Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Strategy
2.2. Benthic Microfauna
3. Results
3.1. General Characters of Sediment and Posidonia Samples
3.2. Foraminiferal Content: General Features
3.3. Foraminiferal Fauna Recorded at Each Study Site
3.3.1. Ditella Station
Hot Samples
Cold Samples
3.3.2. Raya Station (Control Sample)
3.3.3. Bottaro Crater
3.3.4. P21 and Black Point Site
3.4. Summary of Different pH Conditions
4. Discussion
4.1. Response of Foraminiferal Assemblages to CO2 Fluid Emission
4.1.1. Normal Marine Conditions (pH > 8)
4.1.2. Low Acidic Conditions (Cold Sites, Bottaro B2; pH = 7.9)
4.1.3. Acidic Conditions (Hot Sites; pH = 7.0–5.6)
4.1.4. Strong Acidic Conditions (Black Point and P21 Sites pH = 3.8–5.2)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H., Eds.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- IPCC. Climate Change 2018: Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.N.; Singh, G.G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 2010, 13, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Rodolfo-Metalpa, R.; Houlbrèque, F.; Tambutté, E.; Boisson, F.; Baggini, C.; Patti, F.P.; Ross, J.; Fine, M.; Foggo, A.; Gattuso, J.P.; et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 2011, 1, 308–312. [Google Scholar] [CrossRef]
- Dove, S.G.; Kline, D.I.; Pantos, O.; Angly, F.E.; Tyson, G.W.; Hoegh-Guldberg, O. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Nat. Acad. Sci. USA 2013, 110, 15342–15347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.K.; Mello-Athayde, M.A.; Schönberg, C.H.; Kline, D.I.; Hoegh-Guldberg, O.; Dove, S. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob. Chang. Biol. 2013, 19, 3581–3591. [Google Scholar] [CrossRef]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.; Hendriks, I.E.; Ramajo, L.; Singh, G.S.; Duarte, C.; Gattuso, J.P. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 2013, 19, 1884–1896. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.-O.; Karl, D.M.; Boyd, P.W.; Cheung, W.W.L.; Lluch-Cota, S.E.; Nojiri, Y.; Schmidt, D.N.; Zavialov, P.O. Ocean systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 411–484. [Google Scholar]
- Gattuso, J.P.; Magnan, A.; Billé, R.; Cheung, W.W.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722. [Google Scholar] [CrossRef]
- Yanko, V.; Kronfeld, J.; Flexer, A. Response of benthic foraminifera to various pollution sources: Implications for pollution monitoring. J. Foraminifer. Res. 1994, 24, 1–17. [Google Scholar] [CrossRef]
- Alve, E. Benthic foraminiferal responses to estuarine pollution; a review. J. Foraminifer. Res. 1995, 25, 190–203. [Google Scholar] [CrossRef]
- Alve, E.; Murray, J.W. Marginal marine environments of the Skagerrak and Kattegat: A baseline study of living (stained) benthic foraminiferal ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 146, 171–193. [Google Scholar] [CrossRef]
- Du Châtelet, É.A.; Debenay, J.P. The anthropogenic impact on the western French coasts as revealed by foraminifera: A review. Rev. Micropaléont. 2010, 53, 129–137. [Google Scholar] [CrossRef]
- Frontalini, F.; Coccioni, R. Benthic foraminifera as bioindicators of pollution: A review of Italian research over the last three decades. Rev. Micropaléont. 2011, 54, 115–127. [Google Scholar] [CrossRef]
- Caldeira, K.; Wickett, M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425, 365. [Google Scholar] [CrossRef] [PubMed]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 2004, 305, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, K.; Wickett, M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophis. Res. Oceans 2005, 110, C09S04. [Google Scholar] [CrossRef] [Green Version]
- Royal Society. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Policy Doc. 12/05, London. 2005. Available online: http://www.royalsoc.ac.uk (accessed on 22 November 2021).
