Complexity and Geoheritage Importance of Granite Pseudokarst from the Belaya River Gorge (Western Caucasus)
Abstract
:1. Introduction
2. Geological Setting
3. Methodological Remarks
4. Results
4.1. Pseudokarst Features
4.2. Large Clasts
5. Discussion
5.1. Genetic Inferences
5.2. Geoheritage and Geotourism Inferences
6. Conclusions
- (1)
- The studied pseudokarst is dominated by small rock basins, chiefly regular, rounded in shape, and larger potholes, which often have one wall broken;
- (2)
- Potholes originate on the river’s bottom, and they are “erased” from one side by the river due to its incision into the elevated geological block;
- (3)
- Pseudokarst development is linked to interaction of four geological phenomena, namely tectonic uplift, river erosion, floods (seasonal and catastrophic), and granite weathering;
- (4)
- Granite pseudokarst co-occurs with boulder–megaclast deposits, although their genetic relations are unclear;
- (5)
- The studied pseudokarst is unique and, thus, adds value and diversity to the Granite Gorge geosite, and the aesthetic attractiveness of sculptured granites is a premise for local geotourism development.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimes, K.G. Redefining the boundary between karst and pseudokarst: A discussion. Cave Karst Sci. 1997, 24, 87–90. [Google Scholar]
- Eberhard, R.; Sharples, C. Appropriate terminology for karst-like phenomena: The problem with pseudokarst. Int. J. Speleol. 2013, 42, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Lavrusevich, A. Classification of the types and forms of loess pseudokarst. E3S Web Conf. 2019, 135, 01041. [Google Scholar] [CrossRef]
- Otvos, E.G. Pseudokarst and pseudokarst terrains: Problems of terminology. Bull. Geol. Soc. Am. 1976, 87, 1021–1027. [Google Scholar] [CrossRef]
- Parker, G.G.; Higgins, C.G.; Wood, W.W. Piping and pseudokarst in drylands. Spec. Pap. Geol. Soc. Am. 1990, 252, 77–110. [Google Scholar]
- Self, C.A.; Mullan, G.J. Redefining the boundary between karst and pseudokarst. Cave Karst Sci. 1996, 23, 63–70. [Google Scholar]
- Striebel, T. Problems with the terms karst and pseudokarst. Attempts at a genetic classification of sandstone and granite caves in the Bayreuth area (Germany). Mitt. Des Verb. Der Dtsch. Hohlen-Und Karstforscher 2000, 46, 99–105. [Google Scholar]
- Wray, R.A.L. Quartzite dissolution: Karst or pseudokarst? Cave Karst Sci. 1997, 24, 81–86. [Google Scholar]
- Campbell, E.M. Granite landforms. J. R. Soc. West. Aust. 1997, 80, 101–112. [Google Scholar]
- Migoń, P. Granite Landscapes of the World; Oxford University Press: Oxford, UK, 2006; 384p. [Google Scholar]
- Migoń, P. Granite Landscapes, Geodiversity and Geoheritage—Global Context. Heritage 2021, 4, 198–219. [Google Scholar] [CrossRef]
- Twidale, R.; Vidal Romaní, J.R. Landforms and Geology of Granite Terrains; CRC Press: London, UK, 2005; 354p. [Google Scholar]
- Ponti, S.; Pezza, M.; Guglielmin, M. The development of Antarctic tafoni: Relations between differential weathering rates and spatial distribution of thermal events, salts concentration and mineralogy. Geomorphology 2021, 373, 107475. [Google Scholar] [CrossRef]
- de Uña Alvarez, E.; Vidal Romaní, J.R. Some minor features (tafoni, cavernous forms) in the granite terrains of Los Riojanos (Pampa de Achala, Sierra Grande de Córdoba, República Argentina). Geometric and morphologic properties. Cad. Do Lab. Xeol. De Laxe 2008, 33, 83–99. [Google Scholar]
- Krishnaswamy, V.S. The geological environment of some ancient caves of India: Their optimum utilization for speleological exploration and hydrogeological research. J. Geol. Soc. India 2008, 71, 630–650. [Google Scholar]
- Dodge-Wan, D.; Nagarajan, R. Runnel development on granitic boulders on the foothills of Mount Kinabalu (Pinosuk Gravel Formation, Sabah, N Borneo). J. Mt. Sci. 2016, 13, 46–58. [Google Scholar] [CrossRef]
