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Abstract: The term “megaclast” started circulation near the beginning of the 21st century. The present
review is aimed at examination of the use of this term in the modern geoscience literature. The main
method is bibliographical survey of the articles published during 2000–2017 with the on-line
bibliographical database “Scopus”. The main findings are as follows. The term “megaclast” has
not been used extensively, but the number of the articles employing this term increased in the
mid-2000s and in the early 2010s. The majority of the papers deal with megaclasts of Quaternary age.
The megaclast research focuses on five regions, namely West Europe, Australia and New Zealand,
Western North America, Southern South America, and the Pacific and circum-Pacific. The most
studied are megaclasts occurring on coasts influenced by tsunamis and storms; significant attention
has been paid also to those clasts transported by volcanism-triggered debris flows and slope failures,
both continental and submarine. There are three serious biases relevant to the use of the term
“megaclast” in the geoscience literature, namely stratigraphical, geographical, and genetic biases.
Due to this incompleteness in the knowledge of megaclasts, this term should be either used more
actively, which is preferable, or abandoned.
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1. Introduction

During the two past decades, there have been some important advances to refine nomenclature of
sedimentary rocks and particles. Blair and McPherson [1], Farrell et al. [2], and Lokier and Al Junaibi [3]
contributed to this issue. It is equally interesting to realize how well the international research
community has perceived the novelties and focused on the study of newly-recognized categories of
rocks and particles.

Udden [4] and Wentworth [5] developed the approach for classifying clastic grains by size that is
still in wide use. However, this approach is less appropriate for particles that reach several meters and
dozens of meters in diameter because these should be recognized as a particular category. An interest
in such clasts has increased, particularly because of significant intensification of investigations on
modern and ancient tsunami deposits [6]. Moreover, erratic “boulders” and olistoliths have remained
interesting features for more than a century. Presently, two additional factors stimulate this interest.
The importance of the largest stones on the Earth as geological heritage and geotourist attractions
has been realized by Wimbledon and Smith-Meyer [7] and Lubova et al. [8]. Large clasts have been
found on various cosmic bodies, and these clasts are described, particularly, by Pajola et al. [9],
Bruno and Ruban [10], and Dhingra [11]. The studies of the both kinds require detailed description of
large clasts. Blair and McPherson [1] proposed a new, detailed classification of sedimentary particles
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larger than 4 m. The discussion started, and later Blair and McPherson [12] updated their scheme,
whereas Blott and Pye [13], Terry and Goff [14], and Bruno and Ruban [10] proposed new classifications.
All these classifications permit to deal with large clasts in detail and provide new terminology.

The term “megaclast” has become a general term for the largest sedimentary particles (Figure 1).
The objective of this article is to review the use of the term “megaclast” in the modern geoscience
literature. Particularly, the frequency of the term use, its application to different geological time
slices, regions, and depositional environments are to be examined. Such a terminological reflection
is necessary in order to understand how the new, and potentially very important, term is used by
scientists and whether this use is biased and, thus, has to be improved. The present paper does
not focus on solution of the problems with different large clast classifications because this issue was
addressed in detail by Bruno and Ruban [10]. This review starts with explanation of the essence of the
term “megaclast”. Then, parameters of the bibliometric approach employed for the purposes of the
present analysis are clarified. Two following sections bear results and inform about the main trends
of megaclast research and the spatio-temporal dimension of the term application. The discussion
presents further interpretation of the main findings, and it emphasizes the biases of the term use and
the geotourism aspect.

Geosciences 2018, 8, x FOR PEER REVIEW  2 of 18 

 

detailed classification of sedimentary particles larger than 4 m. The discussion started, and later Blair 

and McPherson [12] updated their scheme, whereas Blott and Pye [13], Terry and Goff [14], and 

Bruno and Ruban [10] proposed new classifications. All these classifications permit to deal with 

large clasts in detail and provide new terminology. 

The term “megaclast” has become a general term for the largest sedimentary particles (Figure 1). 

