Preliminary Characterisation of an Italian Soft Rock with a Block-in-Matrix Fabric
Abstract
:1. Introduction
2. The Italian Sedimentary Mélange
2.1. Collection of Intact Samples
2.2. Preparation of Specimens for Laboratory Tests
3. Laboratory Tests
3.1. Point Load Tests
PL Test Results
3.2. Unconfined Compression Tests
Unconfined Compression Test Results
4. Results
- the axial deformation at time i between two points, say P0 and P1;
- and the vertical displacements of points P0 and P1 at time i;
- the initial (vertical) distance between points P0 and P1.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Button, E.; Riedmuller, G.; Schubert, W.; Klima, K.; Medley, E. Tunnelling in tectonic melanges—Accommodating the impacts of geomechanical complexities and anisotropic rock mass fabrics. Bull. Eng. Geol. Environ. 2004, 63, 109–117. [Google Scholar] [CrossRef]
- Lindquist, E.S.; Goodman, R.E. Strength and deformation properties of a physical model melange. In Proceedings of the 1st North America Rock Mechanics Symposium; Nelson, P.P., Laubach, S.E., Eds.; A.A. Balkema: Austin, TX, USA, 1994; pp. 843–850. [Google Scholar]
- Medley, E.W. The Engineering Characterization of Melanges and Similar Block-in-Matrix Rocks (Bimrocks). Ph.D. Thesis, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- Medley, E.W. Estimating Block Size Distributions of Melanges and Similar Block-in-Matrix Rocks (Bimrocks). In Proceedings of the 5th North American Rock Mechanics Symposium (NARMS), Toronto, ON, Canada, 7–10 July 2002; pp. 509–606. [Google Scholar]
- Wakabayashi, J.; Medley, E.W. Geological Characterization of Melanges for Practitioners. Felsbau 2004, 22, 10–18. [Google Scholar]
- Barla, G.; Perello, P. Introduzione alla caratterizzazione geologica e geotecnica delle formazioni complesse. In Proceedings of the MIR 2014—XV ciclo di Conferenze di Meccanica e Ingegneria delle Rocce, Torino, ON, USA, 19–20 November 2014; pp. 11–38. [Google Scholar]
- Lindquist, E.S. The Strength and Deformation Properties of Melange. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- D’Elia, B.; Distefano, D.; Esu, F.; Federico, G. Slope movements in structurally complex formations. In Proceedings of the International Symposium on Engineering in Complex Rock Formations, Beijing, China, 3–7 November 1986; pp. 430–436. [Google Scholar]
- Anagnostou, G.; Schuerch, R.; Ramoni, M. TBM tunnelling in complex rock formations. In Proceedings of the XV MIR Conference “Interventi e Opere Nelle Formazioni Complesse”, Torino, ON, USA, 19–20 November 2014; Chapter 15. pp. 307–330. [Google Scholar]
- Medley, E.W.; Lindquist, E.S. The engineering significance of the scale-independence of some Franciscan melanges in California, USA. In Proceedings of the the 35th U.S. Symposium on Rock Mechanics (USRMS), Reno, NV, USA, 5–7 June 1995; pp. 907–914. [Google Scholar]
- Medley, E.W. Orderly Characterization of Chaotic Franciscan Melanges. Felsbau 2001, 19, 20–33. [Google Scholar]
- Festa, A.; Pini, G.A.; Dilek, Y.; Codegone, G. Mélanges and mélange-forming processes: A historical overview and new concepts. Int. Geol. Rev. 2010, 52, 1040–1105. [Google Scholar] [CrossRef]
