Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: Polignano a Mare (Southern Italy)
2.2. UAV and IRT Surveys
- Photo inspection, importation and conversion of the coordinates into WGS84/33 N metric coordinate system.
- High-accuracy camera alignment by means of sparse bundle adjustment algorithm [65].
- High-quality depth maps calculation, generation of the dense point cloud (about 51 million points) and direct segmentation to remove unwanted objects.
2.3. IRT Data Processing and Correlation with UAV Data
3. Results and Discussion
3.1. Environmental Conditions and Rock Temperature Curves
3.2. Time Series of Air-Rock Temperature and Correlations with Rock Mass Properties
- Correlation temperature-topography: lower temperatures (minimum, maximum, median, mean temperature per layer), larger standard deviations and larger difference values were detected along indented surfaces on the reference section like tight bedding planes, which were shadowed also during the daytime, and in correspondence of jutting blocks (Figure 7, Figure S1—marker “a”). On the contrary, higher temperatures, lower standard deviations and lower differences were found for the open discontinuities and the hollow sectors below the jutting blocks, in which the warm air was preserved. However, a jutting block (rectangle marker in Figure 8a and Figure 9c) was identified in the form of positive thermal anomaly during the nighttime. This discrepancy is probably related to the different attitude of the identified rock block that, being oriented parallel to the direction of the solar radiation, gained more heat during the daytime with respect to the other sectors of the rock mass.
- Correlation temperature-rock color: darker levels corresponding to the dolomitic facies are characterized by higher temperatures (minimum, maximum, median, mean temperature per layer) and lower values of the standard deviation and difference, related to a more constant distribution of the temperature during the day (e.g., Figure 7, Figure S1—marker “b”, Figure 8b).
- Correlation temperature-jointing degree/GSI: higher temperature (minimum, maximum, median, mean temperature per layer) values were detected on the highly jointed layers (number of discontinuities/m and karst voids), characterized by lower GSI values (e.g., Figure 8a). However, the interpretation of the standard deviation and difference curves is uncertain: in some cases, they show negative peaks (Figure 7, marker c1 inside orange layer), while in others they show oscillating peaks (Figure 7, Figure S1—marker “c” inside orange layer). A possible explanation could be related to the discontinuity aperture: the layers represented by the marker c1 are formed by close joints, while that marked by c2 corresponds to a very fine laminated layer, with centimetric discontinuity apertures (Calcari a Chiancarelle). Moreover, the vegetation grown in the voids of the Calcari a Chiancarelle unit may have caused disturbances, too. As a matter of fact, the vegetation disturbed the thermograms acquired during the daytime and the nighttime, respectively, in the form of warm and cold thermal anomalies (Figure 8c).
3.3. Detection of Discontinuities in Thermal Images
3.3.1. Cooling Phase
3.3.2. Heating Phase
4. Main Outcomes and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolfe, W.L.; Zissis, G.J. The Infrared Handbook; General Dynamics: Reston, VA, USA, 1985. [Google Scholar]
- Dewitt, D.P.; Nutter, G.D. Theory and Practice of Radiation Thermometry; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- FLIR. User’s Manual FLIR T6xx Series. 2014. Available online: https://flir.custhelp.com/app/account/fl_download_manuals (accessed on 11 December 2021).
- Shannon, H.; Sigda, J.; van Dam, R.; Hendrickx, J.; Mclemore, V. Thermal camera imaging of rock piles at the Questa Molybdenum Mine, Questa, New Mexico. In Proceedings of the 22nd American Society of Mining and Reclamation Annual National Conference, Breckenridge, CO, USA, 18–25 June 2005. [Google Scholar]
- Prendes-Gero, M.-B.; Suárez-Domínguez, F.J.; González-Nicieza, C.; Álvarez-Fernández, M.I. Infrared thermography methodology applied to detect localized rockfalls in self-supporting underground mines. In Proceedings of the EUROCK 2013—The 2013 ISRM International Symposium—Rock Mechanics for Resources, Energy, and Environment, Wroclaw, Poland, 23–26 September 2013. [Google Scholar]
- Rees, W.G. Physical Principles of Remote Sensing; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Mineo, S.; Pappalardo, G. Rock emissivity measurement for infrared thermography engineering geological applications. Appl. Sci. 2021, 11, 3773. [Google Scholar] [CrossRef]
- Mongillo, M.A.; Wood, C.P.; Mongillo, M.A.; Wood, C.P. Thermal infrared mapping of White Island volcano, New Zealand. JVGR 1995, 69, 59–71. [Google Scholar] [CrossRef]
- Moxham, R.M.; Crandell, D.R.; Marlatt, W. Thermal features at Mount Rainier, Washington, as revealed by infrared surveys. US Geol. Surv. Prof. Pap. 1965, 1326, 93–100. [Google Scholar]