The objective of this article is to review the use of the term “megaclast” in the modern geoscience 

literature. Particularly, the frequency of the term use, its application to different geological time 

slices, regions, and depositional environments are to be examined. Such a terminological reflection is 

necessary in order to understand how the new, and potentially very important, term is used by 

scientists and whether this use is biased and, thus, has to be improved. The present paper does not 

focus on solution of the problems with different large clast classifications because this issue was 

addressed in detail by Bruno and Ruban [10]. This review starts with explanation of the essence of 

the term “megaclast”. Then, parameters of the bibliometric approach employed for the purposes of 

the present analysis are clarified. Two following sections bear results and inform about the main 

trends of megaclast research and the spatio-temporal dimension of the term application. The 

discussion presents further interpretation of the main findings, and it emphasizes the biases of the 

term use and the geotourism aspect. 

 

Figure 1. Upper Jurassic limestone megaclasts fallen to the bottom of the Rufabgo Canyon in the 

Western Caucasus; the person provides a sense of scale (used by permission of N.V. Ruban). 

2. Conceptual Remarks on Megaclasts 

The term “megaclast” was applied in the geological literature here and there, but rarely [15–20]. 

Conceptual studies by Blair and McPherson [1,12], Blott and Pye [13], Terry and Goff [14], and Bruno 

and Ruban [10] have promoted this term. 

The understanding of megaclasts remains poorly defined. There is no agreement of how to limit 

the category of megaclasts in a scheme of grain-size classification. Blair and McPherson [1] and Terry 

and Goff [14] proposed a size of 4.096 m as the lower limit. This matches the general principle of the 

Udden-Wentworth scheme. However, Blott and Pye [13] recommended a size of 2.048 m as the 

lower limit. Finally, Bruno and Ruban [10] suggested a size of 1 m as the lower limit of megaclasts, 

particularly to make the classification suitable for application to distant cosmic bodies. Very 

different terms have been proposed for naming subdivisions of megaclasts. Each following team of 

specialists expressed concerns about the names suggested by earlier workers. Moreover, the clear 

separation between boulders, i.e., much smaller clasts, and megaclasts is not fixed in the 

Figure 1. Upper Jurassic limestone megaclasts fallen to the bottom of the Rufabgo Canyon in the
Western Caucasus; the person provides a sense of scale (used by permission of N.V. Ruban).

2. Conceptual Remarks on Megaclasts

The term “megaclast” was applied in the geological literature here and there, but rarely [15–20].
Conceptual studies by Blair and McPherson [1,12], Blott and Pye [13], Terry and Goff [14], and
Bruno and Ruban [10] have promoted this term.

The understanding of megaclasts remains poorly defined. There is no agreement of how to
limit the category of megaclasts in a scheme of grain-size classification. Blair and McPherson [1] and
Terry and Goff [14] proposed a size of 4.096 m as the lower limit. This matches the general principle of
the Udden-Wentworth scheme. However, Blott and Pye [13] recommended a size of 2.048 m as the
lower limit. Finally, Bruno and Ruban [10] suggested a size of 1 m as the lower limit of megaclasts,
particularly to make the classification suitable for application to distant cosmic bodies. Very different
terms have been proposed for naming subdivisions of megaclasts. Each following team of specialists
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expressed concerns about the names suggested by earlier workers. Moreover, the clear separation
between boulders, i.e., much smaller clasts, and megaclasts is not fixed in the terminology. For instance,
Terry and [14] proposed to identify some megaclasts as mesoboulders and macroboulders, although
the latter are not true boulders because boulders are smaller than megaclasts by definition.

Despite the above-mentioned uncertainties, three statements seem to be indisputable. The term
“megaclast” is well-suited for description of a separate category or class of grains. The size of megaclasts
is measured by meters, dozens of meters, and even hundreds of meters. It is sensible to subdivide this
category into several grades. Moreover, it appears that single megaclasts and their accumulations, i.e.,
clusters or “fields”, constitute a specific geological phenomenon, which is aesthetically impressive [21].