- Langer, M.R. Epiphytic foraminifera. Mar. Micropaleontol. 1993, 20, 235–265. [Google Scholar] [CrossRef]
- Murray, J.W. Ecology and Applications of Benthic Foraminifera; Cambridge University Press: Cambridge, UK, 2006; p. 426. [Google Scholar]
- Mateu-Vicens, G.; Box, A.; Deudero, S.; Rodriguez, B. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidonia oceanica and invasive macroalgae Caulerpa spp. J. Foraminifer. Res. 2010, 40, 134–147. [Google Scholar] [CrossRef]
- Mateu-Vicens, G.; Khokhlova, A.; Sebastián-Pastor, T. Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. J. Foraminifer. Res. 2014, 44, 325–339. [Google Scholar] [CrossRef]
- Panieri, G.; Gamberi, F.; Marani, M.; Barbieri, R. Benthic foraminifera from a recent, shallow-water hydrothermal environment in the Aeolian Arc (Tyrrhenian Sea). Mar. Geol. 2005, 218, 207–229. [Google Scholar] [CrossRef]
- Dias, B.B.; Hart, M.B.; Smart, C.W.; Hall-Spencer, J.M. Modern seawater acidification: The response of foraminifera to high-CO2 conditions in the Mediterranean Sea. J. Geol. Soc. 2010, 167, 843–846. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, L.; Ingrassia, M.; Frezza, V.; Chiocci, F.L.; Martorelli, E. The response of benthic meiofauna to hydrothermal emissions in the Pontine Archipelago, Tyrrhenian Sea (central Mediterranean Basin). J. Mar. Syst. 2016, 164, 53–66. [Google Scholar] [CrossRef]
- Ramajo, L.; Lagos, N.A.; Duarte, C.M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 2019, 146, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Mutalipassi, M.; Fink, P.; Maibam, C.; Porzio, L.; Buia, M.C.; Gambi, M.C.; Patti, F.P.; Scipione, M.B.; Lorenti, M.; Zupo, V. Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica. J. Exp. Mar. Biol. Ecol. 2020, 530, 151435. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Thibaut, T.; Verlaque, M. The necromass of the Posidonia oceanica seagrass meadow: Fate, role, ecosystem services and vulnerability. Hydrobiologia 2016, 781, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Pettit, L.R.; Hart, M.B.; Medina-Sánchez, A.N.; Smart, C.W.; Rodolfo-Metalpa, R.; Hall-Spencer, J.M.; Prol-Ledesma, R.M. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Mar. Pollut. Bull. 2013, 73, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Lucente, F.P.; Jolivet, L.; Rossetti, F. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int. 2001, 145, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Doglioni, C. A proposal kinematic modelling for W-dipping subductions—Possible applications to the Tyrrhenian-Apennine systems. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Carminati, E.; Wortel, M.J.R.; Spakman, W.; Sabadini, R. The role of slab detachment processes in the opening of the western-central Mediterranean basins: Some geological and geophysical evidence. Earth Planet. Sci. Lett. 1998, 160, 651–665. [Google Scholar] [CrossRef]
- Goes, S.; Giardini, D.; Jenny, S.; Hollenstein, C.; Kahle, H.G.; Geiger, A. A recent tectonic reorganization in the south-central Mediterranean. Earth Planet. Sci. Lett. 2004, 226, 335–345. [Google Scholar] [CrossRef]
- Bortoluzzi, G.; Ligi, M.; Romagnoli, C.; Cocchi, L.; Casalbore, D.; Sgroi, T.; Cuffaro, M.; Tontini, F.C.; D’Oriano, F.; Ferrante, V.; et al. Interactions between volcanism and tectonics in the western Aeolian sector, southern Tyrrhenian Sea. Geophys. J. Int. 2010, 183, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Barreca, G.; Bruno, V.; Cultrera, F.; Mattia, M.; Monacoa, C.; Scarfì, L. New insights in the geodynamics of the Lipari–Vulcano area (Aeolian Archipelago, southern Italy) from geological, geodetic and seismological data. J. Geodyn. 2014, 82, 150–167. [Google Scholar] [CrossRef]
- Gillot, P.Y. Histoire volcanique des Iles Eoliennes: Arc insulaire ou complexe orog’enique anulaire? Le detroit de Messine (Italie). Evolution tectono-sedimentaire recente (Pliocene et Quaternaire) et environment actuel. Doc. Trav. L’institut Géologique Albert Lapparent 1987, 11, 35–42. [Google Scholar]
- Peccerillo, A. The Aeolian arc. In Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics; Peccerillo, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 173–213. [Google Scholar]