- Dong, W.; Pimentel, E.; Anagnostou, G. Experimental Investigations into the Mechanical Behaviour of the Breccias Around the Proposed Gibraltar Strait Tunnel. Rock Mech. Rock Eng. 2013, 46, 923–944. [Google Scholar] [CrossRef] [Green Version]
- Cen, D.; Huang, D.; Ren, F. Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface. Acta Geotech. 2017, 12, 391–413. [Google Scholar] [CrossRef]
- Napoli, M.L.; Barbero, M.; Scavia, C. Geomechanical characterization of an Italian complex formation with a block-in-matrix fabric. In Proceedings of the Mechanics and Rock Engineering, from Theory to Practice (EUROCK 2021), Torino, Italy, 20–25 September 2021; p. 8. [Google Scholar]
- Napoli, M.L.; Milan, L.; Barbero, M.; Scavia, C. Identifying uncertainty in estimates of bimrocks volumetric proportions from 2D measurements. Eng. Geol. 2020, 278, 105831. [Google Scholar] [CrossRef]
- Adam, D.; Markiewicz, R.; Brunner, M. Block-in-Matrix Structure and Creeping Slope: Tunneling in Hard Soil and/or Weak Rock. Geotech. Geol. Eng. 2014, 32, 1467–1476. [Google Scholar] [CrossRef]
- Napoli, M.L.; Barbero, M.; Scavia, C. Tunneling in heterogeneous rock masses with a block-in-matrix fabric. Int. J. Rock Mech. Min. Sci. 2021, 138, 11. [Google Scholar] [CrossRef]
- Napoli, M.L. 3D slope stability analyses of a complex formation with a block-in-matrix fabric. In Proceedings of the Challenges and Innovations in Geomechanics. IACMAG 2021. Lecture Notes in Civil Engineering; Springer: Turin, Italy, 2021; Volume 126, p. 7. [Google Scholar]
- Napoli, M.L.; Barbero, M.; Scavia, C. Analyzing slope stability in bimrocks by means of a stochastic approach. In Proceedings of the European Rock Mechanics Symposium, EUROCK 2018, Saint Petersburg, Russia, 22–26 May 2018. [Google Scholar]
- Napoli, M.L.; Barbero, M.; Scavia, C. Slope stability in heterogeneous rock masses with a block-in-matrix fabric. In Proceedings of the Rock Mechanics for Natural Resources and Infrastructure Development-Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM, Foz do Iguassu, Brazil, 13–18 September 2019; pp. 3482–3489. [Google Scholar]
- Pinyol, N.M.; Vaunat, J.; Alonso, E.E. A constitutive model for soft clayey rocks that includes weathering effects. Géotechnique 2007, 57, 29. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.E.; Pinyol, M.N. Slope stability in slightly fissured claystones and marls. Landslides 2015, 12, 643–656. [Google Scholar] [CrossRef] [Green Version]
- ISRM. Rock Characterization, Testing and Monitoring—ISRM Suggested Methods; Brown, E.T., Ed.; Pergamon Press: Oxford, UK, 1981; ISBN 978-975-93675-4-1. [Google Scholar]
- Agustawijaya, D.S. The uniaxial compressive strength of soft rock. Civ. Eng. Dimens. 2007, 9, 9–14. [Google Scholar]
- Zhai, H.; Canbulat, I.; Hebblewhite, B.; Zhang, C. Review of Current Empirical Approaches for Determination of the Weak Rock Mass Properties. Procedia Eng. 2017, 191, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Cano, M.; Tomas, R. An approach for characterising the weathering behaviour of Flysch slopes applied to the carbonatic Flysch of Alicante (Spain). Bull. Eng. Geol. Env. 2015, 74, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.R.; Jamin, N.H. Preliminary view of geotechnical properties of soft rocks of Semanggol formation at Pokok Sena, Kedah. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012117. [Google Scholar] [CrossRef]
