technologies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Bianchini, S.; Solari, L.; Bertolo, D.; Thuegaz, P.; Catani, F. Integration of Satellite Interferometric Data in Civil Protection. Strategies for Landslide Studies at a Regional Scale. Remote Sens. 2021, 13, 1881. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Pastor, J.L.; Tomás, R.; Lettieri, L.; Riquelme, A.; Cano, M.; Infante, D.; Ramondini, M.; Di Martire, D. Multi-Source Data Integration to Investigate a Deep-Seated Landslide Affecting a Bridge. Remote Sens. 2019, 11, 1878. [Google Scholar] [CrossRef] [Green Version]
- Lindersson, S.; Brandimarte, L.; Mård, J.; Di Baldassarre, G. A review of freely accessible global datasets for the study of floods, droughts and their interactions with human societies. WIREs Water 2020, 7, e1424. [Google Scholar] [CrossRef] [Green Version]
- United Nations Office for Disaster Risk Reduction. Global Assessment Report on Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2019; eISBN 978-92-1-004180-5. [Google Scholar]
- Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C. Collaborative Super-computing for Global Change Science. Eos 2011, 92, 109–110. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Józsa, E.; Lóczy, D.; Soldati, M.; Drăguţ, L.D.; Szabó, J. Distribution of landslides reconstructed from inventory data and estimation of landslide susceptibility in Hungary. Hung. Geogr. Bull. 2019, 68, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F. Landslide hazard and risk assessment. Doctoral Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 3 July 2006. [Google Scholar]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P. The AVI Project: A bibliographical and archive inventory of landslides and floods in Italy. Environ. Manag. 1994, 18, 623–633. [Google Scholar] [CrossRef]
- Ibsen, M.L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Cruden, D.M. Estimating the risk from landslide historical data. In Landslide Risk Assessment; Cruden, D.M., Fell, R., Eds.; A.A. Balkema Publisher: Rotterdam, The Netherlands, 1997; pp. 177–184. [Google Scholar]
- Glade, T. Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ. Geol. 1998, 35, 160–174. [Google Scholar] [CrossRef]
- Glade, T. Landslide hazard assessment and historical landslide data—An inseparable couple? In The Use of Historical Data in Natural Hazard Assessments; Glade, T., Frances, F., Albini, P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 7, pp. 153–168. [Google Scholar]
- Rib, H.T.; Liang, T. Recognition and identification. In Landslide Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation Research Board Special Report 176; National Academy of Sciences: Washington, DC, USA, 1978; pp. 34–80. [Google Scholar]
- Hansen, A. Landslide hazard analysis. In Slope Instability; Brunsden, D., Prior, D.B., Eds.; Wiley & Sons: New York, NY, USA, 1984; pp. 523–602. [Google Scholar]
- Fookes, P.G.; Dale, S.G.; Land, J.M. Some observations on a comparative aerial photography interpretation of a landslipped area. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 249–265. [Google Scholar] [CrossRef]
- Ardizzone, F.; Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P. Uncertainty and errors in landslide mapping and landslide hazard assessment. Nat. Hazards Earth Syst. Sci. 2002, 2, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Grassi, F.; Cenni, N. A workflow based on SNAP–StaMPS open-source tools and GNSS data for PSI-Based ground deformation using dual-orbit sentinel-1 data: Accuracy assessment with error propagation analysis. Remote Sens. 2021, 13, 753. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of satellite interferometry for landslide detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I.; Lampropoulou, P. Repeated UAV campaigns, GNSS measurements, GIS, and petrographic analyses for landslide mapping and monitoring. Minerals 2021, 11, 300. [Google Scholar] [CrossRef]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Hastaoglu, K.O.; Sanli, D.U. Accuracy of Gps Rapid Static Positioning: Application to Koyulhisar Landslide, Central Turkey. Surv. Rev. 2011, 43, 226–240. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ.; Genç, A. Landslide Monitoring with GNSS measurements and prediction with Linear regression Model: A case study Taşkent (Konya, Turkey) Landslide. In Proceedings of the Digital Proceeding Of The ISDS’2014, Side, Turkey, 10–14 May 2014. [Google Scholar]
- Mantovani, M.; Bossi, G.; Dykes, A.P.; Pasuto, A.; Soldati, M.; Devoto, S. Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Eng. Geol. 2022, 296, 106466. [Google Scholar] [CrossRef]
- Eyo, E.E.; Musa, T.A.; Omar, K.M.; Idris, K.M.; Bayrak, T.; Onuigbo, I.C.; Opaluwa, Y.D. Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review. J. Teknol. 2014, 71, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Rivola, R. A reliable methodology for monitoring unstable slopes: The multi-platform and multi-sensor approach. In Proceedings of the SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications V, Amsterdam, The Netherlands, 23–25 September 2014. [Google Scholar]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of digital photogrammetry to complex topography for geomorphological research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Chao, H.; Cao, Y.; Chen, Y. Autopilots for small unmanned aerial vehicles: A survey. Int. J. Control Autom. Syst. 2010, 8, 36–44. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Prokešová, R.; Mokroš, M. Identification of micro-scale landforms of landslides using precise digital elevation models. Geosciences 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Cignetti, M.; Godone, D.; Wrzesniak, A.; Giordan, D. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy. Sensors 2019, 19, 2364. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. Motion blur disturbs—The influence of motion-blurred images in photogrammetry. Photogramm. Rec. 2014, 29, 434–453. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of different methods for 3D reconstruction of natural surfaces from parallel-axes UAV images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef] [Green Version]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Accuracy assessment of a UAV-based landslide monitoring system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 895–902. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy assessment of a UAV block by different software packages, processing schemes and validation strategies. ISPRS Int. J. Geoinf. 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Rangel, J.M.G.; Gonçalves, G.R.; Pérez, J.A. The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 2018, 39, 7154–7171. [Google Scholar] [CrossRef]
