Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence
Abstract
:1. Introduction
2. Paleo-Tsunami Deposits—Origin, Appearance, and Scientific Challenges of Interpreting Deposits
2.1. Tsunami Sources, Distribution, and Risks
2.2. Scientific Approach to the Tsunami Phenomenon, Based on Field Work to Identify Past Events
2.3. Coastal Boulder Deposits as a Young Branch in (Paleo)-Tsunami Research—Origin, Appearance, and Interpretation
- -
- Is there a mention of on-time or near-time?
- -
- Is this recent (in the geological sense, Holocene) or related to “modern times” or a historical time span? The age question is often not mentioned at all.
- -
- If sea level is mentioned (mean high water or mean spring tide high water), its stable position for the younger Holocene is assumed, whereby an error of some meters can already occur. With a tidal range of 4.2 m, as is around the Aran Islands, there is already more than 2 m difference in elevation between mean sea level (usually the basis for elevation data in topographic maps) and the mean high-water line, which can be easily determined on rocky coasts by precisely measurable levels in the life zones, which already causes significant differences for transport processes and wave run-up.
- -
- Is the view and statement on the process clear, or is it using different terms—typically unclearly defined—such as normal storms, hurricane storms, “superstorms”, tsunamis, historical, or “paleo”? In relationship to the impact range of the hurricane storms off Ireland in the winter of 2013/2014, which clearly did not reach wide and high Coastal Bolder Deposit (CBD) formations at all, Cox [95] and Cox et al. [100,101] also refer to storms being much stronger “in the past”. Comparing the Aran boulders with Eemian giant boulders in the Bahamas [101], even “superstorms” are considered.
- -
- Is the aspect of the age of the boulder deposits addressed, and in what precision or on what data basis?
- -
- Does the question of a sea-level change during this period (quantitative, qualitative, significant, or unknown) arise from the chronology?
- The area is well protected relative to wave action (storms, tsunamis, etc.), obstructed (e.g., in an island archipelago), or (strongly) exposed;
- Lower to higher gradients (straight, convex, concave, etc.) of a few degrees to about 25–30°, a shallow foreshore area, with or without significant amounts of sediment in the littoral zone;
- A cliff situation (e.g., deep water/plunging cliff, with or without basal platform, see Figure 3), with moderately steep cliff (>30° to >45°);
- A pronounced cliff situation up to vertical (or even overhanging);
- Certain fragments are made available to the incoming transport force, such as irregularly randomly shaped, rounded/massive fragments (e.g., from weathered crystalline rocks or a former ground moraine), or platy and erupted fragments from well-stratified sedimentary rocks on-site.
2.4. Main Points Remaining for Further Discussion
- There is no accepted/general methodological approach to study coastal boulders in terms of their relocation process, not even agreement on what easily ascertainable parameters of arguments, statements, facts, and data sets could yield, such as size, mass, shape, rounding, altitude, distance to water, horizontal and vertical transport routes, determination of origin, bedding type, bedding pattern (Figure 14), age indications and age determination, influence of coastal shape, bathymetry, coastal relief, rock type, and others.
- For fine sediments, stratigraphy and chronology are standard. For coarse material, stratigraphy mostly does not exist, and chronology is difficult to ascertain for single events, which may leave a mixture of fragments of very different ages. A chronology of transport events is even difficult to establish in coral rubble, as almost certainly the age will reflect its first dislocation from the living position, which mostly is not the age of the last storm- or tsunami-induced movement to landward.
- For boulders, stratigraphy seems to be missing (but is certainly present in the type of imbrication) in relation to the fine material character in close proximity or at least by relative and numerical ages determined for the units of the deposits (almost never studied in parallel).
- The question of the exposure of the coast is often not asked, the relief is rarely taken into account, and the water depth in the critical near-shore area not checked.
- In judging the main process—storm waves or tsunamis as extreme events—there is often a lack of focus on the effect of recent times (e.g., the effect of the strongest young storms to date) as a data provider for known process and effect variables.
- Since the age of the deposits has only been sufficiently determined in a few cases, there is also a lack of information on sea levels (associated with the deposits through time).
- In the case of a statement for or against only being a storm or tsunami, there is usually no cross-check to ascertain whether this statement remains valid or is supported when examining closer surroundings (e.g., in different exposure/relief/bathymetry).