- Bonini, M.; Debernardi, D.; Barla, M.; Barla, G. The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech. Rock Eng. 2009, 42, 361–388. [Google Scholar] [CrossRef]
- Marinos, P.; Hoek, E. Estimating the geotechnical properties of heterogeneous rock masses such as Flysch. Bull. Eng. Geol. Environ. 2001, 60, 85–92. [Google Scholar] [CrossRef]
- Miscevic, P.; Vlastelica, G. Durability Characterization of Marls from the Region of Dalmatia, Croatia. Geotech. Geol. Eng. 2011, 29, 771–781. [Google Scholar] [CrossRef]
- Dong, W.; Pimentel, E.; Anagnostou, G. On the Mechanical Behaviour of the Gibraltar Strait Breccias. In Proceedings of the The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), Beijing, China, 15–16 October 2012; pp. 409–416. [Google Scholar]
- Kahraman, S.; Alber, M.; Fener, M.; Gunaydin, O. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci. 2008, 45, 1469–1479. [Google Scholar] [CrossRef]
- Kahraman, S.; Alber, M. Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. Int. J. Rock Mech. Min. Sci. 2006, 43, 1277–1287. [Google Scholar] [CrossRef]
- D’Elia, B.; Picarelli, L.; Leroueil, S.; Vaunant, J. Geotechnical characterisation of slope movements in structurally complex clay soil and stiff jointed clays. Riv. Ital. Geotec. 1998, 3, 5–32. [Google Scholar]
- Akram, M.S. Physical and numerical investigation of conglomeratic rocks. Ph.D. Thesis, The University of New South Wales, Sydney, Australia, 2010. [Google Scholar]
- Li, Z.; Xu, G.; Zhao, X.; Fu, Y.; Su, C. Applicability of Needle Penetration Test on Soft Rocks. EJGE 2016, 21, 7209–7222. [Google Scholar]
- Nikolaidis, G.; Saroglou, C. Engineering geological characterization of block-in-matrix rocks. Bull. Geol. Soc. Greece 2016, 50, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Ulusay, R.; Gokceoglu, C. The modified block punch index test. Can. Geotech. J. 1997, 34, 991–1001. [Google Scholar] [CrossRef]
- Sonmez, H.; Tuncay, E.; Gokceoglu, C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci. 2004, 41, 717–729. [Google Scholar] [CrossRef]
- Singh, T.N.; Kainthola, A.; Venkatesh, A. Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech. Rock Eng. 2012, 45, 259–264. [Google Scholar] [CrossRef]
- Tuncay, E.; Hasancebi, N. The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock. Bull. Eng. Geol. Environ. 2009, 68, 491–497. [Google Scholar] [CrossRef]
- Vlastelica, G.; Miščević, P.; Pavić, N. Testing the shear strength of soft rock at different stages of laboratory simulated weathering. Građevinar 2017, 68, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.E.; Pineda, J.A.; Cardoso, R. Degradation of marls; two case studies from the Iberian Peninsula. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2010, 23, 47–75. [Google Scholar] [CrossRef]