3. Material and Method

The bibliometric approach is becoming an efficient tool for conceptualization in the modern
science, as shown recently by Qiu and Liu [22]. It employs diverse methods and modes of data
presentation, some of which seem to be suitable for terminological studies. The present review is based
on analysis of literature sources that directly use the term “megaclast”. A targeted bibliographical
survey, which is a kind of bibliometric approach, was conducted for this purpose. The on-line
bibliographical database “Scopus” was searched. This database has an excellent coverage of geoscience
journals where papers on megaclasts can be published. This database includes many regional-to-local
journals, which fact minimizes missing the necessary publications.

All articles published in professional journals and special publication series during the time period
of 2000–2017 and containing the term “megaclast(s)” in their titles, abstracts, and keywords were
identified. Fifty four sources were found this way (Table 1), and these seem to be the only published
works that employ the term actively. Apparently, these sources reflect the status of megaclast research
after the publication of the article by Blair and McPherson [1]. Of course, there are other sources that
mention megaclasts occasionally. However, consideration of the incorrect use of the term “megaclast”
may result in significant “noise” in the collected bibliographical records that may affect the clarity of the
subsequent analysis. In contrast, occurrence of the term “megaclast” in the title, abstract, or keywords
means that the article more-or-less focuses on megaclasts. There may be other sources not included into
“Scopus”, but these are chiefly limited to very local journals or proceedings/abstract volumes, which
cannot be judged as full representatives of the international geoscience media. In any case, only a
part of them can be found with on-line tools and, thus, their consideration will make the analyzed
bibliographical data less representative. Indeed, articles about large clasts were published before 2000,
but these do not much anyway the time frame of the present review that is limited to the appears
of the paper by Blair and McPherson [1]. It should be added that a few very important articles by
Paris et al. [23,24], Ramalho et al. [25], Hearty and Tormey [26], and Cox et al. [27] that are devoted to
megaclasts and employ this term, although do not retain it in their titles, are added to the collected
sources used for the purposes of the present analysis. Three of these articles are published in 2018,
but they became available already in 2017 and, thus, these match the analyzed time frame. As a result,
the total number of analyzed articles is 59 (Table 1).
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Table 1. Megaclast-related literature sources for the purposes of examination of the term use.

Author(s), Source Age Location Facies/Origin

Barbano et al. [28] Q Sicily Tsunami
Bruno and Ruban [10] - extraterrestrial bodies Extraterrestial

Canto et al. [29] Pg Philippines Tectonic
Carpentier et al. [30] J France Storm

Choe et al. [31] K Chile Deep-marine channel
Coira and Perez [32] O Argentina Magma-water interaction

Dewey and Ryan [33] N, Q New Zealand Tsunami, storm
Engel and May [34] Q Caribbean Tsunami
Furlanetto et al. [35] PPR northwestern Canada Tectonic

Gaylord and Neall [36] Q New Zealand Volcanic
Gaylord et al. [37] Q New Zealand Volcanic
Goff and Terry [38] Q Pacific Tsunami

Hall et al. [39] Q British Isles Coast
Hoffmann et al. [40] Q Arabia Tsunami

Horak and Evans [41] NPR British Isles -
Jackson [42] CZ offshore Brazil Submarine mass wasting

Kalnina et al. [43] Q Baltic Region Glacial erosion
Keigler et al. [44] Q New Zealand Volcanic and mass wasting
Laird et al. [45] Pg New Zealand Channel

Laughton et al. [46] PPR northwestern Canada Tectonic + volcanic
Le Heron et al. [47] NPR western United States Tectonic and ice-rafting
Le Heron et al. [48] NPR western United States Tectonic

Le Roux [49] CZ Chile Mass wasting and tsunami
Le Roux and Vargas [50] N Chile Mass wasting and tsunami

Lecointre et al. [51] Q New Zealand Volcanic and mass wasting
Lorang [52] - - Tsunami and storm

Lubova et al. [8] Q Caucasus Mass wasting
Madon [53] T Malaysia Submarine mass wasting

