Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline
Abstract
:1. Introduction
2. An Outline of the “Main” Variscan Belt
- (i)
- The Rheno-Hercynian Domain exposed in Devon-Cornwall, and Ardenne represents the northern fold-and-thrust belt developed northward up to the Variscan front in the Avalonian part of Laurussia.
- (ii)
- The Saxo-Thuringian Domain, represented in NW Brittany by the Léon block, is a microcontinent rifted from Gondwana in the Ordovician and rewelded to it in the Carboniferous.
- (iii)
- The Armorican Domain, well exposed in Central Brittany and Normandy, is another microcontinent separated from Gondwana in Early Ordovician, and rewelded to it during the Variscan orogeny. It is worth noting that both in the Saxo-Thuringian and Armorican domains, the Paleozoic formations unconformably overlie deformed Ediacaran rocks ascribed to the Cadomian orogen [7,18,19].
- (iv)
- The Moldanubian Domain is the most metamorphic part of the Variscan orogen formed by a stack of ductile nappes. In France, it is well developed in the southern part of the Armorican Massif, the entire Massif Central, and the Pyrenees. In Massif Central and southern part of the Armorican Massif, the well-acknowledged stack of nappes evolves from highly metamorphic rocks to sedimentary formations from North to South, respectively. From top to bottom, there are: (a) the Neoproterozoic basement nappe, (b) the eo-Variscan ophiolite nappe, (c) the Upper Gneiss Unit with high-pressure rocks, (d) the MP/MT Lower Gneiss Unit, (e) the LP/LT Para-autochthonous Unit, (f) the Fold-and-Thrust belt, and (g) the southern foreland basin (Figure 3). A complete description of the Moldanubian nappe stack is beyond the scope of this paper (for details on the Massif Central, and South Armorican areas, see [18,22,24,25,26,27]).
3. The East Variscan Branch of Western Europe
3.1. The Corsica-Sardinia-Maures Segment
3.2. The Variscan Belt in the West Alpine Helvetic Basement
3.3. The Variscan Basement of the Penninic Zone
4. The Variscan Massifs in the South Alpine Domain
4.1. The Ivrea Zone
4.2. The Serie dei Laghi (Lakes Series)
4.3. The Orobic Alps
4.4. The Variscan Massifs of Brixen, Valsugana, and Agordo
4.5. The Carnic Alps and Karawanken Unit
5. The Variscan Fragments in the Austroalpine Nappe Stack
5.1. The Ophiolitic Suites
5.2. The Low-Grade Metamorphic Units
5.3. The Crystalline Complexes
5.3.1. The Lower Metamorphic Complexes
5.3.2. The Upper Metamorphic Complexes
5.3.3. The Western and Southern Variscan Metamorphic Complexes
5.4. The Relative Arrangement of the Variscan Units in the Austroalpine Nappe Stack
6. A Possible Interpretation: The Alpidic Orocline
- The South Alpine units of Strona Ceneri, Serie dei Laghi, Brixen schists, and Carnic Alps, present significant lithological, metamorphic, and structural features suggesting that this domain consists of several nappes comparable to the Moldanubian Domain. In this framework, the northern boundary of this domain, called eo-Variscan ophiolitic suture (Figure 2), is missing. We argue that it has been erased by the Peri-Adriatic Line that represents a major lithospheric discontinuity,
- The low-grade metamorphic units of the Greywacke nappe, Paleozoic of Graz and Gurktal nappe are interpreted as the Paleozoic sedimentary cover of a Neoproterozoic basement belonging to another continental block. That pattern suggests similarities with the Armorica microcontinent. The Ritting, and Silvretta ophiolites might be located at the northern boundary of this block.
- A northern continent is represented by the Micaschist–marble complex, Koriden gneiss complex, the units South of the Tauern window, the micaschists and gneiss of the Wechsel, “Core” gneiss, and Grobgneiss complexes. This block includes also the Speik ophiolites formed in a back-arc basin and thus do not represent a true plate boundary. Moreover, in agreement with previous works [123,133], we suggest that the Wechsel magmatic arc was formed in response to a south-directed oceanic subduction, followed by continental collision. These northern ocean and continent have been called Prototethys and Hunia/Galatia block, respectively [125,152]. However, in our terminology, the terms of Rheic suture and Laurussia (or Avalonia: i.e., the southern part of Laurussia) will be preferred, since they better emphasizes the place of the Alpine Variscan units in a unitary framework.