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Prendergast, A.L.; Cupper, M.L.; Jankaew, K.; Sawai, Y. Indian Ocean tsunami recurrence from optical dating of tsunami sand sheets in Thailand. Mar. Geol. 2012, 295–298, 20–27. [Google Scholar] [CrossRef]
- Cox, D.; Mink, J.F. The Tsunami of 23 May 1960 in the Hawaiian Islands. Bull. Seismol. Soc. Am. 1963, 53, 1191–1209. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Andrade, C.; Freitas, M.C.; Oliveira, M.A.; da Silva, C.M.; Omira, R.; Taborda, R.; Baptista, M.A.; Dawson, A.G. Boulder deposition during major tsunami events. Earth Surf. Processes Landf. 2011, 36, 2054–2068. [Google Scholar] [CrossRef]
- Dominey-Homes, D. Post-event field surveys. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–212. [Google Scholar]
- Etienne, S.; Buckley, M.; Paris, R.; Nandasena, A.K.; Clark, K.; Strotz, L.; Chague’-Goff, C.; Goff, J.; Richmond, B. The use of boulders for characterising past tsunamis: Lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth-Sci. Rev. 2011, 107, 76–90. [Google Scholar] [CrossRef]
- Goto, K.; Sugawara, D.; Ikema, S.; Miyagi, T. Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sediment. Geol. 2012, 282, 188–198. [Google Scholar] [CrossRef]
- Goto, K.; Fujima, K.; Sugawara, D.; Fujino, S.; Imai, K.; Tsudaka, R.; Abe, T.; Haraguchi, T. Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan. Earth Planets Space 2012, 64, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Kelletat, D. Naturgefahren, Naturkatastrophen. In Grundwissen Geografie bis zur 10.Klasse; Bartels, G., Kelletat, D., Schäbitz, F., Selbach, V., Thieme, G., Eds.; Mentor Verlag: München, Germany, 2006; pp. 238–247. [Google Scholar]
- Komatsu, G.; Goto, K.; Baker, V.R.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Pelletier, J.D.; McGuire, L.; Iijima, Y. Effects of Tsunami Wave Erosion on Natural Landscapes: Examples from the 2011 Tohoku-oki Tsunami. In Tsunami Events and Lessons Learned; Kontar, Y., Santiago-Fandiño, V., Takahashi, T., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 243–253. [Google Scholar] [CrossRef]
- Shiki, T.; Tsuji, Y.; Yamazaki, T.; Minoura, K. (Eds.) Tsunamiites. Features and Implications; Elsevier: Amsterdam, The Netherlands, 2008; p. 411. [Google Scholar]
- Simkin, T.; Fiske, R.S. Krakatau 1883: The Volcanic Eruption and Its Effects; Smithsonian Institution Press: Washington, DC, USA, 1983; p. 464. [Google Scholar]
- Abad, M.; Izquierdo, T.; Caceres, M.; Bernardez, E.; Rodriguez-Vidal, J. Coastal boulder deposit as evidence of an ocean-wide prehistoric tsunami originated on the Atacama Desert coast (northern Chile). Sedimentology 2020, 67, 1505–1528. [Google Scholar] [CrossRef]
- Bondevik, S.; Svendsen, J.I.; Johnsen, G.; Mangerud, J.; Kaland, P.E. The Storegga tsunami along the Norwegian coast, its age and runup. Boreas 1997, 26, 29–53. [Google Scholar] [CrossRef]
- Bugge, T.; Belderson, R.H.; Kenyon, N.H. The Storegga Slide: Philosophical Transactions of the Royal Society of London. Ser. A 1988, 325, 357–388. [Google Scholar]
- Carey, S.; Morelli, D.; Sigurdsson, H.; Bronto, S. Tsunami deposits from major explosive eruptions: An example from the 1883 eruption of Krakatau. Geology 2001, 29, 347–350. [Google Scholar] [CrossRef]
- Dawson, A.G.; Long, D.; Smith, D.E. The Storegga Slides: Evidence from eastern Scotland for a possible tsunami. Mar. Geol. 1988, 82, 271–276. [Google Scholar] [CrossRef]
- Frohlich, C.; Hornbach, M.; Taylor, F.; Shen, C.; Moala, A.; Morton A und Kruger, J. Huge erratic boulders in Tonga deposited by a prehistoric tsunami. Geology 2009, 37, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Goto, K.; Miyagi, K.; Kawamata, H.; Imamura, F. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Mar. Geol. 2010, 269, 34–45. [Google Scholar] [CrossRef]
- Goto, T.; Satake, K.; Sugai, T.; Ishibe, T.; Harada, T.; Murotani, S. Historical tsunami and storm deposits during the last five centuries on the Sanriku coast, Japan. Mar. Geol. 2015, 367, 105–117. [Google Scholar] [CrossRef]
- Harbitz, C.B. Model Simulations of Tsunamis Generated by the Storregga Slide; Institute of Mathematics, University of Oslo: Oslo, Norway, 1991; Volume 5, p. 30. [Google Scholar]
- Latter, J.H. Tsunami of Volcanic Origin: Summary of Causes, with Particular Reference to Krakatoa, 1883. Bull. Volcanol. 1981, 44, 467–490. [Google Scholar] [CrossRef]
- Bryant, E. Tsunami: The Underrated Hazard; Cambridge University Press: Cambridge, UK, 2001; p. 320. [Google Scholar]
- Bryant, E. Tsunami: The Underrated Hazard, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; p. 330. [Google Scholar]
- Bryant, E. Tsunami: The Underrated Hazard, 3rd ed.; Springer: Cham, Switzerland, 2014; 222p. [Google Scholar] [CrossRef]
- Engel, M.; May, S.M.; Pilarczyk, J.; Brill, D.; Garrett, E. Geological records of tsunamis and other extreme waves: Concepts, applications and a short history of research. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–20. [Google Scholar]
- UNESCO. Tsunami Glossary. A Glossary of Terms and Acronyms Used in the Tsunami Literature. Technical Series, 37. 1991. Available online: http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=1328&Itemid=1142&lang=en (accessed on 20 January 2022).