- Roqué, C.; Linares, R.; Rodríguez, R.; Zarroca, M. Granite caves in the north-east of the Iberian Peninsula: Artificial hypogea versus tafoni. Z. Fur Geomorphol. 2011, 55, 341–364. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Chamorro, C.A.; Vidal Romaní, J.R.; Vaqueiro-Rodríguez, M.; Barrientos, V.; Kaal, J. On the genesis of aluminum-rich speleothems in a granite cave of NW Spain. Int. J. Speleol. 2021, 50, 25–40. [Google Scholar] [CrossRef]
- Vaqueiro Rodríguez, M.; Barreiro Ben, B.; Costas Vázquez, R.; Suárez Pérez, R.; Groba González, X. Relation between structure and morphology in the development of the granite cave of O Folón (Vigo, Galicia-Spain). Cad. Do Lab. Xeol. De Laxe 2006, 31, 87–103. [Google Scholar]
- Ji, S.; Li, L.; Zeng, W. The relationship between diameter and depth of potholes eroded by running water. J. Rock Mech. Geotech. Eng. 2018, 10, 818–831. [Google Scholar] [CrossRef]
- Lorenc, M.W.; Barco, P.M.; Saavedra, J. The evolution of potholes in granite bedrock, W Spain. Catena 1994, 22, 265–274. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M.; Woo, K.S. Granite Landform Diversity and Dynamics Underpin Geoheritage Values of Seoraksan Mountains, Republic of Korea. Geoheritage 2019, 11, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Nemec, W.; Lorenc, M.W.; Saavedra Alonso, J. Potholed granite terrace in the Rio Salor valley, Western Spain: A study of bedrock erosion by floods. Tecniterrae 1982, 50, 1–16. [Google Scholar]
- Ortega, J.A.; Gómez-Heras, M.; Perez-López, R.; Wohl, E. Multiscale structural and lithologic controls in the development of stream potholes on granite bedrock rivers. Geomorphology 2014, 204, 588–598. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Sankt-Peterburg, Russia, 1998; 200p. (In Russian) [Google Scholar]
- Mikhailenko, A.V.; Ruban, D.A.; Yashalova, N.N.; Rebezov, M.B. The Unique Granite Gorge in Mountainous Adygeya, Russia: Evidence of Big and Complex Geosite Disproportions. Geosciences 2019, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Pugachev, V.I. The Khadzhokhsky canyon and the Granitnoye gorge (Adygeia, Russia) as geological natural monuments. Geogr. Nat. Resour. 2008, 29, 50–53. [Google Scholar] [CrossRef]
- Gines, A.; Knez, M.; Slabe, T.; Dreybrodt, W. (Eds.) Karst Rock Features: Karren Sculpturing; Karst Research Institute: Postojna, Slovenia, 2009; 561p. [Google Scholar]
- Giorgobiani, T.V. Stages, mechanism and geodynamics of formation of the folded system of the Greater Caucasus. Geol. I Geofiz. Yuga Ross. 2020, 10, 35–42. [Google Scholar]
- Tye, A.R.; Niemi, N.A.; Safarov, R.T.; Kadirov, F.A.; Babayev, G.R. Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments. Basin Res. 2021, 33, 933–967. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gurer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Efremov, Y.V.; Zimnitskiy, A.V. Snow cover on the Lagonaky high plateau (Western Caucasus). Led I Sneg-Ice Snow 2017, 57, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Vincent, S.J.; Somin, M.L.; Carter, A.; Vezzoli, G.; Fox, M.; Vautravers, B. Testing Models of Cenozoic Exhumation in the Western Greater Caucasus. Tectonics 2020, 39, e2018TC005451. [Google Scholar] [CrossRef]
- Yanvarev, G.S. Latest structure and geodynamics of Western Caucasus based on decoding of satellite images. Geol. Geofiz. Yuga Ross. 2020, 10, 31–40. [Google Scholar]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992; 192p. (In Russian) [Google Scholar]
- Nenakhov, V.M.; Zhabin, A.V.; Zhavoronkin, V.I.; Ilyin, V.V.; Chebotareva, V.S. Substances, petrophysical properties, and geodynamic conditions for the formation of granitoids in the Dakhovsky crystalline massif (Western Caucasus). Proc. Voronezh State Univ. Ser. Geol. 2021, 2, 4–21. (In Russian) [Google Scholar]