Martin-Merino et al. [54] PZ2 Spain Submarine mass wasting
McKee et al. [55] K western United States Mass wasting
Medina et al. [56] Q Morocco Tsunami and storm

Noormets et al. [57] Q Pacific Tsunami
Noormets et al. [58] Q Pacific Tsunami
Oliveira et al. [59] Q Portugal Storm

Ortiz-Karpf et al. [60] Q Caribbean Submarine mass wasting
Paris et al. [61] Q Mauritius Tsunami

Perez-Alberti et al. [62] Q Spain Storm
Pierre [63] Q France Coastal processes

Pope and Grotzinger [64] PPR northwestern Canada Evaporite dissolution and mass wasting
Preiss et al. [65] NPR Australia Glaciation

Roverato et al. [66] Q New Zealand Volcanic and mass wasting
Salisbury et al. [67] Cm Australia Extraterrestrial impact
Scheffers et al. [68] Q Australia Tsunami
Scheffers et al. [69] Q British Isles Storm
Scheffers et al. [70] Q British Isles Storm

Shane et al. [71] N New Zealand Submarine mass wasting
Suttner and Kido [72] D Alps Coastal processes

Terry and Goff [14] - - -
Thorkelson and Laughton [73] PPR northwestern Canada Tectonic

Trenhaile [74] - - Coastal processes
Weckwerth and Pisarska-Jamrozy [75] Q Poland Fluvial-periglacial

Williams [76] Q British Isles Storm
Williams and Hall [77] Q British Isles Storm

Yagishita and Komori [78] N Japan Mass wasting
Hearty and Tormey [26] Q Bahamas Storm

Cox et al. [27] Q Ireland Storm
Paris et al. [23] - - Storm
Paris et al. [24] Q Cape Verde, Mauritius, Reunion Tsunami

Ramalho et al. [25] Q Cape Verde Tsunami, coastal processes

Age abbreviations: PPR—Paleoproterozoic, NPR—Neoproterozoic, Cm—Cambrian, O—Ordovician, D—Devonian,
PZ2—Late Paleozoic, T—Triassic, J—Jurassic, K—Cretaceous, CZ—Cenozoic, Pg—Paleogene, N—Neogene,
Q—Quaternary and Recent.

Undoubtedly, some megaclasts were the focus of research, but these were not recognized as
megaclasts—a typical example is the work of Rovere et al. [79]. The other terms such as “boulders”
and “blocks” were used. Such articles are not covered by the quantitative analysis of the present
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paper because of two reasons. Their consideration would lead to the unbalanced and unjustified
bibliographical dataset. It is of special importance to focus on the use of the term “megaclast” in the
modern geoscience literature. However, the above-mentioned articles are discussed in this paper
separately, which avoids the problem of missing some important sources.

The content of each identified source was examined and, in particular, checked using certain
criteria. The years of publication are considered in order to reconstruct research dynamics. Attention
is paid to the geological age and geographical location of megaclasts. Palaeoenvironmental context
and/or origin of megaclasts mentioned in the chosen sources are specified. The results of the analysis
allow the main parameters of megaclast research to be characterized and to summarize its main
outcomes with regard to the spatio-temporal distribution of megaclasts and their relevance to facies
and specific geological processes.

4. Basic Trends of Megaclast Research

The total number of the megaclast-related articles, i.e., the articles employing the term “megaclast”,
published during 2000–2017 is relatively low (Table 1). On average, only three articles were published
each year during this time frame. However, the intensity of term use was unstable (Figure 2).
During the 2000s, the intensity was very low, although the number of the articles increased in the
mid-2000s, most probably, as result of interest to tsunami deposits as a consequence of the Indian
Ocean Tsunami of 2004 [6]. The situation changed in the 2010s, when the number of articles increased
significantly (Figure 2). Although term use tended to decline later, it appears that megaclasts attracted
relatively more attention during this decade. Interestingly, this tendency established before the
highly-important contributions of Blott and Pye [13] and Terry and Goff [14] were published and, thus,
these contributions themselves did not catalyze the noted intensification in research. What is also
important is that megaclast-related articles were published each year after 2001, which implies a kind
of continuity of interest on this term.
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The citation rate of megaclast-related articles is low-to-moderate. As the most representative
example, it is possible to say that the work of Blair and McPherson [1] was cited only 165 times
during 18 years, and not always in relevance to large clasts. The articles of Barbano et al. [28],
Noormets et al. [57,58], and Williams and Hall [77] are among the most successful articles in regard to
the number of citations. Many others can boast not more than 10 citations. This evidence also implies
relative weakness in the areas of megaclast research.