- Kanjii, M.A. Critical issues in soft rocks. J. Rock Mech. Geotech. Eng. 2014, 6, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, C.; Li, Z.; Hu, D.; Hou, J. Analysis of mechanical behavior of soft rocks and stability control in deep tunnels. J. Rock Mech. Geotech. Eng. 2014, 6, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Pineda, J.A.; Alonso, E.E.; Romero, E. Environmental degradation of claystones Environmental degradation of claystones. Géotechnique 2013, 64, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Alitalesh, M.; Mollaali, M.; Yazdani, M. Correlation between uniaxial strength and point load index of rocks. In Proceedings of the Japanese Geotechnical Society Special Publication the 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kukuoka City, Japan, 9–13 November 2015; pp. 504–507. [Google Scholar]
- Sonmez, H.; Tunusluoglu, C. New considerations on the use of block punch index for predicting the uniaxial compressive strength of rock material. Int. J. Rock Mech. Min. Sci. 2008, 45, 1007–1014. [Google Scholar] [CrossRef]
- Rabat, A.; Cano, M.; Tomás, R.; Tamayo, E.; Alejano, L.R. Evaluation of Strength and Deformability of Soft Sedimentary Rocks in Dry and Saturated Conditions Through Needle Penetration and Point Load Tests: A Comparative Study. Rock Mech. Rock Eng. 2020, 53, 2707–2726. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, N.; Bornert, M.; Desrues, J.; Bésuelle, P.; Viggiani, G. Volumetric digital image correlation applied to x-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 2007, 43, 193–205. [Google Scholar] [CrossRef]
- Lin, Q.; Labuz, J.F. Fracture of sandstone characterized by digital image correlation. Int. J. Rock Mech. Min. Sci. 2013, 60, 235–245. [Google Scholar] [CrossRef]
- Caselle, C.; Umili, G.; Bonetto, S.; Costanzo, D.; Ferrero, A.M. Evolution of local strains under uniaxial compression in an anisotropic gypsum sample. In Proceedings of the Geotechnical Research for Land Protection and Development, CNRIG, Lecco, Italy, 3–5 July 2019; pp. 454–461. [Google Scholar]
- Festa, A.; Ogata, K.; Pini, G.A.; Dilek, Y.; Codegone, G.; Macedonio, T. Late Oligocene—Early Miocene olistostromes (sedimentary mélanges) as tectono-stratigraphic constraints to the geodynamic evolution of the exhumed Ligurian accretionary complex (Northern Apennines, NW Italy). Int. Geol. Rev. 2015, 57, 540–562. [Google Scholar] [CrossRef]
- RIG. Raccomandazioni ISRM per la Misura Della Resistenza al Punzonamento. 1994, Volume 1, pp. 63–71. Available online: https://associazionegeotecnica.it/articoli_rig/raccomandazioni-per-la-misura-della-resistenza-al-punzonamento/ (accessed on 25 November 2021).
- ASTM. In D5731 Standard Test Method for Determination of the Point Load Strength Index of Rock; American Society for Testing and Materials: West Conshohocken, PA, USA, 1995; pp. 1–7.
- ISRM. The Complete ISRM Suggested Methods for Rock Characterization, Testing & Monitoring: 1974–2006; Ulusay, R., Hudson, J.A., Eds.; Compilation arranged by the ISRM Turkish National Group: Ankara, Turkey, 2007; ISBN 978-975-93675-4-1. [Google Scholar]
- Frankovská, J.; Durmekova, T. Specific features of weak rock laboratory testing. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 12–15 September 2011; pp. 337–342. [Google Scholar]