- Dawson, A.G. The geological significance of tsunamis. Z. Geomorphol. NF 1996, 102, 199–210. [Google Scholar]
- Dawson, A.G.; Stewart, I. Tsunami deposits in the geological record. Sediment. Geol. 2007, 200, 166–183. [Google Scholar] [CrossRef]
- Dawson, A.G.; Shi, S. Tsunami deposits. Pure Appl. Geophys. 2000, 157, 875–897. [Google Scholar] [CrossRef]
- Engel, M.; Pilarczyk, J.; May, S.M.; Brill, D.; Garrett, E. (Eds.) Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; p. 816. [Google Scholar]
- Gusiakov, V.K. Tsunami History: Recorded. In The Sea Tsunamis; Harvard University Press: Cambridge, UK, 2009; pp. 23–53. [Google Scholar]
- Lau, A.Y.A.; Autret, R. Spatial patterns of subaerial coarse clasts. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 513–546. [Google Scholar]
- Röbke, B.R.; Vött, A. The tsunami phenomenon. Prog. Oceanogr. 2017, 159, 296–322. [Google Scholar] [CrossRef]
- Scheffers, A. Tsunami boulder deposits. In Tsunamiites; Features and Implications; Shiki, T., Tsuji, Y., Yamazaki, T., Minoura, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 299–318. [Google Scholar]
- Scheffers, A. Paleotsunami Research-Current Debate and Controversies. In Coastal and Marine Hazards, Risks, and Disasters, 1st ed.; Ellis, J., Sherman, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 59–92. [Google Scholar]
- Scheffers, A. Tsunami boulder deposits—A strongly debated topic in paleo-tsunami research. In Tsunamiites, 2nd ed.; Shiki, T., Tsuji, Y., Yamazaki, T., Nanayama, F., Eds.; Features and Implications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–381. [Google Scholar]
- Sugawara, D.; Minoura, K.; Imamura, F. Tsunamis and Tsunami Sedimentology. In Tsunamiites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 9–49. [Google Scholar]
- Terry, J.P.; Annie Lau, A.Y.; Etienne, S. Reef-Platform Coral Boulders–Evidence for High-Energy Marine Inundation Events on Tropical Coastlines; Springer Briefs in Geography; Springer: Dordrecht, The Netherlands, 2013; p. 105. [Google Scholar]
- Ambraseys, N.; Synolakis, C.E. Tsunami Catalogs for the Eastern Mediterranean, Revisited. J. Earthq. Eng. 2010, 14, 309–330. [Google Scholar] [CrossRef]
- Cheng, S.; Zeng, J.; Liu, H. A Comprehensive Review of the Worldwide Existing Tsunami Databases. J. Earthq. Tsunami 2019, 14, 2040003. [Google Scholar] [CrossRef]
- Cox, D.C.; Pararas-Carayannis, G. Catalog of Tsunamis in Alaska Revised 1976; Report SE-1; World Data Center A, NOAA: Boulder, CO, USA, 1976; p. 43.
- Fernandez, M.; Molina, E.; Haskov, J.; Atakan, K. Tsunami and Tsunami Hazards in Central America. Nat. Hazards 2000, 22, 91–116. [Google Scholar] [CrossRef]
- Goff, J. Tsunami databases. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–94. [Google Scholar]
- Gusiakov, V.K. Global Occurrence of Large Tsunamis and Tsunami-like Waves Within the Last 120 years (1900–2019). Pure Appl. Geophys. 2020, 177, 1261–1266. [Google Scholar] [CrossRef]
- Heck, N.H. List of seismic seawaves. Bull. Seismol. Soc. Am. 1947, 37, 269–286. [Google Scholar] [CrossRef]
- Iida, K.; Cox, D.C.; Pararas-Carayannis, G. Preliminary Catalogue of Tsunamis Occurring in the Pacific Ocean; Data Report Nr. 5; University of Hawaii: Honolulu, HI, USA, 1967. [Google Scholar]
- Lander, J.F. Tsunamis Affecting Alaska 1737–1996; NGDC Key to Geophysical Record Documentation No. 31; NOAA: Washington, DC, USA, 1996; p. 195.
- Lander, J.F.; Lockridge, P.A. United States Tsunamis (including United States Possessions) 1690–1988; NOAA/National Geophysical Data Center: Boulder, CO, USA, 1989; Volume 41.
- Lander, J.F.; Lockridge, P.A. United States Tsunamis (including United States Possessions) 1690–1988; NOAA/National Geophysical Data Center: Boulder, CO, USA, 1989; Volume 42.
- Lander, J.F.; Lockridge, P.A.; Kozuch, M.J. Tsunamis affecting the West Coast of the United States, 1806–1992; United States Department of Commerce: Boulder, CO, USA, 1993.