- To the North of the Wechsel arc, an unexposed continental basement, ascribed here to Laurussia, is postulated in this palinspastic reconstruction (Figure 12).
7. Conclusions: A Continuous Zonation Reworked by Oroclinal Bending
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vai, G.B.; Cocozza, T. Tentative schematic zonation of the Hercynian chain in Italy. Bull. Soc. Geol. Fr. 1986, 8, 95–114. [Google Scholar] [CrossRef]
- Von Raumer, J.F.; Neubauer, F. Late Precambrian and Paleozoic evolution of the Alpine basement- An overview. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 625–639. [Google Scholar]
- Von Raumer, J.-F.; Stampfi, G.M.; Bussy, F. Gondwana-derived microcontinents, the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine basements? Their place in the European Paleozoic framework. GSA Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
- Spiess, R.; Cesare, B.; Mazzoli, C.; Sassi, R.; Sassi, F.P. The crystalline basement of the Adria microplate in the eastern Alps: A review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic. Rendiconti Lincei Scienze Fisiche Naturali 2010, 21, S31–S50. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J.F. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Matte, P. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Carosi, R.; Palmeri, R. Orogen-parallel tectonic transport in the Variscan belt of northeastern Sardinia (Italy): Implications for the exhumation of medium-pressure metamorphic rocks. Geol. Mag. 2002, 139, 497–511. [Google Scholar] [CrossRef]
- Guillot, S.; Ménot, R.P. Paleozoic evolution of the external crystalline massifs of the Western Alps. C. R. Geosci. 2009, 341, 253–265. [Google Scholar] [CrossRef]
- Guillot, S.; di Paola, S.; Ménot, R.P.; Ledru, P.; Spalla, M.I.; Gosso, G.; Schwartz, S. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps. Bull. Soc. Géol. Fr. 2009, 180, 483–500. [Google Scholar] [CrossRef]
- Compagnoni, R.; Ferrando, S.; Lombardo, B.; Radulesco, N.; Rubatto, D. Paleo-European crust of the Italian Western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. J. Virtual Explor. 2010, 36, 228. [Google Scholar] [CrossRef]
- Padovano, M.; Elter, F.M.; Pandeli, E.; Franceschelli, M. The East Variscan Shear Zone: New insights into its role in the Late Carboniferous collision in southern Europe. Int. Geol. Rev. 2012, 54, 957–970. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Cottle, J.M.; Law, R.D. Transpressive deformation in the Southern European Variscan Belt: New insights from the Aiguilles Rouges Massif (Western Alps). Tectonics 2020, 39, e2020TC006153. [Google Scholar] [CrossRef]
- Kossmat, F. Gliederung der varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamts 1927, 1, 1–39. [Google Scholar]
- Meinhold, G. Franz Kossmat-Subdivision of the Variscan Mountains—A translation of the German text with supplementary notes. Hist. Geo Space Sci. 2017, 8, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Matte, P. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
- Franke, W. The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol. Soc. Lond. Spec. Publ. 2000, 179, 35–61. [Google Scholar] [CrossRef]
- Faure, M.; Bé Mézème, E.; Duguet, M.; Cartier, C.; Talbot, J.Y. Paleozoic tectonic evolution of medio-europa from the example of the French Massif Central and Massif Armoricain. J. Virtual Explor. 2005, 19, 1–25. [Google Scholar] [CrossRef]
- Ballèvre, M.B.; Ducassou, C.; Pitra, P. Palaeozoic history of the Armorican Massif: Models for the tectonic evolution of the suture zones. C. R. Geosci. 2009, 341, 174–201. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Arenas, R.; Abati, J.; Sánchez Martínez, S.; Díaz García, F.; Fernández Suárez, J.; González Cuadra, P.; Castiñeiras, P.; Gómez Barreiro, J.; Díez Montes, A.; et al. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. C. R. Geosci. 2009, 341, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Schulmann, K.; Konopasek, J.; Janousek, V.; Lexa, O.; Lardeaux, J.M.; Edel, J.B.; Stipska, P.; Ulrich, S. An Andean type Palaeozoic convergence in the Bohemian Massif. C. R. Geosci. 2009, 341, 266–286. [Google Scholar] [CrossRef]