- Frodella, W.; Fidolini, F.; Morelli, S.; Pazzi, V. Application of infrared thermography for landslide mapping: The Rotolon DSGDS case study. Rend. Online Soc. Geol. Ital. 2015, 35, 144–147. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Pazzi, V. InfraRed thermographic surveys for landslide mapping and characterization: The Rotolon DSGSD (Northern Italy) case study. Ital. J. Eng. Geol. Environ. 2017, 1, 77–84. [Google Scholar]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 2012, 11, 15–27. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Angrisani, A.C.; di Martire, D.; Calcaterra, D. Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: The case study of Randazzo Landslide (NE Sicily). Landslides 2018, 15, 2173–2193. [Google Scholar] [CrossRef]
- Guerin, A.; Jaboyedoff, M.; Collins, B.D.; Derron, M.-H.; Stock, G.M.; Matasci, B.; Boesiger, M.; Lefeuvre, C.; Podladchikov, Y.Y. Detection of rock bridges by infrared thermal imaging and modeling. Sci. Rep. 2019, 9, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rinker, J.N. Airborne infrared thermal detection of caves and crevasses. Photogramm. Eng. Remote Sens. 1975, 41, 1391–1400. [Google Scholar]
- Liu, S.; Xu, Z.; Wu, L.; Ma, B.; Liu, X. Infrared imaging detection of hidden danger in mine engineering. In Proceedings of the Progress in Electromagnetics Research Symposium, Suzhou, China, 12–16 September 2011. [Google Scholar]
- Mineo, S.; Calcaterra, D.; Zampelli, S.P.; Pappalardo, G. Application of infrared thermography for the survey of intensely jointed rock slopes. Rend. Online Soc. Geol. Ital. 2015, 35, 212–215. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto test-site, Italy). Sensors 2018, 7, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squarzoni, C.; Galgaro, A.; Teza, G.; Acosta, C.A.T.; Pernito, M.A.; Bucceri, N. Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophys. Res. Abstr. 2008, 10. 2008–09254. [Google Scholar]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB toolbox for contactless recognition of surface and shallow weakness of a rock cliff by infrared thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S. Study of jointed and weathered rock slopes through the innovative approach of InfraRed thermography. Landslides Theory Pract. Model. 2019, 85–103. [Google Scholar]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide mapping and characterization through infrared thermography (IRT): Suggestions for a methodological approach from some case studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Adorno, V.; Barnobi, L.; la Rosa, F.; Leotta, A.; Paratore, M. Contributo della tecnologia laser scanner e termografia R nella caratterizzazione geomeccanica di un costone roccioso. In Proceedings of the Atti 13a Conferenza Nazionale ASITA, Bari, Italy, 1–4 December 2009. [Google Scholar]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 2013, 11, 131–140. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Gigli, G.; Casagli, N. Contribution of infrared thermography to the slope instability characterization. In Proceedings of the World Landslide Forum, Beijing, China, 2–6 June 2014; pp. 144–147. [Google Scholar]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography proposed for the estimation of the cooling rate index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Chicco, J.M.; Vacha, D.; Mandrone, G. Thermo-physical and geo-mechanical characterization of faulted carbonate rock masses (Valdieri, Italy). Remote Sens. 2019, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Lin, H.M.; Lee, D.H.; Fang, S.C. Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng. Geol. 2005, 80, 164–173. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Imposa, S.; Grassi, S.; Leotta, A.; la Rosa, F.; Salerno, D. A quick combined approach for the characterization of a cliff during a post-rockfall emergency. Landslides 2020, 17, 1063–1081. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 1–23. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G.; Blahůt, J.; Melis, M.T.; Funedda, A.; da Pelo, S.; Erbì, I.; Deiana, G.; Meloni, M.A.; Cocco, F. An infrared thermography approach to evaluate the strength of a rock cliff. Remote Sens. 2021, 13, 1265. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. InfraRed thermography presented as an innovative and non-destructive solution to quantify rock porosity in laboratory. Int. J. Rock Mech. Min. Sci. 2019, 115, 99–110. [Google Scholar] [CrossRef]
- Deng, N.-F.; Qiao, L.; Li, Q.; Hao, J.-W.; Wu, S. A method to predict rock fracture with infrared thermography based on heat diffusion analysis. Geofluids 2021, 1–13. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Q.; Pan, Y.; Peng, X.; Deng, P.; Huang, K. Experimental study on rock indentation using infrared thermography and acoustic emission techniques. J. Geophys. Eng. 2018, 15, 1864–1877. [Google Scholar] [CrossRef] [Green Version]
- Junique, T.; Vazquez, P.; Thomachot-Schneider, C.; Hassoun, I.; Jean-Baptiste, M.; Géraud, Y. The use of infrared thermography on the measurement of microstructural changes of reservoir rocks induced by temperature. Appl. Sci. 2021, 11, 559. [Google Scholar] [CrossRef]