Those articles analyzed appear to be diverse, thematically. Although many focus on megaclasts
as indicators of coastal susceptibility to tsunamis and storms, others deal with a wide range of
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topics. The latter include continental and submarine slope processes, evolution of volcano edifices,
Neoproterozoic glaciations, terrane accretion, extraterrestrial environments, etc. Thematic diversity
is related chiefly to discussion of megaclasts of different ages and in connection with different
geological processes (Table 1). Of special importance is the appearance of a series of conceptual
papers. Some of them are directly concerned with megaclasts. For instance, Terry and Goff [14] focused
on megaclast-related nomenclatures and Bruno and Ruban [10] critically reviewed megaclast studies
on various cosmic bodies. Articles by Noormets et al. [57,58] provide almost classical discussions
of megaclast transport relevant to tsunamis. These are complemented by the work of Le Roux and
Vargas [49]. Another conceptually important topic draws a distinction between storm and tsunami
effects on megaclasts, which is treated comprehensively in the article by Lorang [52]. Lubova et al. [8]
explained the importance of large sedimentary particles with regard to geological heritage conservation
and geotourism. There are also conceptual papers that deal with the other subjects, but also treat
megaclasts as an important issue. A typical example is review of rocky coasts [74] where megaclasts
are common sedimentary particles.

5. Geological Spatio-Temporal Dimension of the Term Application

Bibliographical information collected for the purposes of the present article permits consideration
of spatio-temporal distribution of megaclasts. Indeed, the latter include only those large sedimentary
particles termed as “megaclasts”.

Megaclast-related articles fall into different intervals of geological history (Figure 3). Most
often, these studies are drawn from very young formations of Quaternary age. For instance,
there are megaclast accumulations in the coastal areas of Morocco that were produced by the
mid-18th-century tsunami [56]. Paleozoic and Mesozoic megaclasts are rarely studied. Surprisingly,
significant attention has been paid to Proterozoic megaclasts (Figure 3). These were examined in
northwestern Canada [35,46,64,73], the Western United States [47,48], and the British Isles [41].
The Paleoproterozoic Wernecke Supergroup in Yukon and the Neoproterozoic Kingston Peak
Formation in California provide representative examples of Precambrian megaclasts.
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Figure 3. Geological age of megaclasts studied during 2000–2017; the geological time scale after
Ogg et al. [80] (created by authors).

Megaclasts are reported from almost all continents and oceans (Figure 4). Most intensively, these
were studied in five major regions of the world, namely West Europe, Australia and New Zealand,
Western North America, Southern South America, and the Pacific and circum-Pacific. Best known are
Quaternary megaclasts of the British Isles and New Zealand. The former were studied, particularly,
by Scheffers et al. [69] and Williams and Hall [77], whereas Keigler et al. [44], Gaylor and Neall [36],
and Roverato et al. [66] made a significant contribution to the knowledge of the latter. Interestingly,
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not only Quaternary, but also Paleogene and Neogene megaclasts were examined in New Zealand and,
thus, the latter seems to have been the most important place for modern megaclast research because of
successful locally-developed projects resulting in a series of publications.
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Megaclasts demonstrate an affinity to very different facies (Table 1). Most often, these occur near
the shoreline, i.e., on beaches and inner shelves. In such cases, megaclasts are formed by rockfalls
and rockslides on retreated cliffs and then transported by tsunami and storm waves. As such, rocky
coasts open to oceans are the principal depositional environment for megaclast development. Typical
examples are the coasts of Oahu [57,58], Oman [40], and Galicia [62]. Although megaclasts are large
and heavy, these are often formed on destructed slopes and easily involved in the slope processes
in continental and submarine environments. As a result, they are typical for colluvial deposits and
also linked to volcanism-triggered debris flows and turbidites. Among other interesting phenomena,
it is important to note links of some megaclasts with past glaciations—e.g., erratic megaclasts of
Latvia described by Kalnina et al. [43] and gigantic Sturtian megaclasts South Australia mentioned
by Preiss et al. [65]—and magma-water interaction in ancient basins—e.g., Ordovician megaclasts
from the Argentina’s Puna Highland [32]. Megaclasts can be produced by extraterrestrial impacts.
On the Earth, this is reported by Salisbury et al. [67] in connection with the Lawn Hill circular structure
in northwest Queensland (Australia). However, such an origin of megaclasts is most typical on
various cosmic bodies [10]. Generally, megaclasts are produced by and involved in different geological
processes, the best documented, but actually not all of which are summarized in Figure 5.
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6. Discussion