- Lardeaux, J.M.; Schulmann, K.; Faure, M.; Janoucek, V.; Lexa, O.; Skrzypek, E.; Edel, J.B.; Stipska, P. The Moldanubian Zone in the French Massif Central, Vosges/ Schwarzwald and Bohemian Massif revisited: Differences and similarities. Geol. Soc. Lond. Spec. Publ. 2014, 405, 7–44. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K.; Lexa, O.; Lardeaux, J.M. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci. Rev. 2018, 177, 589–612. [Google Scholar] [CrossRef]
- Faure, M.; Leloix, C.; Roig, J.-Y. L’Evolution polycyclique de la chaine hercynienne. Bull. Soc. Geol. Fr. 1997, 168, 695–705. [Google Scholar]
- Faure, M.; Bé Mézème, E.; Cocherie, A.; Rossi, P.; Chemenda, A.; Boutelier, D. Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics 2008, 27, TC2008. [Google Scholar] [CrossRef] [Green Version]
- Faure, M.; Lardeaux, J.-M.; Ledru, P. A review of the pre-Permian geology of the Variscan French Massif Central. Compt. Rendus Geosci. 2009, 341, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Lardeaux, J.-M. Deciphering orogeny: A metamorphic perspective. Examples from European Alpine and Variscan belts—Part II: Variscan metamorphism in the French Massif Central- A review. A. Bull. Soc. Géol. Fr. 2014, 185, 281–310. [Google Scholar] [CrossRef]
- Arthaud, F. Etude Tectonique et Microtectonique Comparée de Deux Domaines Hercyniens: Les Nappes de la Montagne Noire (France) et l’Anticlinorium de l’Iglesiente (Sardaigne); Université des Sciences et Techniques du Languedoc: Montpellier, France, 1970; p. 175. [Google Scholar]
- Engel, W.; Feist, R.; Franke, W. Le Carbonifère anté-Stéphanien de la Montagne Noire: Rapports entre mise en place des nappes et sédimentation. Bull. Bur. De Rech. Géologiques Et Minières 1982, 2, 341–389. [Google Scholar]
- Delvolvé, J.J.; Vachard, D.; Souquet, P. Stratigraphic record of thrust propagation, Carboniferous foreland basin, Pyrenees, with emphasis on Pays-de-Sault (France/Spain). Geologische Rundschau 1998, 87, 363–372. [Google Scholar] [CrossRef]
- Laumonier, B. Notice explicative de la carte géologique à 1/25 000 du synclinal de Villefranche-de-Conflent entre Jujols et Nohèdes (massif du Coronat, Pyrénées-Orientales, France). Rev. Géol. Pyréenne 2016, 3, 22. [Google Scholar]
- Edel, J.-B.; Montigny, R.; Tuizat, R. Late Paleozoic rotations of Corsica and Sardinia: New evidence from paleomagnetic and K–Ar studies. Tectonophysics 1981, 79, 201–203. [Google Scholar] [CrossRef]
- Pin, C. Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 1990, 177, 215–227. [Google Scholar] [CrossRef]
- Robardet, M. The Armorica “microplate”: Fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 125–148. [Google Scholar] [CrossRef]
- Forestier, F.H. Métamorphisme Hercynien et Anté-Hercynien dans le Bassin du Haut-Allier (Massif Central Français); Thèse d’État; University Clermont-Ferrand: Clermont-Ferrand, France, 1961; p. 300. [Google Scholar]
- Ménot, R.-P. An overview of the geology of the Belledonne Massif (external crystalline massifs of Western Alps). Schweiz. Mineral. Petrogr. Mitt. 1988, 70, 33–53. [Google Scholar]
- Carmignani, L.; Carosi, R.; di Pisa, A. The hercynian chain in Sardinia (Italy). Geodin. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Carosi, R.; Frassi, C.; Iacopini, D.; Montomoli, C. Post collisional transpressive tectonics in northern Sardinia (Italy). J. Virtual Explor. 2005, 19, 1–30. [Google Scholar] [CrossRef]
- Rossi, P.; Oggiano, G.; Cocherie, A. A restored section of the “southern Variscan realm’’ across the Corsica–Sardinia microcontinent. C. R. Geosci. 2009, 341, 224–238. [Google Scholar] [CrossRef]