- Maramai, A. Historical records: Their importance in understanding and mitigating tsunamis. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–32. [Google Scholar]
- Nakata, T.; Kawana, T. Historical and prehistorical large tsunamis in the southern Ryukyus, Japan. In Proceedings of the Tsunamis ’93, Wakayama, Japan, 23–27 August 1993; Springer: The Hague, The Netherlands, 1993; pp. 297–307. [Google Scholar]
- Neely, W. The Greatest and Deadliest Hurricanes of the North Atlantic; URLink Print and Media: Cheyenne, WY, USA, 2019; p. 502. [Google Scholar]
- Papadopoulos, G.A.; Chalkis, B.J. Tsunamis observed in Greece and the surrounding area from antiquity up to present times. Mar. Geol. 1984, 56, 309–317. [Google Scholar] [CrossRef]
- Pararas-Carayannis, G. Catalog of Tsunamis in the Hawaiin Islands; Report WDCA-T 69-2; ESSA-Coast and Geodetic Survey: Boulder, CO, USA, 1969; p. 94. [Google Scholar]
- Soloviev, S.L. Recurrence of tsunamis in the Pacific. In Tsunamis in the Pacific Ocean: 149–164; Adams, W.M., Ed.; University of Hawaii: Honolulu, HI, USA, 1970. [Google Scholar]
- Soloviev, S.L.; Solovieva, O.N.; Go Ch, N.; Kim, K.S.; Shchetnikov, N.A. Tsunamis in the Mediterranean Sea 2000 B.C.–2000 A.D.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; p. 237. [Google Scholar]
- Antonopoulos, J. The great Minoan eruption of Thera volcano and the ensuing tsunami in the Greek Archipelago. Nat. Hazards 1992, 5, 153–168. [Google Scholar] [CrossRef]
- Aydar, E.; Çiner, A.; Ersoy, O.; Écochard, E.; Fouache, E.G. Volcanic ash and tsunami record of the Minoan Late Bronze Age Eruption (Santorini) in a distal setting, southwestern Turkey. J. Quat. Sci. 2021, 36, 586–597. [Google Scholar] [CrossRef]
- Paris, R.; Naylor, L.A.; Stephenson, W.J. Boulders as a signature of storms on rock coasts. Mar. Geol. 2011, 283, 1–11. [Google Scholar] [CrossRef]
- Mader, C.L.; Gittings, M.L. Numerical model for the Krakatoa hydrovolcanic explosion and tsunami. Sci. Tsunami Hazards 2006, 24, 174–182. [Google Scholar]
- Pararas-Carayannis, G. Near and far-field effects of tsunamis generated by the paroxysmal eruptions, explosions, caldera collapses and massive slope failures of the Krakatau volcano in Indonesia on August 26–27, 1883. Sci. Tsunami Hazards 2003, 21, 191–201. [Google Scholar]
- Araoka, D. Radiocarbon and U/Th dating of tsunami- and storm-transported coarse clasts. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 687–704. [Google Scholar]
- Jankaew, K.; Atwater, B.F.; Sawai, Y.; Choowong, M.; Martin, M.E.; Prendergast, A. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 2008, 455, 1228–1231. [Google Scholar] [CrossRef]
- Erdmann, W.; Scheffers, A.M.; Kelletat, D.H. Holocene Coastal Sedimentation in a Rocky Environment: Geomorphological Evidence from the Aran Islands and Galway Bay (Western Ireland). J. Coast. Res. 2018, 34, 772–793. [Google Scholar] [CrossRef]
- O’Brien, L.; Renzi, E.; Dudley, J.D.; Clancy, C.; Dias, F. Catalogue of extreme wave events in Ireland: Revised and updated for 14 680 BP to 2017. Nat. Hazards Earth Syst. Sci. 2018, 18, 729–758. [Google Scholar] [CrossRef] [Green Version]
- Radtke, U.; Schellmann, G.; Scheffers, A.; Kelletat, D.; Kromer, B.; Kasper, H.U. Electron spin resonance and radiocarbon dating of coral deposited by Holocene tsunami events on Curaçao, Bonaire and Aruba (Netherlands Antilles). Quat. Int. 2002, 22, 1309–1315. [Google Scholar] [CrossRef]
- Rixhon, G.; May, S.M.; Engel, M.; Mechernich, S.; Schroeder-Ritzrau, A.; Fohlmeister, J.; Frank, N.; Boulvain, F.; Dunai, T.; Brückner, H. Multiple dating approach (14C, 230Th/U and 36Cl) of tsunami-transported reef-top boulders on Bonaire (Leeward Antilles) current achievements and challenges. Mar. Geol. 2018, 396, 100–113. [Google Scholar] [CrossRef]
- Scheffers, A. Tsunami imprints on the Leeward Netherlands Antilles (Aruba, Curacao and Bonaire) and their relation to other coastal problems. Quat. Int. 2004, 120, 163–172. [Google Scholar] [CrossRef]
- Schellmann, G.; Radtke, U.; Scheffers, A.; Whelan, F.; Kelletat, D. ESR dating of coral reef terraces on Curaçao (Netherlands Antilles) with estimates of Younger Pleistocene sea level elevations. J. Coast. Res. 2004, 20, 947–957. [Google Scholar] [CrossRef]
- Nanayama, F.; Shigeno, K.; Satake, K.; Shimokawa, K.; Koitabashi, S.; Mayasaka, S.; Ishii, M. Sedimentary differences between 1993 Hokkaido-Nansei-Oki tsunami and 1959 Miyakijima typhoon at Tasai, southwestern Hokkaido, northern Japan. Sediment. Geol. 2000, 135, 255–264. [Google Scholar] [CrossRef]
- Bietak, M. Radiocarbon and the date of the Thera eruption. Antiquity 2014, 88, 277–282. [Google Scholar] [CrossRef]