- De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and petrology of Vulcano (central AeolianArchipelago). In The Aeolian Islands Volcanoes, 37; Lucchi, F., Peccerillo, A., Keller, J., Tranne, C.A., Rossi, P.L., Eds.; Geological Society: London, UK, 2013; pp. 281–348. [Google Scholar]
- Gioncada, A.; Mazzuoli, R.; Bisson, M.; Pareschi, M.T. Petrology of volcanic products younger than 42 ka on the Lipari–Vulcano complex (Aeolian Islands, Italy): An example of volcanism controlled by tectonics. J. Volcanol. Geoth. Res. 2003, 122, 191–220. [Google Scholar] [CrossRef]
- Romagnoli, C.; Casalbore, D.; Bortoluzzi, G.; Bosman, A.; Chiocci, F.L.; D’oriano, F.; Gamberi, F.; Ligi, M.; Marani, M. Bathy-morphological setting of the Aeolian Islands. In: The Aeolian Islands Volcanoes. Geol. Soc. Lond. Mem. 2013, 37, 27–36. [Google Scholar] [CrossRef]
- Favalli, M.; Karatson, D.; Mazzuoli, R.; Pareschi, M.; Ventura, G. Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bull. Volcanol. 2005, 68, 157–170. [Google Scholar] [CrossRef]
- Gabbianelli, G.; Romagnoli, C.; Rossi, P.; Calanchi, N. Marine geology of the Panarea-Stromboli area (Aeolian Archipelago, Southeastern Tyrrhenian Sea). Acta Vulcanol. 1993, 3, 11–20. [Google Scholar]
- Lucchi, F.; Tranne, C.A.; Calanchi, N.; Keller, J.; Rossi, P.L. Geological Map of Panarea and Minor Islets (Aeolian Islands). University of Bologna, University of Freiburg and INGV, 2003; L.A.C: Firenze, Italy, 2003. [Google Scholar]
- Gabbianelli, G.; Gillot, P.Y.; Lanzafame, G.; Romagnoli, C.; Rossi, P.L. Tectonic and volcanic evolution of Panarea (Aeolian Island, Italy). Mar. Geol. 1990, 92, 312–326. [Google Scholar] [CrossRef]
- Calanchi, N.; Tranne, C.A.; Lucchini, F.; Rossi, P.L.; Villa, I.M. Explanatory notes to the geological map (1:10.000) of Panarea and Basiluzzo islands (Aeolian arc. Italy). Acta Vulcanol. 1999, 11, 223–243. [Google Scholar]
- Gillot, P.Y. Datation par la Methode du Potassium-Argon de Roches Volcaniques Recentes (Pleistocenes et Holocenes). Contributions a L’etude Chronostratigraphique et Magmatique des Provinces Volcaniques de la Campania, des Iles Eoliennes, de Pantelleria (Italie du Sud) et de la Reunion (Ocean Indien). Ph.D. Thesis, Paris-Sud University, Bures-sur-Yvette, France, 1984; 249p. [Google Scholar]
- Tallarico, A.; Dragoni, M.; Anzidei, M.; Esposito, A. Modeling long-term round deformation due to the cooling of a magma chamber: Case of Basiluzzo island, Aeolian islands, Italy. J. Geophys. Res. 2003, 108, 2568. [Google Scholar] [CrossRef]
- Marani, M.P.; Gamberi, F.; Savelli, C. Shallow-water polymetallic sulfide deposits in the Aeolian island arc. Geology 1997, 25, 815–818. [Google Scholar] [CrossRef]
- Gamberi, F.; Marani, M.; Savelli, C. Tectonic, volcanic and hydrothermal features of a submarine portion of the Aeolian arc (Tyrrhenian Sea). Mar. Geol. 1997, 140, 167–181. [Google Scholar] [CrossRef]
- Gamberi, F.; Savelli, C.; Marani, M.P.; Ligi, M.; Bortoluzzi, G.; Landuzzi, V.; Costa, M. Contesto morfotettonico e depositi idrotermali di solfuri ed ossidi di ferro in una porzione sommersa dell’arco eoliano (in base ad indagini ad alta definizione). Boll. Soc. Geol. Ital. 1998, 117, 55–71. [Google Scholar]
- Savelli, C.; Marani, M.; Gamberi, F. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian Arc (Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 1999, 88, 305–323. [Google Scholar] [CrossRef]
- Esposito, V.; Andaloro, F.; Canese, S.; Bortoluzzi, G.; Bo, M.; Di Bella, M.; Italiano, F.; Sabatino, G.; Battaglia, P.; Consoli, P.; et al. Exceptional discovery of a shallow-water hydrothermal site in the SW area of Basiluzzo islet (Aeolian archipelago, South Tyrrhenian Sea): An environment to preserve. PLoS ONE 2018, 13, e0190710. [Google Scholar] [CrossRef]
- Esposito, A.; Giordano, G.; Anzidei, M. The 2002–2003 Submarine Gas Eruption at Panarea Volcano (Aeolian Islands, Italy): Volcanology of the Seafloor and Implications for the Hazard Scenario. Mar. Geol. 2006, 227, 119–134. [Google Scholar] [CrossRef]
- Italiano, F.; Nuccio, F. Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geoth. Res. 1991, 46, 125–141. [Google Scholar] [CrossRef]