- Grechi, G.; Fiorucci, M.; Marmoni, G.M.; Martino, S. 3D thermal monitoring of jointed rock masses through infrared thermography and photogrammetry. Remote Sens. 2021, 13, 957. [Google Scholar] [CrossRef]
- Mineo, S.; Caliò, D.; Pappalardo, G. UAV-based photogrammetry and infrared thermography applied to rock mass survey for geomechanical purposes. Remote Sens. 2022, 14, 473. [Google Scholar] [CrossRef]
- Loiotine, L.; Andriani, G.F.; Jaboyedoff, M.; Parise, M.; Derron, M.-H. Comparison of remote sensing techniques for geostructural analysis and cliff monitoring in coastal areas of high tourist attraction: The case study of Polignano a Mare (Southern Italy). Remote Sens. 2021, 13, 5045. [Google Scholar] [CrossRef]
- Ricchetti, G.; Ciaranfi, N.; Luperto-Sinni, E.; Mongelli, F.; Pieri, P. Geodinamica ed evoluzione sedimentaria e tettonica dell’avampaese apulo. Mem. Soc. Geol. It. 1988, 41, 57–82. [Google Scholar]
- Tropeano, M.; Sabato, L. Response of Plio-Pleistocene mixed bioclastic-lithoclastic temperate-water carbonate systems to forced regressions: The Calcarenite di Gravina Formation, Puglia, SE Italy. Geol. Soc. Lond. 2000, 172, 217–243. [Google Scholar] [CrossRef]
- Ciaranfi, N.; Pieri, P.; Ricchetti, G. Note alla carta geologica delle Murge e del Salento (Puglia centromeridionale). Mem. Soc. Geol. Ital. 1988, 41, 449–460. [Google Scholar]
- Parise, M.; Federico, A.; delle Rose, M.; Sammarco, M. Karst terminology in Apulia (southern Italy). Acta Carsologica 2003, 32, 65–82. [Google Scholar] [CrossRef]
- Parise, M. Surface and subsurface karst geomorphology in the Murge (Apulia, southern Italy). Acta Carsologica 2011, 40, 79–93. [Google Scholar] [CrossRef]
- Parise, M. Hazards in karst. In Proceedings of the International Interdisciplinary Scientific Conference, Plitvice Lakes, Croatia, 23–26 September 2009; pp. 155–162. [Google Scholar]
- Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T. Karst flash floods: An example from the Dinaric Karst (Croatia). Nat. Hazards Earth Syst. Sci. 2006, 6, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, F.; Parise, M.; de Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in Karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Del Prete, S.; Iovine, G.; Parise, M.; Santo, A. Origin and distribution of different types of sinkholes in the plain areas of southern Italy. Geodin. Acta 2010, 23, 113–127. [Google Scholar] [CrossRef]
- Ulusay, R. (Ed.) The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-07712-3. [Google Scholar]
- ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 135–140. [Google Scholar]
- Andriani, G.; Walsh, N. Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull. Eng. Geol. Environ. 2003, 62, 77–84. [Google Scholar] [CrossRef]
- Andriani, G.F.; Pastore, N.; Giasi, C.I.; Parise, M. Hydraulic properties of unsaturated calcarenites by means of a new integrated approach. J. Hydrol. 2021, 602, 126730. [Google Scholar] [CrossRef]
- Andriani, G.; Pellegrini, V. Qualitative assessment of the cliff instability susceptibility at a given scale with a new multidirectional method. Int. J. Geol. 2014, 8, 73–80. [Google Scholar]
- ISRM. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1988, 20, 189–200. [Google Scholar]
- Pahl, P.J. Estimating the mean length of discontinuity traces. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1981, 18, 221–228. [Google Scholar] [CrossRef]
- Lollino, P.; Martimucci, V.; Parise, M. Geological survey and numerical modeling of the potential failure mechanisms of underground caves. Geosyst. Eng. 2013, 16, 100–112. [Google Scholar] [CrossRef]
- Parise, M.; Ravbar, N.N.; Živanović, V.; Mikszewski, A.; Kresic, N.; Mádl-Szőnyi, J.; Kukuric, N.; Kukurić, N. Hazards in Karst and managing water resources quality. In Karst Aquifers—Characterization and Engineering; Stevanovic, Z., Ed.; Professional Practice in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2015; pp. 601–687. [Google Scholar]
- Hoek, E.; Brown, E.T. The hoek-brown failure criterion and GSI—2018 edition. J. Rock Mech. Geotech. Eng. 2018, 11, 445–463. [Google Scholar] [CrossRef]
- Marinos, V. New proposed GSI classification charts for weak or complex rock masses. Bull. Geol. Soc. Greece 2017, 43, 1248. [Google Scholar] [CrossRef] [Green Version]
- Marinos, P.; Hoek, E. GSI—A geologically friendly tool for rock mass strength estimation. In Proceedings of the International Conference on Geotechnical and Geological Engineering (GeoEng2000), Melbourne, VIC, Australia, 19–24 November 2000; pp. 1422–1442. [Google Scholar]
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J. Structure from Motion in the Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 1–24. ISBN 9780444641779. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Agisoft LLC, Agisoft Metashape Professional Software, Version 1.6 2020, 160. St. Petersburg, Russia. Available online: https://www.agisoft.com/downloads/installer/ (accessed on 12 October 2021).