The present analysis implies that megaclast research has progressed since the beginning of the
21st century. However, the intensity of use of the term “megaclast” remains questionable. On one hand,
the similarly-constrained search in the same bibliographical database demonstrates that the number of
articles published annually on cobbles and pebbles was in 45 and 121 times greater, respectively than
on megaclasts. On the other hand, cobbles and pebbles are significantly more common sedimentary
particles, and these terms have been employed actively during the past century. In contrast, megaclasts
are rare, and the term itself is new. In this case, it would be incorrect to say that modern megaclast
research is low in intensity. However, this kind of research is likely to become more active in recognition
of the largest stones on the Earth as megaclasts and to better understand their origin.

It should be stressed that the distribution of megaclasts in geological time and space considered
above is deduced from only the article employing the term “megaclast”. In such a case, further
comparison of this documented distribution with the expected distribution of megaclasts termed so or
not indicates on biases in use of the term “megaclast”. Three kinds of biases, namely stratigraphical,
geographical, and genetic biases can be detected, and these are discussed below.

The young age of the majority of studied megaclasts (Figure 3) implies their poor preservation in
the geological record. Most probably, they are subject to weathering and erosion by water and wind,
and so they disintegrate quickly into smaller particles over longer geological time scales. Megaclasts
often occur on rocky shores, and the relevant facies are also uncommon in the geological record [81,82].
However, the recognition of Precambrian and early Paleozoic megaclasts implies that some of such
large particles can be preserved under specific conditions, among which rapid sedimentation seems to
be the most important. The distribution of megaclasts through the geological time as reflected by the
published articles (Figure 3) may also be biased. If the relevant research is facilitated by an interest in
modern and historical tsunamis, it is not strange that large clasts of chiefly Quaternary age are the
main research focus in this trend.

The currently available knowledge of megaclast distribution (Figure 4) appears to be seriously
biased. Studies in Russia [8], Iran [83], and Egypt [84,85] point out the existence of numerous megaclasts
and their “fields” that are yet to attract any special investigation. Some impressive megaclasts are
known as geotourist attractions in different parts of the world—e.g., the erratic block on Letipea
Peninsula in Estonia [7], but these were not studied from a sedimentological point of view. Numerous
large clasts on various cosmic bodies such as planets and satellites, asteroids, and comets have been
recognized as megaclasts only very recently [10]. Undoubtedly, megaclast research should expand to
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the Arctic and Antarctica, Southern and Southeastern Asia, Africa, Central and Eastern Americas, etc.,
to fill existing geographical gaps. In other words, megaclasts known in these parts of the world should
be termed properly, i.e., as megaclasts.