- Brill, D.; Jankaew, K.; Neubauer, N.P.; Kelletat, D.; Scheffers, A.; Vött, A.; Brückner, H. Holocene coastal evolution of southwest Thailand—implications for the site-specific preservation of palaeotsunami deposits. Z. Geomorphol. 2014, 58, 273–303. [Google Scholar] [CrossRef]
- Darienzo, M.E.; Peterson, C.D. Magnitude and frequency of subduction-zone earthquakes along the northern Oregon coast in the past 3000 years. Or. Geol. 1995, 57, 3–12. [Google Scholar]
- Engel, M.; Brückner, H.; Messenzehl, K.; Konopczak, A.; Scheffers, A.; Scheffers, S.; Kelletat, D.; Schiotz, F.; Vött, A.; Willershäuser, T.; et al. Coastal stratigraphies of eastern Bonaire (Netherlands Antilles): New insights into the palaeo-tsunami history of the southern Caribbean. Sediment. Geol. 2010, 231, 14–30. [Google Scholar] [CrossRef]
- Masselink, G.; Castelle, B.; Scott, T.; Dodet, G.; Suanez, S.; Jackson, D.; Floch, F. Extreme wave activity during 2013/14 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 2016, 43, 2135–2143. [Google Scholar] [CrossRef]
- Morton, R.A.; Gelfenbaum, G.; Jaffe, B.E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 2007, 200, 184–207. [Google Scholar] [CrossRef]
- Vött, A.; Kelletat, D. Editorial: Holocene Palaeotsunami Landfalls and Neotectonic Dynamics in the Western and Southern Peloponnese (Greece). Z. Geomorphol. NF 2015, 59, 317. [Google Scholar]
- Autret, R.; Suanez, S.; Fichaut, B.S.; Etienne, S. Development of a typology of cliff-top storm deposits of the Reykjanes Peninsula (Iceland). Géomorphol. Relief Processes Environ. 2016, 22, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Engel, M.; May, S.M. Bonaire’s boulder fields revisited: Evidence for Holocene tsunami impact on the Leeward Antilles. Quat. Sci. Rev. 2012, 54, 126–141. [Google Scholar] [CrossRef]
- Goto, K.; Chavanich, S.A.; Imamura, F.; Kunthasap, P.; Matsui, T.; Minoura, K.; Sugawara, D.; Yanagisawa, H. Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sediment. Geol. 2007, 202, 821–837. [Google Scholar] [CrossRef]
- Kelletat, D.; Schellmann, G. Tsunamis on Cyprus—Field evidences and 14C dating results. Z. Geomorphol. 2002, 46, 19–34. [Google Scholar] [CrossRef]
- Kelletat, D.; Scheffers, A.; Scheffers, S. Holocene tsunami deposits on the Bahaman Islands of Long Island and Eleuthera. Z. Geomorphol. 2004, 48, 519–540. [Google Scholar] [CrossRef]
- Mhammdi, N.; Medina, F.; Kelletat, D.; Amahmou, M.; Aloussi, L. Large Boulders along the Rabat Coast (Morocco); Possible Emplacement by the November, 1st, 1755 A.D. Tsunami. Sci. Tsunami Hazards 2008, 27, 1–30. [Google Scholar]
- Mottershead, D.; Bray, M.; Soar, P.; Farres, P.J. Extreme waves events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Z. Geomorphol. NF 2014, 58, 385–411. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, N.-P.; Brill, D.; Brückner, H.; Kelletat, D.; Scheffers, S.; Vött, A. 5000 Jahre Tsunami-Geschichte am Kap Pakarang (Thailand). Coastline Rep. 2011, 17, 81–98. [Google Scholar]
- Scheffers, A. Sedimentary Impacts of Holocene Tsunami Events from the Intra Americas Seas and Southern Europe: A Review. Z. Geomorphol. 2006, 146, 7–37. [Google Scholar]
- Scheffers, A. Ripple marks in coarse tsunami deposits. Z. Geomorphol. 2006, 146, 222–232. [Google Scholar]
- Scheffers, A.M.; Kelletat, D.H. Megaboulder Movement by Superstorms–A Geomorphological Debate. J. Coast. Res. 2020, 36, 844–856. [Google Scholar] [CrossRef]
- Scicchitano, G.; Monaco, C.; Tortorici, L. Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy). Mar. Geol. 2007, 238, 75–91. [Google Scholar] [CrossRef]
- Whelan, F.; Kelletat, D. Boulder Deposits on the Southern Spanish Atlantic Coast: Possible Evidence for the 1755 AD Lisbon Tsunami. Sci. Tsunami Hazards 2005, 23, 25–38. [Google Scholar]
- Autret, R.; Dodet, G.; Fichaut, B.; Suanez, S.; David, L.; Leckler, F.; Ardhuin, F.; Ammann, J.; Grandjean, P.; Allemand, P.; et al. A comprehensive hydro-geomorphic study of cliff-top storm deposits on Banneg Island during winter 2013–2014. Mar. Geol. 2016, 382, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Autret, R.; Dodet, G.; Suanez, S.; Roudaut, G.; Fichaut, B. Long-term variability of supratidal coastal boulder activation in Brittany (France). Geomorphology 2018, 304, 184–200. [Google Scholar] [CrossRef]
- Bourrouilh-Le Jan, F.G.; Talandier, J. Sédimentation et fracturation de haute énergie en milieu récifal: Tsunamis, ouragans et cyclones et leurs effets sur la sédimentologie et la géomorphologie d’un atoll: Motu et hoa, à Rangiroa, Tuamotu, Pacifique SE. Marine Geol. 1985, 67, 263–333. [Google Scholar] [CrossRef]
- Cox, R. Very large boulders were moved by storm waves on the west coast of Ireland in winter 2013–2014. Mar. Geol. 2018, 412, 217–219. [Google Scholar] [CrossRef]