- Italiano, F. Hydrothermal fluids vented at shallow depths at the Aeolian islands: Relationships with volcanic and geothermal systems. In Research in Shallow Marine and Fresh Water Systems: 1st International Workshop—Proceedings; Geologisches Institut: Freiberg, Germany, 2009. [Google Scholar]
- Caracausi, A.; Ditta, M.; Italiano, F.; Longo, M.; Nuccio, P.M.; Paonita, A. Massive submarine gas output during the volcanic unrest off Panarea Island (Aeolian arc, Italy): Inferences for explosive conditions. Geochim. J. 2004, 39, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Caliro, S.; Caracausi, A.; Chiodini, G.; Ditta, M.; Italiano, F.; Longo, M.; Minopoli, C.; Nuccio, P.M.; Paonita, A.; Rizzo, A. Evidence of a new magmatic input to the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy. Geophys. Res. Lett. 2004, 31, L07619. [Google Scholar] [CrossRef]
- Capaccioni, B.; Rossi, P.M.L.; Tassi, F.; Tedesco, D.; Vaselli, O. Risultati Delle Osservazioni Geochimiche Presso l’isola di Panarea in Seguito all’evento di Degassamento Sottomarino del 3 Novembre 2002; Abstract; GNV General Assembly: Rome, Italy, 2003; p. 17. [Google Scholar]
- Caramanna, G.; Carapezza, M.L.; Cioni, R.; Cardellini, F.; Cinti, D.; Lelli, M.; Pizzino, L.; Quattrocchi, F.; Voltattorni, N. Primi Sei Mesi di Monitoraggio delle Diverse Fasi (Solida-Liquida e Gassosa) Presso le Esalazioni Sottomarine di Panarea a Partire dal Novembre 2002; Abstract; GNV General Assembly: Rome, Italy, 2003; p. 19. [Google Scholar]
- Gugliandolo, C.; Italiano, F.; Maugeri, T. The submarine hydrothermal system of Panarea (Southern Italy): Biogeochemical processes at the termal fluids—Sea bottom interface. Ann. Geophys. 2006, 49, 783–792. [Google Scholar] [CrossRef]
- Manini, E.; Luna, G.M.; Corinaldesi, C.; Zeppilli, D.; Bortoluzzi, G.; Caramanna, G.; Raffa, F.; Danovaro, R. Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (North Sulawesi—Indonesia). Microb. Ecol. 2008, 55, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Tassi, F.; Capaccioni, B.; Caramanna, G.; Cinti, D.; Montegrossi, G.; Pizzino, L.; Quattrocchi, F.; Valselli, O. Low-pH waters discharging from sub marine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 2009, 24, 246–254. [Google Scholar] [CrossRef]
- Calanchi, N.; Capaccioni, B.; Martini, M.; Tassi, F.; Valentinio, L. Submarine gas-emission from Panarea Island (Aeolian Archipelago): Distribution of inorganic and organic compounds. Acta Vulcanol. 1995, 7, 43–48. [Google Scholar]
- Esposito, A.; Anzidei, M.; Atzori, S.; Devoti, R.; Giordano, G.; Pietrantonio, G. Modeling ground deformations of Panarea volcano hydrothermal/geothermal system (Aeolian Islands, Italy) from GPS data. Bull. Volcanol. 2010, 72, 609–621. [Google Scholar] [CrossRef]
- Rogelja, M.; Cibic, T.; Pennesi, C.; De Vittor, C. Microphytobenthic community composition and primary production at gas and thermal vents in the Aeolian Islands (Tyrrhenian Sea, Italy). Mar. Environ. Res. 2016, 118, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Gattuso, A.; Longo, M.; Caruso, C.; Lazzaro, G.; Corbo, A.; Italiano, F. Hazard scenarios related to submarine volcanic-hydrothermal activity and advanced monitoring strategies: A study case from the panarea volcanic group (aeolian islands, italy). Geofluids 2019, 2019, 8728720. [Google Scholar] [CrossRef]
- Guilini, K.; Weber, M.; de Beer, D.; Schneider, M.; Molari, M.; Lott, C.; Bodnar, W.; Mascart, T.; Troch, M.D.; Vanreusel, A. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidi cation. PLoS ONE 2017, 12, e0181531. [Google Scholar] [CrossRef] [Green Version]
- Gaglioti, M.; Auriemma, R.; De Vittor, C.; Esposito, V.; Teixido, N.; Gambi, M.C. A pilot study on Posidonia oceanica features of a hydrothermal system off Panarea (aeolian islands, italy). In Proceedings of the 50° Congresso della Società Italiana di Biologia Marina, Livorno, Italy, 10–14 June 2019. [Google Scholar]
- Maugeri, T.L.; Lentini, V.; Gugliandolo, C.; Italiano, F.; Cousin, S.; Stackebrandt, E. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles 2009, 13, 199–212. [Google Scholar] [CrossRef]