An analysis of the available literature sources (Table 1) demonstrates that the majority of studies
focus more on the transport of megaclasts in a particular depositional environment than on their origin.
This is a very significant research bias. Of course, tsunami-versus-storm debates relevant to transport
of megaclasts on shores [23,26] are important, but it often remains unclear how these megaclasts were
formed initially. For instance, mechanisms revealed by Panek et al. [86] imply that megaclast formation
may be not so simple and fast as one may expect. If so, megaclasts may remain “attached” to the place
of their origin for some time. The other bias relevant to facies is linked to an evident over-emphasis
on large clasts occurring on ocean coasts. Quaternary megaclasts linked to active volcanism in New
Zealand [36,37] and the Paleoproterozoic megaclasts of Northwestern Canada [35,46,73] appear to
be highly-specific in regard to their origin, transport, and mode of preservation. Much attention has
been paid to them “occasionally”, i.e., only because of the long-term research projects focused on
unusual features of the host sedimentary complexes. In contrast, some other environments, in which
megaclasts are thought to be common, have been investigated less intensively. The proposed scheme of
the main megaclast-related geological processes that is based on the present literature review (Figure 5)
fails to consider several important phenomena. Growth and retreat of continental ice sheets should
produce significant number of erratic megaclasts that can be found, for instance, in northern Europe
and northern North America. Large particles may be formed on some lake coasts with steep slopes
formed of hard rocks such as granites. For instance, these can be studied on the shore of the Lake
Malawi in Africa. Weathering can lead to appearance of megaclasts via gradual “sculpturing” from
the parent rock, as this is described in Egypt by Sallam et al. [85]. Similarly, epikarst development
may result in separation of large blocks because of joint-controlled grike growth, as this is known
in the Lagonaki Highland of Russia (Figure 6). Road construction and other kinds of engineering
works may result in the appearance of artificial megaclasts. Particularly, these were reported by
Lubova et al. [8] from the Western Caucasus in Russia. Newly-formed and transported megaclasts
should be differentiated. For instance, many megaclasts associated with storm and tsunami deposits
were created via slope failure resulted from “normal” wave abrasion, not necessarily by big waves.
Generally, the available knowledge of megaclast origin (Figure 5) appears to be strongly biased when
compared to the more general genetic classification resulting from consideration of possible situations
of megaclast formation and transport (Table 2). Additionally, it may be sensible to distinguish types
of megaclasts depending on their lithological composition, i.e., siciciclastic, carbonate, mixed, etc.
For instance, a typical carbonate megaclast is shown on Figure 1.

The wide application of the term “megaclast” is a relatively new trend, and many geologists,
unfortunately, still avoid it. On the one hand, this narrows megaclasts research. On the other hand,
such megaclasts that are not known as megaclasts should be re-considered. For the purposes of this
brief review, it appears to be important to give several examples of important works that contribute
potentially to megaclast research, although do not use the term “megaclast”. Dott and Byers [87] in their
description of the Cambrian strata of Wisconsin, the United States note the existence of some “boulders”
that reach meters in diameter. Their origin is linked to palaeostorms. Johnson et al. [88] report large
“boulders” in Pliocene massive delta outwash deposits on an island in the Gulf of California in Mexico,
the formation of which was related to heavy, hurricane-related rain fall on land that cleared mountain
canyons of rock debris. Rovere et al. [79] focus on Quaternary storm-related giant “boulders” of
the Bahamas. Panek et al. [86] describe Quaternary formation of gigantic limestone blocks on the
Crimean Peninsula linked to processes of karstification and the Black Sea transgression. The studies
of Soukopova [89,90], Erdmann et al. [91], Hongo et al. [92], Johnson et al. [93], and Lau et al. [94]
should also be noted. In all these cases, megaclasts are considered in fact. Some regions like Sicily in
Italy [28,95–99] are well-known for large clast occurrence. Special attention should be paid to them in
order to document these particles and to distinguish true megaclasts from boulders. Undoubtedly,
the number of large clasts that are yet to be identified as megaclasts is significant.
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Russia (created by the author–D.A.R.).

Table 2. A tentative genetic classification of megaclasts; the sign “+” marks correspondence of
the categories.