- Cox, R.; Zentner, D.B.; Kirchner, B.J.; Cook, M.S. Boulder Ridges on the Aran Islands (Ireland): Recent Movements Caused by Storm Waves, Not Tsunamis. J. Geol. 2012, 120, 249–272. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.; Lopes, W.A.; Jahn, K.I. Quantitative roundness analysis of coastal boulder deposits. Mar. Geol. 2017, 396, 114–141. [Google Scholar] [CrossRef]
- Cox, R.; Hearty, P.J.; Russell, D.; Edwards, K.R. Comparison of Coastal Boulder Deposits (Holocene Age) on Eleuthera, Bahamas, with Storm-Transported Boulders on Aran Islands, Ireland. In Geological Society of America, Abstracts with Programs; Paper No 103-9; GSA Annual Meeting: Denver, CO, USA, 2015; p. 48. [Google Scholar]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits. Earth-Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Cox, R.; O’Boyle, L.; Cytrynbaum, J. Imbricated coastal boulder deposits are formed by storm waves, and can preserve a long-term storminess record. Sci. Rep. 2019, 9, 10784. [Google Scholar] [CrossRef]
- Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.S.; Hwerterich, J.G.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic review shows that work done by storm waves can be misinterpreted as tsunami-related because commonly used hydrodynamic equations are flawed. Front. Mar. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Erdmann, W.; Kelletat, D.; Scheffers, A. Boulder Dislocation by Storms, with Scenarios from the Irish West Coast. Mar. Geol. 2018, 399, 1–13. [Google Scholar] [CrossRef]
- Etienne, S.; Paris, R. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland). Geomorphology 2010, 114, 55–70. [Google Scholar] [CrossRef]
- Fichaut, B.; Suanez, S. Quarrying, transport and deposition of cliff-top storm deposits during extreme events: Banneg Island Brittany. Mar. Geol. 2011, 283, 36–55. [Google Scholar] [CrossRef]
- Goto, K.; Miyagi, K.; Kawana, T.; Takahashi, J.; Imamura, F. Emplacement and movement of boulders by known storm waves: Field evidence from the Okinawa Islands, Japan. Mar. Geol. 2011, 283, 66–78. [Google Scholar] [CrossRef]
- Hall, A.M.; Hansom, J.D.; Williams, D.M.; Jarvis, J. Distribution, geomorphology and lithofacies of cliff-top storm deposits: Exampes from the high energy coasts of Scotland and Ireland. Mar. Geol. 2006, 232, 131–155. [Google Scholar] [CrossRef]
- Hall, A.M.; Hansom, J.D.; Williams, D.M. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral environment: A discussion. J. Geol. 2010, 118, 699–704. [Google Scholar] [CrossRef]
- Hansom, J.D.; Hall, A.M. Magnitude and frequency of extra-tropical North Atlantic cyclones: A chronology from cliff-top storm deposits. Quat. Int. 2009, 195, 42–52. [Google Scholar] [CrossRef]
- Hearty, P.J.; Tormey, B.R. Sea-level change and superstorms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth. Mar. Geol. 2017, 390, 347–365. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Mori, N.; Yasuda, T.; Shimozono, T.; Tomiczek, T.; Donahue, A.; Shimura, T.; Imai, Y. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Mar. Geol. 2017, 383, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.B.; Cox, R.; Dias, F. Storm waves may be the source of some “tsunami” coastal boulder deposits. Geophys. Res. Lett. 2021, 48, e2020GL090775. [Google Scholar] [CrossRef]
- Khan, S.; Robinson, E.; Rowe, D.A.; Coutou, R. Size and mass of shoreline boulders moved and emplaced by recent hurricanes, Jamaica. Z. Geomorphol. 2010, 54, 281–299. [Google Scholar] [CrossRef]
- May, S.M.; Enge, L.M.; Brill, D.; Cuadra, C.; Lagmay, A.M.F.; Santiago, J.; Suarez, J.K.; Reyes, M.; Brückner, H. Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan. Earth Surf. Dyn. 2015, 3, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Minamidate, K.; Goto, K.; Watanabe, M.; Roeber, V.; Toguchi, K.; Sannoh, M.; Nakashima, Y.; Kan, H. Millennial scale maximum intensities of typhoon and storm wave in the northwestern Pacific Ocean inferred from storm deposited reef boulders. Sci. Rep. 2020, 10, 7218. [Google Scholar] [CrossRef]
- Rovere, A.; Casella, E.; Harris, D.L.; Lorscheid, T.; Nandasena, N.A.; Dyer, B.; Sandstrom, M.R.; Stocchi, P.; D’Andrea, W.J.; Raymo, M.E. Giant boulders and the last interglacial storm intensity in the North Atlantic. Proc. Natl. Acad. Sci. USA 2017, 114, 12144–12149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffers, A.; Scheffers, S. Documentation of the impact of hurricane Ivan on the coastline of Bonaire (Netherlands Antilles). J. Coast. Res. 2006, 22, 1437–1450. [Google Scholar] [CrossRef]