- Schönfeld, J.; Alve, E.; Geslin, E.; Jorissen, F.; Korsun, S.; Spezzaferri, S.; Members of The Fobimo. The Fobimo (FOraminiferal BIo-MOnitoring) initiative—Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies. Mar. Micropaleontol. 2012, 94–95, 1–13. [Google Scholar] [CrossRef]
- Walton, W.R. Techniques for recognition of living foraminifera. Cont. Cushman Found. Foramin. Res. 1952, 3, 56–60. [Google Scholar]
- Lutze, G.F.; Altenbach, A. Technik und Signifikanz der Lebendfärbung benthischer Foraminiferen mit Begalrot. Geol. Jahrb. 1991, 128, 251–265. [Google Scholar]
- Bernhard, J.M. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontology 2000, 46, 38–46. [Google Scholar]
- Scott, D.B.; Medioli, F.S.; Schafer, C.T. Monitoring of Coastal Environments Using Foraminifera and Thecamoebian Indicators; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bernhard, J.M. Postmortem vital staining in benthic foraminifera: Duration and importance in population and distributional studies. J. Foraminifer. Res. 1988, 18, 143–146. [Google Scholar] [CrossRef]
- Hannah, F.; Rogerson, A. The temporal and spatial distribution of foraminiferans in marine benthic sediments of the Clyde Sea, Scotland. Estuar. Coast. Shelf Sci. 1997, 44, 377–383. [Google Scholar] [CrossRef]
- Murray, J.W.; Bowser, S.S. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: A review. J. Foraminifer. Res. 2000, 30, 66–77. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Licari, L.; Alexandre, A.; Anschutz, P.; Carbonel, P. Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats. Deep Sea Res. I 2002, 49, 751–785. [Google Scholar] [CrossRef]
- Frontalini, F.; Semprucci, F.; Di Bella, L.; Caruso, A.; Cosentino, C.; Maccotta, A.; Scopelliti, G.; Sbrocca, C.; Bucci, C.; Balsamo, M.; et al. The Response of Cultured Meiofaunal and Benthic Foraminiferal Communities to Lead Exposure: Results from Mesocosm Experiments. Environ. Toxicol. Chem. 2018, 37, 2439–2447. [Google Scholar] [CrossRef]
- Figueira, B.O.; Grenfell, H.R.; Hayward, B.W.; Alfaro, A.C. Comparison of Rose Bengal and Cell Tracker Green staining for identification of live salt-marsh foraminifera. J. Foraminifer. Res. 2012, 42, 206–215. [Google Scholar] [CrossRef]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The relationship between the number of species and the number of individuals in random samples of an animal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistic software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Loeblich, A.R., Jr.; Tappan, H. Foraminiferal Genera and Their Classification; Van Nostrand Reinhold: New York, NY, USA, 1987; Volume 2, 1182p. [Google Scholar]
- Cimerman, F.; Langer, M.R. Mediterranean Foraminifera; Academia Scientiarum et Artium Slovenica: Ljubljana, Slovenia, 1991; Volume 30, pp. 1–11. [Google Scholar]
- Sgarrella, F.; Moncharmont Zei, M. Benthic Foraminifera of the Gulf of Naples (Italy): Systematics and autoecology. Boll. Soc. Paleont. Ital. 1993, 32, 145–264. [Google Scholar]
- SIBM. Notiziario Società Italiana Di Biologia Marina; Società Italiana Di Biologia Marina: Genova, Italy, 2019. [Google Scholar]
- Gerovasileiou, V.; Bailly, N. Brachiopoda of Greece: An annotated checklist. Biodivers. Data J. 2016, 4, e8169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, B.D.; Harley, C.D.G.; Wernberg, T.; Mieszkowska, N.; Widdicombe, S.; Hall-Spencer, J.M.; Connell, S.D. Predicting ecosystem shifts requires new ap- proaches that integrate the e ects of climate change across entire systems. Biol. Lett. 2012, 8, 164–166. [Google Scholar] [CrossRef] [Green Version]
- Garrard, S.L.; Gambi, M.C.; Scipione, M.B.; Patti, F.P.; Lorenti, M.; Zupo, V.; Paterson, D.M.; Buia, M.C. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J. Exp. Mar. Biol. Ecol. 2014, 461, 31–38. [Google Scholar] [CrossRef]
- Jeffrey, S.R. Structurally-Controlled Hydrothermal Diagenesis of Mississippian Reservoir Rocks Exposed in the Big Snowy Arch, Central Montana. Master’s Thesis, Montana State University (MSU), Bozeman, MT, USA, 2014. Available online: https://scholarworks.montana.edu/xmlui/handle/1/3352 (accessed on 20 April 2021).