Process Newly-Formed
Megaclasts

Transported
Megaclasts

Slope failure

Rockfall, landslide +
(colluvial megaclasts) +

Debris flow, submarine flow +

Triggered by wave abrasion +

Triggered by earthquake +

Deep-seated gravitational slope deformation + +

Triggered by human activity +

Volcanism
Eruption +

Debris flow +

Storms and tsunamis +

Weathering +
(aeluvial megaclasts)

Extraterrestrial impact +

Glacier activity +
(erratic megaclasts) +

Iceberg activity +

Tectonic jointing +

Large-scale tectonic processes +
(olistoliths, olistostromes)

Karstification (development of grikes) +

Human activity +
(artificial megaclasts) +

Note: this classification should be further justified and extended together with compilation of more genetic
knowledge of megaclasts.

Surprisingly, there is also important evidence of megaclasts from tourism. Due to their physical
and aesthetic parameters, megaclasts are often employed as tourist attractions [8]. A tentative analysis



Geosciences 2019, 9, 14 11 of 16

of Internet resources points to several impressive megaclasts occurrences in different countries;
importantly, these include erratic clasts and clasts formed by erosion and weathering (Table 3).
Moreover, some megaclasts serve as important elements of the local historical and cultural heritage.
Typical examples are the gigantic erratic Thunder Stone used as the basis of the famous monument in
the Russian city of Saint Petersburg (Figure 7A) and the stone erased to commemorate the historical
foundation of the other Russian city of Cherepovets (Figure 7B). The both are essentially erratic
megaclasts that experienced slight modification by artists. Apparently, these tourist attractions are
almost totally missed from the field of the term use.

Table 3. Selected megaclasts used as tourist attractions.

Name Location Origin Notes

Ehalkivi (Sunset Glow
Boulder)

Viru-Nigula Parish,
Lääne-Viru County,

Estonia
Erratic Height 7 m

Devils Marbles Tennant Creek, Northern
Territory, Australia Erosion Some clasts naturally balance on

one another

Wairere Boulders Northland Region, New
Zealand Erosion Clasts represent remnants of the

eroded basalt flow

Kummakivi
(Strange Stone) Ruokolahti, Finland Erratic? Length 7 m

Unnamed Champ Island, Franz
Josef Land, Russia Weathering? Stone spheres up to >1 m in size

Sosio Megablock Silicy, Italy Mass wasting Permian limestones

Krishna’s Butterball
(Vaan Irai Kal)

Mahabalipuram, Tamil
Nadu, India ? Height 6 m, width 5 m, clasts

rests on inclined slope
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7. Conclusions

The present review allows five general conclusions to be made. The megaclast research has
progressed significantly after the publication of a detailed classification for large sedimentary particles
by Blair and McPherson [1], and the use of the term “megaclast” accelerated in the mid-2000s and
the early 2010s. Although the age of megaclasts ranges from the Paleoproterozoic to the Present,
the majority are of Quaternary in age, which reflects partly on the low preservation potential of very
large sedimentary particles and partly the stratigraphical bias of the term use. The known geographical
distribution of megaclasts with over-emphasis on West Europe, Australia, and New Zealand, Western
North America, Southern South America, and the Pacific and circum-Pacific is strongly biased
geographically. Megaclasts are studied in different facies and geological processes, among which
rocky coasts, volcanism-triggered debris flows, and continental and submarine mass wasting are the
best known; this is the other, genetic bias of the use of the term “megaclast”. The proposed genetic
classification of megaclasts implies a wider spectrum of depositional environments than emphasized
in the literature. Erratic, karst-related, artificial, and some other megaclasts are mainly not termed as
megaclasts, which is a kind of failure in the term use.

Generally, the present review shows that use of the term “megaclast” in the modern research
is not only significantly restricted, but also biased. This makes the very knowledge of megaclasts
incomplete despite two decades of investigations. Active application of the term is necessary to
avoid current situation where we know about megaclasts defined as such and megaclasts defined
somehow else or not defined specifically. Otherwise, the term should be abandoned, although this is
not desirable because of its evident suitability. An important task for further research is understanding
why researchers accept the term so slowly. This depends on finding more efficient ways for introduction
of new terms in today’s geoscience.
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