- Williams, D.M. Mechanisms of wave transport of megaclasts on elevated cliff-top platforms: Examples from western Ireland relevant to the storm wave versus tsunami controversy. Ir. J. Earth Sci. 2010, 28, 13–23. [Google Scholar]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Deguara, J.; Devoto, S.; Di Stefano, A.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nat. Hazards Earth Syst. Sci. 2016, 16, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Bryant, E.A.; Haslett, S.K. Catastrophic wave erosion, Bristol Channel, United Kingdom: Impact of tsunami? J. Geol. 2007, 115, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Deguara, J.C.; Gauci, R. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Nat. Hazards 2017, 86, 543–568. [Google Scholar] [CrossRef]
- Erdmann, W.; Kelletat, D.; Scheffers, A.; Haslett, S.K. Origin and Formation of Coastal Boulder Deposits in Galway Bay and on the Aran Islands, Western Ireland; Springer Briefs in Geography; Springer: Dordrecht, The Netherlands, 2015; p. 125. [Google Scholar]
- Erdmann, W.; Kelletat, D.; Kuckuck, M. Boulder Ridges and Washover Features in Galway Bay, Western Ireland. J. Coast. Res. 2017, 33, 997–1021. [Google Scholar] [CrossRef]
- Furlani, S.; Biolchi, S.; Devoto, S.; Saliba, D.; Scicchitano, G. Large boulder along the NE Maltese coast: Tsunami or storm wave deposits? J. Coast. Res. 2011, 61, 470. [Google Scholar] [CrossRef]
- Goto, K.; Kawana, T.; Imamura, F. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth Sci. Rev. 2010, 102, 77–99. [Google Scholar] [CrossRef]
- Garrett, E.; Pilarczyk, J.E.; Brill, D. Preface to marine geology special issue: Geological Records of Extreme Wave Events. Mar. Geol. 2017, 396, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mastronuzzi, G.; Sanso, P. Boulder transport by catastrophic waves along the Ionian coast of Apulia (southern Italy). Mar. Geol. 2000, 170, 93–103. [Google Scholar] [CrossRef]
- Medina, F.; Mhammdi, N.; Chigner, A.; Akil, M.; Jaaidi, E.B. The Rabat and Larache boulder fields; new examples of high-energy deposits related to storms and tsunami waves in north-western Morocco. Nat. Hazards 2011, 59, 725–747. [Google Scholar] [CrossRef]
- Nott, J. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Nott, J.F. Tsunami or storm waves?—Determining the origin of a spectacular field of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. J. Coast. Res. 2003, 19, 348–356. [Google Scholar]
- Richmond, B.M.; Watt, S.; Buckley, M.; Jaffe, B.E.; Gelfenbaum, G.; Morton, R.A. Recent storm and tsunami coarse-clast deposits characteristics, southeast Hawaii. Mar. Geol. 2011, 283, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, S.R.; Scheffers, A.; Kelletat, D.; Bryant, E.A. The Holocene paleo-tsunami history of West Australia. Earth Planet. Sci. Lett. 2008, 270, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, A.; Kelletat, D.; Browne, T. Wave-emplaced coarse debris and mega-clasts in Ireland and Scotland: A contribution to the question of boulder transport in the littoral environment. In Proceedings of the 2nd International Tsunami Field Symposium, Ostuni, Italy, 22–28 September 2008; Volume 6, pp. 151–153. [Google Scholar]
- Scheffers, A.; Scheffers, S.; Kelletat, D.; Browne, T. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high- energy littoral environment. J. Geol. 2009, 117, 553–573. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D.; Scheffers, S. Wave emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral environment: A reply. J. Geol. 2010, 118, 705–709. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D.; Haslett, S.K.; Scheffers, S.; Browne, T. Coastal boulder deposits in Galway Bay and the Aran Islands, western Ireland. Z. Geomorphol. 2010, 54, 247–279. [Google Scholar] [CrossRef]
- Shah-Hosseini, M.; Morhange, C.; Beni, A.N.; Marriner, N.; Lahijani, H.; Hamzeh, M.; Sabatier, F. Coastal boulders as evidence for high-energy waves on the Iranian coast of Makran. Mar. Geol. 2011, 290, 17–28. [Google Scholar] [CrossRef]
- Watanabe, M.; Goto, K.; Imamura, F. Reconstruction of transport modes and flow parameters from coastal boulders. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 617–640. [Google Scholar]
- Weiss, R. The mystery of boulders moved by tsunamis and storms. Mar. Geol. 2012, 295, 28–33. [Google Scholar] [CrossRef]
- Weiss, R.; Diplas, P. Untangling boulder dislodgement in storms and tsunamis: Is it possible with simple theories? Geochem. Geophys. Geosystems 2015, 16, 890–898. [Google Scholar] [CrossRef]
- Williams, D.M.; Hall, A.M. Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Mar. Geol. 2004, 206, 101–117. [Google Scholar] [CrossRef]
- Engel, M.; May, S.M.; Beill, D.; Reyes, M.; Brückner, H. Storm Surge of Supertyphoon Haiyan (7–9 November 2013) on Samar (Philippines) Moved the Largest Boulder Ever Documented for a Recent Storm. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014; Volume 2014, p. NH21A–3824. Available online: https://agu.confex.com/agu/fm14/meetingapp.cgi (accessed on 22 January 2022).