- Pascarelli, S. Shallow-Water Geothermal Activity Offshore Panarea, Aeolian Island Arc, Italy. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2021. [Google Scholar]
- Linke, P.; Lutze, G.F. Microhabitat preferences of benthic foraminifera—a static concept or a dynamic adaptation to optimize food acquisition? Mar. Micropaleontol. 1993, 20, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Schönfeld, J. The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Mar. Micropaleontol. 1997, 29, 211–236. [Google Scholar] [CrossRef]
- Schönfeld, J. Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain). Mar. Micropaleontol. 2002, 44, 141–162. [Google Scholar] [CrossRef]
- Baruffo, A.; Ciaralli, L.; Ardizzone, G.; Gambi, M.C.; Casoli, E. Ocean acidification and mollusc settlement in Posidonia oceanica meadows: Does the seagrass buffer lower pH effects at CO2 vents? Diversity 2021, 13, 311. [Google Scholar] [CrossRef]
- Buosi, C.; du ChaTelet, E.A.; Cherchi, A. Benthic foraminiferal assemblages in the current-dominated Strait of Bonifacio (Mediterranean Sea). J. Foraminifer. Res. 2012, 42, 39–55. [Google Scholar] [CrossRef]
- Hendriks, I.E.; Olsen, Y.S.; Ramajo, L.; Basso, L.; Steckbauer, A.; Moore, T.S.; Howard, J.; Duarte, C.M. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 2014, 11, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Ricart, A.M.; Ward, M.; Hill, T.M.; Sanford, E.; Kroeker, K.J.; Takeshita, Y.; Merolla, S.; Shukla, P.; Ninokawa, A.T.; Elsmore, K.; et al. Coast-wide evidence of low pH amelioration by seagrass ecosystems. Glob. Chang. Biol. 2021, 27, 2580–2591. [Google Scholar] [CrossRef] [PubMed]
- Larkum, A.W.; Orth, R.J.; Duarte, C.M. Seagrasses: Biology, ecology and conservation. Phycologia 2006, 45, 5. [Google Scholar]
- Piazzi, L.; De Biasi, A.M.; Balata, D.; Pardi, G.; Boddi, S.; Acunto, S.; Sartoni, G. Species composition and spatial variability patterns of morphological forms in macroalgal epiphytic assemblages of the seagrass Posidonia oceanica. Vie Milieu 2007, 57, 171. [Google Scholar]
- Uku, J.; Björk, M.; Bergman, B.; Díez, B. Characterization and Comparison of Prokaryotic Epiphytes Associated with Three East African Seagrasses 1. J. Phycol. 2007, 43, 768–779. [Google Scholar] [CrossRef]
- Wilson, B. Guilds among epiphytal foraminifera on fibrous substrates, Nevis, West Indies. Mar. Micropaleontol. 2007, 63, 1–18. [Google Scholar] [CrossRef]
- Bandy, O.L.; Ingle, J.C., Jr.; Resig, J.M. Foraminifera, Los Angeles County Outfall Area, California 1. Limnol. Oceanogr. 1964, 9, 124–137. [Google Scholar] [CrossRef]
- Sliter, W.V. Laboratory experiments on the life cycle and ecologic controls of Rosalina globularis d’Orbigny. J. Protozool. 1965, 12, 210–215. [Google Scholar] [CrossRef]
- Frankel, L. Subsurface reproduction in foraminifera. J. Paleontol. 1972, 46, 62–65. [Google Scholar]
- Frankel, L. Observations and speculations on the habitat and habits of Trochammina ochracea (Williamson) in subsurface sediments. J. Paleontol. 1974, 48, 143–148. [Google Scholar]
- Kitazato, H. Observations and behaviour and mode of life of benthic foraminifers in the laboratory. Geosci. Rep. Shizuoka Univ. 1981, 6, 61–71. [Google Scholar]
- El Kateb, A.; Beccari, V.; Stainbank, S.; Spezzaferri, S.; Coletti, G. Living (stained) foraminifera in the Lesser Syrtis (Tunisia): Influence of pollution and substratum. PeerJ 2020, 8, e8839. [Google Scholar] [CrossRef] [PubMed]