- Lozovoy, S.P. Lagonaki Highland; Krasnodarskoe Knizhnoe Izdatel stvo: Krasnodar, Russia, 1984; 160p. (In Russian) [Google Scholar]
- Mikhailenko, A.V.; Ruban, D.A. Epikarst ‘ruining’ Jurassic reefs in the Lagonaki Highland, Western Caucasus. Int. J. Earth Sci. 2020, 109, 2773–2774. [Google Scholar] [CrossRef]
- Veress, M.; Telbisz, T.; Toth, G.; Loczy, D.; Ruban, D.A.; Gutak, J.M. Glaciokarsts; Springer International Publishing: Cham, Switzerland, 2019; 516p. [Google Scholar]
- Alekseeva, A.E.; Ershov, A.V.; Linev, D.N. Numerical modeling of uplift and erosion at the Western Caucasus orogen in the Neogene-Quaternary. Mosc. Univ. Geol. Bull. 2014, 69, 213–218. [Google Scholar] [CrossRef]
- Blagovolin, N.S.; Lilienberg, D.A.; Pobedonostsev, S.V. Recent vertical crustal movements in the Ponto-Caspian orogenic region. Tectonophysics 1975, 29, 395–399. [Google Scholar] [CrossRef]
- Varshanina, T.P.; Plisenko, O.A.; Solodukhin, A.A.; Korobkov, V.N. Structure-Like Geodynamical Model of the Krasnodar Region and the Republic of Adygeya; Kamerton: Moskva, Russia, 2011; 128p. (In Russian) [Google Scholar]
- Beer, A.R.; Lamb, M.P. Abrasion regimes in fluvial bedrock incision. Geology 2021, 49, 682. [Google Scholar] [CrossRef]
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Nwoko, J.; Kane, I.; Huuse, M. Megaclasts within mass-transport deposits: Their origin, characteristics and effect on substrates and succeeding flows. Geol. Soc. Spec. Publ. 2020, 500, 515–530. [Google Scholar] [CrossRef]
- Ruban, D.A.; Ponedelnik, A.A.; Yashalova, N.N. Megaclasts: Term Use and Relevant Biases. Geosciences 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth gain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Ruban, D.A.; Sallam, E.S.; Ermolaev, V.A.; Yashalova, N.N. Aesthetic Value of Colluvial Blocks in Geosite-Based Tourist Destinations: Evidence from SW Russia. Geosciences 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Ali, C.A.; Zawri, N.F.; Simon, N.; Mohamed, K.R. Limestone-granite contact zone in the dayang bunting & Tuba Islands, Malaysia: An educational outdoor geotourism laboratory. Geoj. Tour. Geosites 2017, 19, 50–60. [Google Scholar]
- Mazzoleni, G.; Garofano, M.; Pasqua, C. From the Via GeoAlpina project to a new international project aimed at promoting geotourism and a future Granite Geopark in the Italian-Swiss Central Alps. Rend. Online Soc. Geol. Ital. 2013, 28, 113–116. [Google Scholar]
- Migon, P.; Różycka, M.; Michniewicz, A. Conservation and Geotourism Perspectives at Granite Geoheritage Sites of Waldviertel, Austria. Geoheritage 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Nazaruddin, D.A. Granite landforms of Samui Island (southern Thailand) from geoheritage, geoconservation and geotourism perspectives. Int. J. Geoheritage Parks 2020, 8, 75–86. [Google Scholar] [CrossRef]
- Ruban, D.A. Geological Heritage of the Anthropocene Epoch—A Conceptual Viewpoint. Heritage 2020, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Complexity and Geoheritage Importance of Granite Pseudokarst from the Belaya River Gorge (Western Caucasus). Geosciences 2022, 12, 175. https://doi.org/10.3390/geosciences12040175
Ruban DA. Complexity and Geoheritage Importance of Granite Pseudokarst from the Belaya River Gorge (Western Caucasus). Geosciences. 2022; 12(4):175. https://doi.org/10.3390/geosciences12040175
Chicago/Turabian StyleRuban, Dmitry A. 2022. "Complexity and Geoheritage Importance of Granite Pseudokarst from the Belaya River Gorge (Western Caucasus)" Geosciences 12, no. 4: 175. https://doi.org/10.3390/geosciences12040175
APA StyleRuban, D. A. (2022). Complexity and Geoheritage Importance of Granite Pseudokarst from the Belaya River Gorge (Western Caucasus). Geosciences, 12(4), 175. https://doi.org/10.3390/geosciences12040175