- Kelletat, D.; Engel, M.; May, S.M.; Erdmann, W.; Scheffers, A.; Brückner, H. Erosive impact of tsunami and storm waves on rocky coasts and post-depositional weathering of coarse-clast deposits. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 561–584. [Google Scholar]
- Lau, A.Y.A.; Etienne, S.; Terry, J.P.; Switzer, A.D.; Lee, Y.S. A preliminary study of the distribution, sizes and orientations of large reef-top coral boulders deposited by extreme waves at Makemo Atoll, French Polynesia. J. Coast. Res. 2014, 70, 272–277. [Google Scholar]
- Lau, A.Y.A.; Terry, J.P.; Ziegler, A.D.; Switzer, A.D.; Lee, Y.; Etienne, S. Understanding the history of extreme wave events in the Tuamotu Archipelago of French Polynesia from large carbonate boulders on Makemo Atoll, with implications for future threats in the central South Pacific. Marine Geology 2016, 380, 174–190. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Piscitelli, A.; Milella, M.; Hippolyte, J.-C.; Shah-Hosseini, M.; Morhange, C.; Mastronuzzi, G. Numerical approach to the study of coastal boulders: The case of Martigues, Marseille, France. Quat. Int. 2017, 439, 52–64. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D.; Vött, A.; May, M.; Scheffers, S. Late Holocene tsunami traces on the western and southern coastlines of the Peloponnesus (Greece). Earth Planet. Sci. Lett. 2008, 269, 271–279. [Google Scholar] [CrossRef]
- Goto, K.; Okada, K.; Imamura, F. Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Mar. Geol. 2009, 262, 14–24. [Google Scholar] [CrossRef]
- Hisamatsu, A.; Goto, K.; Imamura, F. Local paleo-tsunami size evaluation using numerical modeling for boulder transport at Ishigaki Island, Japan. Episodes 2014, 37, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandasena, N.A.K. Perspective of incipient motion formulas:boulder transport by high-energy waves. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 641–662. [Google Scholar]
- Scheffers, A.; Kinis, S. Stable imbrication and delicate/unstable settings in coastal boulder deposits: Indicators for tsunami dislocation? Quat. Int. 2014, 332, 73–84. [Google Scholar] [CrossRef]
- Georgiopoulou, A.; Benetti, S.; Shannon, P.M.; Haughton, P.D.W.; Comas-Bru, L.; Krastel, S. Comparison of Mass Wasting Processes on the Slopes of the Rockall Trough, Northeast Atlantic. In Submarine Mass Movements and Their Consequences; Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M., Eds.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2014; Volume 37, pp. 471–480. [Google Scholar]
- Herterich, J.G.; Cox, R.; Dias, F. How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms. Mar. Geol. 2018, 399, 34–46. [Google Scholar] [CrossRef]
- Engel, M.; Brückner, H.; Scheffers, A.; May, S.M.; Kelletat, D. Holocene sea levels of Bonaire (Leeward Antilles) and tectonic implications. Z. Geomorphol. NF 2014, 58 (Suppl. 1), 159–178. [Google Scholar] [CrossRef]
- Benner, R.; Browne, T.; Brückner, H.; Kelletat, D.; Scheffers, A. Boulder Transport by Waves: Progress in Physical Modeling. Ann. Geomorphol. 2010, 54, 127–146. [Google Scholar] [CrossRef]
- Boesl, F.; Engel, M.; Eco, R.C.; Galang, J.A.; Gonzalo, L.A.; Llanes, F.; Quix, E.; Brückner, H. Digital mapping of coastal boulders–High-resolution data acquisition to infer past and recent transport dynamics. Sedimentology 2019, 67, 1393–1410. [Google Scholar] [CrossRef]
- Fukui, Y. Hydrodynamic study on tsunami. Coast. Eng. Jpn 1963, 6, 67–82. [Google Scholar] [CrossRef]
- Gandhi, D.; Chavare, K.A.; Prizomwala, S.P.; Bhatt, N.; Nhatt, N.Y.; Mohan, K.; Rastogi, B.K. Testing the numerical models for boulder transport through high energy marine wave event: An example from southern Saurashtra, western India. Quat. Int. 2017, 444, 209–216. [Google Scholar] [CrossRef]
- Hofmeister, D. Mapping of subaerial coarse clasts. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–184. [Google Scholar]
- Imamura, F.; Goto, K.; Ohkubo, S. A numerical model for the transport of a boulder by tsunami. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Kennedy, A.B.; Mori, N.; Zhang, Y.; Yasuda, T.; Chen, S.E.; Tajima, Y.; Pecor, W.; Toride, K. Observations and modeling of coastal boulder transport and loading during Super Typhoon Haiyan. Coast. Eng. J. 2016, 58, 1640004. [Google Scholar] [CrossRef]
- Krivoshey, M.I. Experimental investigations of tsunami waves. In Tsunamis in the Pacific Ocean; Adams, W.M., Ed.; East-West Press Center: Honolulu, HI, USA, 1970; pp. 351–365. [Google Scholar]
- Lorang, M.S. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis. Mar. Geol. 2011, 283, 90–97. [Google Scholar] [CrossRef]
- Maul, G.A. On the role of IOCARIBE in a Caribbean Tsunami System: Science, Engineering, Management and Education. Mar. Geod. J. 1999, 22, 53–62. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Tanaka, N. Boulder transport by high energy: Numerical model fitting experimental observations. Ocean Eng. 2013, 57, 163–179. [Google Scholar] [CrossRef]
- Oetjen, J.; Schüttrumpf, H.; Engel, M. Experimental models of coarse-clast transport by tsunamis. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 585–616. [Google Scholar]
- Pignatelli, C.; Sanso, P.; Mastronuzzi, G. Evaluation of tsunami flooding using geomorphologic evidence. Mar. Geol. 2009, 260, 6–18. [Google Scholar] [CrossRef]
- Van Blunk, A.; Kennedy, A.B.; Cox, R. Interplay between Coastal Elevation and Wave Height Controls the Occurrence of Coastal Boulder Deposits in the Aran Islands, Ireland. Front. Mar. Sci. 2021, 9, 869. [Google Scholar] [CrossRef]
- Watanabe, M.; Goto, K.; Imamura, F.; Kennedy, A.; Sugawara, D.; Nakamura, N.; Tonosaki, T. Modeling boulder transport by coastal waves on cliff topography: Case study at Hachijo Island, Japan. Earth Surf. Processes Landf. 2019, 44, 2939–2956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheffers, A.; Erdmann, W. Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence. Geosciences 2022, 12, 209. https://doi.org/10.3390/geosciences12050209
Scheffers A, Erdmann W. Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence. Geosciences. 2022; 12(5):209. https://doi.org/10.3390/geosciences12050209
Chicago/Turabian StyleScheffers, Anja, and Wibke Erdmann. 2022. "Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence" Geosciences 12, no. 5: 209. https://doi.org/10.3390/geosciences12050209
APA StyleScheffers, A., & Erdmann, W. (2022). Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence. Geosciences, 12(5), 209. https://doi.org/10.3390/geosciences12050209