- Vénec-Peyré, M. Etude de la distribution des foraminifères vivant dans la Baie de Banyuls-Sur-Mer. In Ecologie des Microorganismes en Méditerranée Occidentale: Ecomed; Bizon, J.J., Burollet, P.F., Eds.; Association Française des Techniciens du Pétrole: Paris, France, 1984; pp. 60–80. [Google Scholar]
- López-Belzunce, M.; Blázquez, A.M.; Pretus, J.L. Recent benthic foraminiferal assemblages and their relationship to environmental variables on the shoreface and inner shelf off Valencia (Western Mediterranean). Mar. Environ. Res. 2014, 101, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Frezza, V.; Mateu-Vicens, G.; Gaglianone, G.; Baldassarre, A.; Brandano, M. Mixed carbonate-siliclastic sediments and benthic foraminiferal assemblages from Posidonia oceanica seagrass meadows of the central Tyrrhenian continental shelf (Latium, Italy). Ital. J. Geosci. 2011, 130, 352–369. [Google Scholar]
- Bergamin, L.; Di Bella, L.; Ferraro, L.; Frezza, V.; Pierfranceschi, G.; Romano, E. Benthic foraminifera in a coastal marine area of the eastern Ligurian Sea (Italy): Response to environmental stress. Ecol. Indic. 2019, 96, 16–31. [Google Scholar] [CrossRef]
- De Nooijer, L.J.; Toyofuku, T.; Kitazato, H. Foraminifera promote calcification by elevating their intracellular pH. Proc. Natl. Acad. Sci. USA 2009, 106, 15374–15378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, A.J.; Mackenzie, F.T.; Bates, N.R. Life on the margin: Implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar. Ecol. Prog. Ser. 2008, 373, 265–273. [Google Scholar] [CrossRef]
- Arieli, R.N.; Almogi-Labin, A.; Abramovich, S.; Herut, B. The effect of thermal pollution on benthic foraminiferal assemblages in the Mediterranean shoreface adjacent to Hadera power plant (Israel). Mar. Pollut. Bull. 2011, 62, 1002–1012. [Google Scholar] [CrossRef]
- Bradshaw, J.S. Laboratory experiment on the ecology of foraminifera. Contr. Cushman Found Res. 1961, 12, 87–106. [Google Scholar]
- Manda, S.; Titelboim, D.; Ashckenazi-Polivoda, S.; Almogi-Labin, A.; Herutd, B.; Abramovich, S. Epiphytic benthic foraminiferal preferences for macroalgal habitats: Implications for coastal warming. Mar. Environ. Res. 2020, 161, 105084. [Google Scholar] [CrossRef]
- Damak, M.; Fourati, R.; Elleuch, B.; Kallel, M. Environmental quality assessment of the fish farms’ impact in the Monastir Bay (eastern of Tunisia, Central Mediterranean): A benthic foraminiferal perspective. Environ. Sci. Pollut. Res. 2020, 27, 9059–9074. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Bergamin, L.; Di Bella, L.; Frezza, V.; Pierfranceschi, G.; Marassich, A.; Provenzani, C. Benthic foraminifera as environmental indicators in extreme environments: The marine cave of Bue Marino (Sardinia, Italy). Ecol. Indic. 2021, 120, 106977. [Google Scholar] [CrossRef]
- Lei, Y.L.; Li, T.G.; Bi, H.; Cui, W.L.; Song, W.P.; Li, J.Y.; Li, C.C. Responses of benthic foraminifera to the 2011 oil spill in the Bohai Sea, PR China. Mar. Pollut. Bull. 2015, 96, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.K.S. (Ed.) Modern Foraminifera; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 7–36. [Google Scholar]
Stations | Sample Sites | Coordinates | Depth (m) | T °C | pH |
---|---|---|---|---|---|
Ditella | hot | 38°38′536″ N; 15°04′714″ E 38°38′536″ N; 15°04′714” E | 11.9 | 26–60 | 7.0–5.6 |
cold | 11.9 | 26 | 7.4–7.9 | ||
Raya | control Raya | 38°38′063″ N; 15°04′748″ E | 11.9 | 26 | 8.15 |