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Rosnell, T.; Honkavaara, E. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 2012, 12, 453–480. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Ruggles, S.; Clark, J.; Franke, K.W.; Wolfe, D.; Reimschiissel, B.; Martin, R.A.; Okeson, T.J.; Hedengren, J.D. Comparison of SfM computer vision point clouds of a landslide derived from multiple small UAV platforms and sensors to a TLS-based model. J. Unmanned Veh. Syst. 2016, 4, 246–265. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; International Society for Optics and Photonics: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- Gaussorgues, G. Infrared Thermography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Hudson, R.D. Infrared System Engineering; Wiley: Hoboken, NJ, USA, 1969; Volume 1. [Google Scholar]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sens. Switz. 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- FLIR Tools Thermal Analysis and Reporting (Desktop). Teledyne FLIR. Available online: https://www.flir.com/products/flir-tools/ (accessed on 6 July 2021).
- Robertson, E.C. Thermal Properties of Rocks; US Department of the Interior: Washington, DC, USA, 1988; pp. 88–441. [Google Scholar]
Property | Calcarenite di Gravina | Calcare di Bari Micritic Facies | Calcare di Bari Dolomitic Facies | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
Dry density (Mg/m3) | 1.48 | 1.72 | 1.60 | 2.44 | 2.52 | 2.47 | 2.47 | 2.72 | 2.62 |
Sat. density (Mg/m3) | 1.88 | 2.06 | 1.97 | 2.49 | 2.57 | 2.52 | 2.52 | 2.73 | 2.64 |
Porosity, n (%) | 36.13 | 45.16 | 40.75 | 6.81 | 11.48 | 9.03 | 0.68 | 9.74 | 4.47 |
water absorption, wa (%) | 18.29 | 29.69 | 23.06 | 1.00 | 4.79 | 2.69 | 0.21 | 1.96 | 1.03 |
Degree of saturation, Sr % | 73.91 | 99.77 | 89.98 | 36.06 | 99.84 | 70.90 | 49.74 | 89.61 | 70.84 |
DS | Type | Mean Dip Direction ° | Mean Dip ° | Weight % | Spacing (m) | Persistence (m) | Aperture (cm) | Water Conditions | Filling | JRC |
---|---|---|---|---|---|---|---|---|---|---|
J1 | Joint | 122 | 88 | 50 | 0.12–1.00 | 0.22 | Up to 0.5 | Dry to damp | Generally absent | V–VII |
J2 | Joint | 33 | 84 | 20 | 0.08–0.30 | 1.99 | Up to 1.5 | Dry to damp | Generally absent | V–VII |
S0 | Bedding | 224 | 5 | 30 | 0.05–1 | >20 | Up to 1.5 | Dry to damp | Generally absent | VIII |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loiotine, L.; Andriani, G.F.; Derron, M.-H.; Parise, M.; Jaboyedoff, M. Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings. Geosciences 2022, 12, 116. https://doi.org/10.3390/geosciences12030116
Loiotine L, Andriani GF, Derron M-H, Parise M, Jaboyedoff M. Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings. Geosciences. 2022; 12(3):116. https://doi.org/10.3390/geosciences12030116
Chicago/Turabian StyleLoiotine, Lidia, Gioacchino Francesco Andriani, Marc-Henri Derron, Mario Parise, and Michel Jaboyedoff. 2022. "Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings" Geosciences 12, no. 3: 116. https://doi.org/10.3390/geosciences12030116
APA StyleLoiotine, L., Andriani, G. F., Derron, M. -H., Parise, M., & Jaboyedoff, M. (2022). Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings. Geosciences, 12(3), 116. https://doi.org/10.3390/geosciences12030116