- Tsiambaos, G. Engineering Geological behaviour of heterogeneous and chaotic rock masses. In Proceedings of the 12th International Congress—Bulletin of the Geological Society of Greece, Patras, Greece, 19–22 May 2010. [Google Scholar]
- Xu, Y.; Cai, M. Numerical study on the influence of cross-sectional shape on strength and deformation behaviors of rocks under uniaxial compression. Comput. Geotech. 2017, 84, 129–137. [Google Scholar] [CrossRef]
- Pellegrino, A.; Sulem, J.; Barla, G. The effects of slenderness and lubrication on the uniaxial behavior of a soft limestone. Int. J. Rock Mech. Min. Sci. 1997, 34, 333–340. [Google Scholar] [CrossRef]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. A re-examination of slenderness ratio effect on rock strength: Insights from DEM grain-based modelling. Eng. Geol. 2018, 246, 245–254. [Google Scholar] [CrossRef]
- Hawkins, A.B. Aspects of rock strength. Bull. Eng. Geol. Environ. 1998, 57, 17–30. [Google Scholar] [CrossRef]
- Sönmez, H.; Osman, B. The Limitations of Point Load Index for Predicting of Strength of Rock Material and a New. In Proceedings of the 61st Geological Congress of Turkey, Ankara, Turkey, 24–28 March 2008. [Google Scholar]
- Marinos, P.; Hoek, E. GSI: A geologically friendly tool for rock mass strength estimation. In Proceedings of the ISRM International Symposium, Melbourne, Australia, 19–24 November 2000. [Google Scholar]
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-source 2D Digital Image Correlation Matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
Grade * | Term | Uniaxial Comp. Strength (MPa) | Point Load Index (MPa) | Field Estimate of Strength | Examples |
---|---|---|---|---|---|
R6 | Extremely Strong | >250 | >10 | Specimen can only be chipped with a geological hammer | Fresh basalt, chert, diabase, gneiss, granite, quartzite |
RS | Very strong | 100–250 | 4–10 | Specimen requires many blows of a geological hammer to fracture it | Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, peridotite, rhyolite, tuff |
R4 | Strong | 50–100 | 2–4 | Specimen requires more than one blow of a geological hammer to fracture it | Limestone, marble, sandstone, schist |
R3 | Medium strong | 25–50 | 1–2 | Cannot be scraped or peeled with a pocket fractured with a single blow from a geological hammer | Concede, phyllite, schist, siltstone |
R2 | Weak | 5–25 | ** | Can be peeled with a pocketknife with difficulty, shallow indentation made by firm blow with point of a geological hammer | Chalk, claystone, potash, marl, siltstone, shale, rocksalt |
R1 | Very weak | 1–5 | ** | Crumbles under firm blows with point of a geological hammer, can be peeled by a pocketknife. | Highly weathered or altered rock, shale |
R0 | Extremely weak | 0.25–1 | ** | Indented by thumbnail | Stiff fault gouge |
Sample | De2 [m2] | P [kN] | Is [kN/m2] | De [mm] | F [-] | Is50 [kPa] | UCS [MPa] |
---|---|---|---|---|---|---|---|
1 | 0.0011 | 0.00 | 0.00 | 33.84 | 0.84 | 0.0 | - |
2 | 0.0007 | 0.28 | 392.50 | 26.71 | 0.75 | 296.0 | 4.14 |
3 | 0.0007 | 0.00 | 0.00 | 26.47 | 0.75 | 0.0 | - |
4 | 0.0006 | 0.00 | 0.00 | 23.94 | 0.72 | 0.0 | - |
5 | 0.0011 | 0.50 | 449.08 | 33.37 | 0.83 | 374.4 | 5.24 |