- Ballèvre, M.; Manzotti, P.; Dal Piaz, G.V. Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps). Tectonics 2018, 37, 786–817. [Google Scholar] [CrossRef] [Green Version]
- Advokaat, E.L.; van Hinsbergen, D.J.J.; Maffione, M.; Langereis, C.G.; Vissers, R.L.M.; Cherchi, A.; Schroeder, R.; Madani, H.; Columbu, S. Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet. Sci. Lett. 2014, 401, 183–195. [Google Scholar] [CrossRef]
- Maffione, M.; Speranza, F.; Faccenna, C.; Cascella, A.; Vignaroli, G.; Sagnotti, L. A synchronous Alpine and Corsica-Sardinia rotation. J. Geophys. Res. 2008, 113, 1–25. [Google Scholar] [CrossRef]
- Sàbat, F.; Gelabert, B.; Rodriguez-Perea, A. Minorca, an exotic Balearic island (western Mediterranean). Geol. Acta 2018, 16, 411–426. [Google Scholar] [CrossRef]
- Rossi, P.; Cocherie, A. Genesis of a Variscan batholith: Field, mineralogical and geochemical evidence from the Corsica-Sardinia batholith. Tectonophysics 1991, 195, 319–346. [Google Scholar] [CrossRef]
- Faure, M.; Rossi, P.; Gaché, J.; Melleton, J.; Frei, D.; Li, X.; Lin, W. Variscan orogeny in Corsica: New structural and geochronological insights, and its place in the Variscan geodynamic framework. Int. J. Earth Sci. 2014, 103, 1533–1551. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, F.; Dallai, L.; Carminati, E.; Tiepolo, M.; Ghezzo, C. Exhumation of a Variscan orogenic complex: Insights into the composite granulitic–amphibolitic metamorphic basement of Southeast Corsica (France). J. Metam. Geol. 2008, 26, 403–436. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Carosi, R.; Montomoli, C. Pressure- temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy. Lithos 2013, 175–176, 272–284. [Google Scholar] [CrossRef]
- Avigad, D.; Rossi, P.; Gerdes, A.; Abbo, A. Cadomian metasediments and Ordovician sandstone from Corsica: Detrital zircon U-Pb-Hf constrains on their provenance and paleogeography. Int. J. Earth Sci. 2018, 107, 2803–2818. [Google Scholar] [CrossRef]
- Schneider, J.; Corsini, M.; Reverso-Peil, A.; Lardeaux, J.-M. Thermal and mechanical evolution of an orogenic wedge during Variscan collision: An example in the Maures-Tanneron massif (SE France). Geol. Soc. Lond. Spec. Publ. 2014, 405, 313–331. [Google Scholar] [CrossRef]
- Oliot, E.; Melleton, J.; Schneider, J.; Corsini, M.; Gardien, V.; Rolland, Y. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): New in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull. Soc. Geol. Fr. 2015, 186, 145–169. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Corsini, M.; Petroccia, A.; Cottle, J.M.; Iaccarino, S. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int. J. Earth Sci. 2020, 109, 2261–2285. [Google Scholar] [CrossRef]
- Bussy, F.; Hernandez, J.; von Raumer, J. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges/Mont-Blanc Massifs, western Alps). Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Faure-Muret, A. Etudes Géologiques Sur le Massif de l’Argentera-Mercantour; Mémoires du Service de la Carte Géologique de la France, Imprimerie Nationale: Paris, France, 1955; p. 336. [Google Scholar]
- Bordet, P.; Bordet, C. Belledonne-Grande Rousses et Aiguilles Rouges Mont Blanc: Quelques données nouvelles sur leurs rapports structuraux. Livre à la mémoire du professeur Fallot. Mém. Hors Sér. Société Géologique Fr. 1963, 1, 309–316. [Google Scholar]
- Carme, F. Existence de deux formations détritique remarquables dans les schistes cristallins anté-houiller du Taillefer (chaîne de Belledonne Alpes françaises). C. R. Acad. Sci. Paris 1965, 260, 6656–6659. [Google Scholar]
- Fernandez, A.; Guillot, S.; Ménot, R.P.; Ledru, P. Late Paleozoic polyphased tectonics in the SW Belledonne massif (external crystalline massifs, French Alps). Geodin. Acta 2002, 15, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Fréville, K.; Trap, P.; Faure, M.; Melleton, J.; Li, X.H.; Lin, W. New structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne massif (France). Tectonophysics 2018, 146, 14–42. [Google Scholar] [CrossRef] [Green Version]