Bottaro crater | control Bottaro B1 | 38°38′13.58″ N; 15°6′33.95″ E | 10 | 22.73 | 8.15 |
Bottaro B2 | 10 | 22.67 | 7.9 | ||
Bottaro B3 | 12 | n.d | 6.0–7.4 | ||
P21 | 38°37′59″ N; 15°06′360″ E | 21 | 55.7 | 5.21 | |
Black Point | Black Point | 38°38′13.99″ N; 15°06′18.01″ E | 23 | 133 | 2.78–4.9 |
Stations | Sample Sites | Depth (m) | Sediment | Posidonia Rhizomes | Posidonia Leaves |
---|---|---|---|---|---|
Ditella | hot | 11.9 | 3 | 3 | 13 |
cold | 11.9 | 3 | 3 | 9 | |
Raya | control raya | 11.9 | 3 | 3 | 14 |
Bottaro crater | Bottaro B1 | 10 | / | 3 | 22 |
Bottaro B2 | 10 | / | 3 | 33 | |
P21 | P21 | 21 | / | 6 | 66 |
Black point | Black point | 23 | / | 6 | 15 |
(a) | ||||||||
---|---|---|---|---|---|---|---|---|
Sediment | ||||||||
pH | Sites | N. ind. | Taxa (S) | H | Fisher | Aggl. | Porcel. | Hyaline |
5.6< <7 | Hot | 1 | 1 | / | / | 1 | 0 | 0 |
7.9 | Cold | 28 | 13 | 2.29 | 9.43 | 7 | 11 | 10 |
>8 | Raya | 11 | 7 | 1.77 | 8.29 | 4 | 6 | 6 |
(b) | ||||||||
Rhizomes | ||||||||
pH | Sites | N. ind. | Taxa (S) | H | Fisher | |||
5.6< <7 | Hot | 50 | 12 | 1.89 | 5.01 | |||
=7.9 | Cold | 42 | 13 | 1.64 | 6.45 | |||
=7.9 | B2 | 45 | 9 | 1.24 | 3.38 | |||
<6 | BP | 31 | 11 | 1.97 | 5.40 | |||
<6 | P21 | 25 | 7 | 1.52 | 3.23 | |||
>8 | Raya | 45 | 12 | 1.93 | 5.35 | |||
>8 | B1 | 96 | 15 | 1.95 | 4.99 | |||
Leaves | ||||||||
pH | Sites | N. ind. | Taxa (S) | H | Fisher | F/P Ratio | ||
5.6< <7 | Hot | 292 | 14 | 1.44 | 2.58 | 24.43 | ||
=7.9 | Cold | 96 | 10 | 1.41 | 2.24 | 10.67 | ||
=7.9 | B2 | 15 | 5 | 1.37 | 1.71 | 0.75 | ||
<6 | BP | 30 | 12 | 1.69 | 4.51 | 2.5 | ||
<6 | P21 | 6 | 3 | 0.92 | 1.28 | 0.18 | ||
>8 | Raya | 145 | 8 | 1.49 | 1.42 | 14.5 | ||
>8 | B1 | 159 | 19 | 1.82 | 4.43 | 10.6 | ||
(c) | ||||||||
Rhizomes | ||||||||
pH | Sites | Aggl. | Porcel. | Hyaline | ||||
5.6< <7 | Hot | 0 | 5 | 41 | ||||
=7.9 | Cold | 0 | 9 | 37 | ||||
=7.9 | B2 | 1 | 8 | 37 | ||||
<6 | BP | 23 | 3 | 5 | ||||
<6 | P21 | 22 | 3 | 0 | ||||
>8 | Raya | 2 | 17 | 26 | ||||
>8 | B1 | 1 | 34 | 61 | ||||
Leaves | ||||||||
pH | Sites | Aggl. | Porcel. | Hyaline | ||||
5.6< <7 | Hot | 1 | 3 | 288 | ||||
=7.9 | Cold | 8 | 9 | 87 | ||||
=7.9 | B2 | 0 | 0 | 15 | ||||
<6 | BP | 24 | 4 | 2 | ||||
<6 | P21 | 5 | 0 | 1 | ||||
>8 | Raya | 12 | 11 | 122 | ||||
>8 | B1 | 0 | 33 | 126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, L.; Conte, A.M.; Conti, A.; Esposito, V.; Gaglioti, M.; Ingrassia, M.; De Vittor, C.; Bigi, S. Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea. Geosciences 2022, 12, 184. https://doi.org/10.3390/geosciences12050184
Di Bella L, Conte AM, Conti A, Esposito V, Gaglioti M, Ingrassia M, De Vittor C, Bigi S. Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea. Geosciences. 2022; 12(5):184. https://doi.org/10.3390/geosciences12050184
Chicago/Turabian StyleDi Bella, Letizia, Aida Maria Conte, Alessia Conti, Valentina Esposito, Martina Gaglioti, Michela Ingrassia, Cinzia De Vittor, and Sabina Bigi. 2022. "Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea" Geosciences 12, no. 5: 184. https://doi.org/10.3390/geosciences12050184
APA StyleDi Bella, L., Conte, A. M., Conti, A., Esposito, V., Gaglioti, M., Ingrassia, M., De Vittor, C., & Bigi, S. (2022). Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in Posidonia oceanica Meadows: The Case of the Shallow Venting Site of Panarea. Geosciences, 12(5), 184. https://doi.org/10.3390/geosciences12050184