6 | 0.0053 | 0.10 | 18.87 | 72.80 | 1.18 | 22.3 | Inv. |
7 | 0.0046 | 0.10 | 21.81 | 67.72 | 1.15 | 25.0 | min2 |
8 | 0.0036 | 0.00 | 0.00 | 59.78 | 1.08 | 0.0 | - |
9 | 0.0017 | 0.00 | 0.00 | 41.62 | 0.92 | 0.0 | - |
10 | 0.0036 | 0.10 | 27.45 | 60.36 | 1.09 | 29.9 | Inv. |
11 | 0.0032 | 0.48 | 150.72 | 56.43 | 1.06 | 159.2 | 2.23 |
12 | 0.0022 | 0.30 | 136.76 | 46.84 | 0.97 | 132.8 | 1.86 |
13 | 0.0017 | 0.15 | 86.07 | 41.75 | 0.92 | 79.4 | 1.11 |
14 | 0.0032 | 0.23 | 72.25 | 56.42 | 1.06 | 76.3 | 1.07 |
15 | 0.0019 | 0.00 | 0.00 | 43.42 | 0.94 | 0.0 | - |
16 | 0.0037 | 0.05 | 13.63 | 60.57 | 1.09 | 14.9 | min1 |
17 | 0.0018 | 0.15 | 81.77 | 42.83 | 0.93 | 76.3 | 1.07 |
18 | 0.0031 | 0.00 | 0.00 | 55.73 | 1.05 | 0.0 | - |
19 | 0.0022 | 0.00 | 0.00 | 47.19 | 0.97 | 0.0 | - |
20 | 0.0008 | 0.18 | 217.38 | 28.78 | 0.78 | 169.5 | 2.37 |
21 | 0.0017 | 0.30 | 173.16 | 41.62 | 0.92 | 159.4 | 2.23 |
22 | 0.0016 | 0.10 | 62.40 | 40.03 | 0.90 | 56.5 | 0.79 |
23 | 0.0022 | 0.30 | 133.81 | 47.35 | 0.98 | 130.6 | 1.83 |
24 | 0.0015 | 0.32 | 209.33 | 39.10 | 0.90 | 187.4 | 2.62 |
25 | 0.0021 | 0.30 | 145.64 | 45.39 | 0.96 | 139.4 | 1.95 |
26 | 0.0012 | 0.20 | 163.37 | 34.99 | 0.85 | 139.1 | 1.95 |
27 | 0.0008 | 0.48 | 600.96 | 28.26 | 0.77 | 464.9 | Max1 |
28 | 0.0009 | 0.00 | 0.00 | 29.86 | 0.79 | 0.0 | - |
29 | 0.0013 | 0.32 | 245.55 | 36.10 | 0.86 | 212.1 | 2.97 |
30 | 0.0009 | 0.00 | 0.00 | 30.45 | 0.80 | 0.0 | - |
31 | 0.0009 | 0.00 | 0.00 | 29.90 | 0.79 | 0.0 | - |
32 | 0.0008 | 0.40 | 486.07 | 28.69 | 0.78 | 378.5 | Max2 |
33 | 0.0016 | 0.10 | 60.62 | 40.62 | 0.91 | 55.2 | 0.77 |
34 | 0.0016 | 0.30 | 181.85 | 40.62 | 0.91 | 165.6 | 2.32 |
35 | 0.0016 | 0.27 | 173.16 | 39.49 | 0.90 | 155.7 | 2.18 |
36 | 0.0002 | 0.00 | 0.00 | 12.36 | 0.53 | 0.0 | - |
37 | 0.0021 | 0.20 | 95.73 | 45.71 | 0.96 | 91.9 | 1.29 |
Average σc (MPa) | 2.10 | ||||||
Standard deviations (-) | 1.12 |
Specimen | VBP [%] | H/D [-] | UCS [MPa] | Eglob [GPa] | EaverageDIC [GPa] |
---|---|---|---|---|---|
1 | 0.2 | 1.38 | 2.2 | 0.27 | 0.39 |
2 | 0.1 | 1.74 | 0.98 | 0.30 | 1.44 |
3 | 1.4 | 1.52 | 1.59 | 0.01 | - |
4 | 5.1 | 1.67 | 2.04 | 0.13 | 0.20 |
5 | 6.9 | 1.75 | 2.40 | 0.17 | 0.38 |
6 | 5.2 | 1.4 | 2.66 | 0.13 | - |
7 | 4.9 | 2.1 | 3.12 | 0.45 | 1.23 |
8 | 2.6 | 1.9 | 2.15 | 0.18 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoli, M.L.; Milan, L.; Barbero, M.; Scavia, C. Preliminary Characterisation of an Italian Soft Rock with a Block-in-Matrix Fabric. Geosciences 2022, 12, 70. https://doi.org/10.3390/geosciences12020070
Napoli ML, Milan L, Barbero M, Scavia C. Preliminary Characterisation of an Italian Soft Rock with a Block-in-Matrix Fabric. Geosciences. 2022; 12(2):70. https://doi.org/10.3390/geosciences12020070
Chicago/Turabian StyleNapoli, Maria Lia, Lorenzo Milan, Monica Barbero, and Claudio Scavia. 2022. "Preliminary Characterisation of an Italian Soft Rock with a Block-in-Matrix Fabric" Geosciences 12, no. 2: 70. https://doi.org/10.3390/geosciences12020070
APA StyleNapoli, M. L., Milan, L., Barbero, M., & Scavia, C. (2022). Preliminary Characterisation of an Italian Soft Rock with a Block-in-Matrix Fabric. Geosciences, 12(2), 70. https://doi.org/10.3390/geosciences12020070