- Miura, N.; Yokota, S.; Koyanagi, T.F.; Yamada, S. Herbaceous Vegetation Height Map on Riverdike Derived from UAV LiDAR Data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Pu, S.; Xie, L.; Ji, M.; Zhao, Y.; Liu, W.; Wang, L.; Zhao, Y.; Yang, F.; Qiu, D. Real-time powerline corridor inspection by edge computing of UAV Lidar data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4213, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Cheng, Y.T.; Zhou, T.; Ravi, R.; Hasheminasab, S.M.; Flatt, J.E.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for mapping coastal environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.; Helmholz, P.; Belton, D.; Addy, N. Comparison of UAV Lidar and imagery for beach monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Pirotti, F.; Guarnieri, A.; Vettore, A. State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface. Eur. J. Remote Sens. 2013, 46, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Stumvoll, M.J.; Schmaltz, E.M.; Glade, T. Dynamic characterization of a slow-moving landslide system—Assessing the challenges of small process scales utilizing multi-temporal TLS data. Geomorphology 2021, 389, 107803. [Google Scholar] [CrossRef]
- Barbarella, M.; Fiani, M.; Lugli, A. Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis. Geomat. Nat. Hazards Risk. 2015, 6, 398–418. [Google Scholar] [CrossRef]
- Corsini, A.; Castagnetti, C.; Bertacchini, E.; Rivola, R.; Ronchetti, F.; Capra, A. Integrating airborne and multi-temporal long-range terrestrial laser scanning with total station measurements for mapping and monitoring a compound slow moving rock slide. Earth Surf. Process. Landf. 2013, 38, 1330–1338. [Google Scholar] [CrossRef]
- Kromer, R.A.; Abellán, A.; Hutchinson, D.J.; Lato, M.; Chanut, M.A.; Dubois, L.; Jaboyedoff, M. Automated terrestrial laser scanning with near-real-time change detection–monitoring of the Séchilienne landslide. Earth Surf. Dyn. 2017, 5, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Sgrenzaroli, M.; Vassena, G.P.M. Tecniche di Rilevamento Tridimensionale Tramite Laser Scanner; Starrylink Editrice: Brescia, Italy, 2007. [Google Scholar]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Investigating the geomorphological potential of freely available and accessible structure from-motion photogrammetry using a smartphone. Earth Surf. Process. Landf. 2015, 40, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Kromer, R.; Walton, G.; Gray, B.; Lato, M.; Group, R. Development and optimization of an automated fixed-location time lapse photogrammetric rock slope monitoring system. Remote Sens. 2019, 11, 1890. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Capra, A. Multi-sensors integrated system for landslide monitoring: Critical issues in system setup and data management. Eur. J. Remote Sens. 2013, 46, 104–124. [Google Scholar] [CrossRef]
- Machan, G.; Bennett, V.G. Use of Inclinometers for Geotechnical Instrumentation on Transportation Projects. State of the Practice; Transportation Research Circular, Number E-C129, October 2008; Transportation Research Board of the National Academies: Washington, DC, USA, 2008; ISSN 0097-8515. [Google Scholar]
- Durham Geo Slope Indicator. Guide to Geotechnical Instrumentation; 12123 Harbour Reach Drive Mukilteo: Washington, DC, USA, 2004; p. 98275. [Google Scholar]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: The case study of the Montescaglioso landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Helmstetter, A.; Garambois, S. Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. Earth Surf. 2010, 115, F03016. [Google Scholar] [CrossRef]
- Kalia, A.C. Classification of Landslide Activity on a Regional Scale Using Persistent Scatterer Interferometry at the Moselle Valley (Germany). Remote Sens. 2018, 10, 1880. [Google Scholar] [CrossRef] [Green Version]
Field Data | |||||||
---|---|---|---|---|---|---|---|
TS | GNSS | TLS | UAV Photogrammetry and LiDAR | PSI | Geotechnical Instruments | Piezometer | |
Natural environment | Yes | Yes | Yes | Yes | No | Yes | Yes |
Anthropic environment | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Vegetation | No | No | No | No | No | No | - |
Extension I | Medium | Medium Large | Medium | Large | Very large | Small | Small |
Frequency rate II | C | C | P | P | C | C | C and P |
Materialization of benchmarks | Yes | Yes | Optional | Optional | Optional | Yes | Yes |
Point density III | Low | Low | High | High | Medium | Low | Low |
Reference system | Local | Global | Local | Global | Global | Local | Local |
Integration IV | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Monitoring V | PB | PB | AB | AB | PB | PB | PB |
Magnitude of Movements VI | All | All | Fast | Fast | Slow | Slow | - |
In-depth movements | No | No | No | No | No | Yes | - |
Surface movements | Yes | Yes | Yes | Yes | Yes | No | - |
Volume calculation | No | No | Yes | Yes | Yes | No | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parenti, C.; Rossi, P.; Soldati, M.; Grassi, F.; Mancini, F. Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics. Geosciences 2022, 12, 293. https://doi.org/10.3390/geosciences12080293
Parenti C, Rossi P, Soldati M, Grassi F, Mancini F. Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics. Geosciences. 2022; 12(8):293. https://doi.org/10.3390/geosciences12080293
Chicago/Turabian StyleParenti, Carlotta, Paolo Rossi, Mauro Soldati, Francesca Grassi, and Francesco Mancini. 2022. "Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics" Geosciences 12, no. 8: 293. https://doi.org/10.3390/geosciences12080293
APA StyleParenti, C., Rossi, P., Soldati, M., Grassi, F., & Mancini, F. (2022). Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics. Geosciences, 12(8), 293. https://doi.org/10.3390/geosciences12080293