- Jouffray, F.; Spalla, M.I.; Lardeaux, J.M.; Filippi, M.; Rebay, G.; Corsini, M.; Gosso, G. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): A dismembered cryptic suture zone. Int. J. Earth Sci. 2020, 109, 1273–1294. [Google Scholar] [CrossRef]
- Jacob, J.-B.; Guillot, S.; Rubato, D.; Janots, E.; Melleton, J.; Faure, M. Carboniferous high pressure metamorphism and deformation in the Belledonne Massif (Western Alps). J. Metam. Geol. 2021, 39, 1009–1044. [Google Scholar] [CrossRef]
- Pin, C.; Carme, F. A Sm-Nd isotopic study of 500 Ma old oceanic crust in the Variscan belt of Western Europe: The Chamrousse ophiolite complex, Western Alps (France). Contrib. Miner. Pet. 1987, 96, 406–413. [Google Scholar] [CrossRef]
- Ménot, R.-P.; Peucat, J.J.; Scarenzi, D.; Piboule, M. 496 my age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): Evidence of a Lower Paleozoic oceanization. Earth Planet. Sci. Lett. 1988, 88, 82–92. [Google Scholar] [CrossRef]
- Dobmeier, C. Variscan P-T deformation paths from the southwestern Aiguilles Rouges massif (external massif, western Alps) and their implication for its tectonic evolution. Int. J. Earth Sci. 1998, 87, 107–123. [Google Scholar] [CrossRef]
- Von Raumer, J.; Bussy, F. 2004. Mont Blanc and Aiguilles Rouges Geology and their polymetamorphic basement. Mémoires de Géologie 2004, 42, 204. [Google Scholar]
- Debon, F.; Guerrot, C.; Ménot, R.-P.; Vivier, G.; Cocherie, A. Late Variscan granites in the Belledonne massif (French Western Alps): An Early Visean magnesian plutonism. Schweiz. Mineral. Und Petrogr. Mitt. 1998, 78, 67–85. [Google Scholar]
- Genier, F.; Bussy, F.; Epard, J.L.; Baumgartner, L. Water-assisted migmatization of meta-graywackes in a Variscan shear zone, Aiguilles-Rouges massif, western Alps. Lithos 2008, 102, 575–597. [Google Scholar] [CrossRef]
- Elter, F.M.; Musumeci, G.; Pertusati, P.C. Late Hercynian shear zones in Sardinia. Tectonophysics 1990, 176, 387–404. [Google Scholar] [CrossRef]
- Corsini, M.; Rolland, Y. Late evolution of the southern European Variscan Belt: Exhumation of the lower crust in a context of oblique convergence. C. R. Geosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
- Carosi, R.; Petroccia, A.; Iaccarino, S.; Simonetti, M.; Langone, A.; Montomoli, C. Kinematics and Timing Constraints in a Transpressive Tectonic Regime: The Example of the Posada-Asinara Shear Zone (NE Sardinia, Italy). Geosciences 2020, 10, 288. [Google Scholar] [CrossRef]
- Choukroune, P.; Ballèvre, M.; Cobbold, P.; Gautier, Y.; Merle, O.; Vuichard, J.P. Deformation and motion in the western Alpine arc. Tectonics 1986, 5, 215–226. [Google Scholar] [CrossRef]
- Manzotti, P.; Ballèvre, M.; Poujol, M. Detrital zircon geochronology in the Dora Maira and Zone Houillère: A record of sediment travel paths in the Carboniferous. Terra Nova 2016, 28, 279–288. [Google Scholar] [CrossRef]
- Desmons, J.; Compagnoni, R.; Cortesogno, L.; Frey, M.; Gaggero, L. Pre-Alpine metamorphism of the internal zone of the Western Alps. Schweiz. Mineral. Und Petrogr. Mitt. 1999, 79, 23–39. [Google Scholar]
- Marotta, A.M.; Spalla, M.I. Permian–Triassic high thermal regime in the Alps: Result of Late Variscan collapse or continental rifting? Validation by numerical modeling. Tectonics 2007. [Google Scholar] [CrossRef]
- Spalla, M.I.; Zanoni, D.; Marotta, A.M.; Rebay, G.; Roda, M.; Zucali, M.; Gosso, G. The transition from Variscan collision to continental break-up in the Alps: Insights from the comparison between natural data and numerical model predictions. Geol. Soc. Lond. Spec. Publ. 2014, 405, 363–400. [Google Scholar] [CrossRef]
- Regorda, A.; Lardeaux, J.M.; Roda, M.; Marotta, A.M.; Spalla, M.I. How many subductions in the Variscan orogeny? Insights from numerical models. Geosci. Front. 2020, 11, 1025–1052. [Google Scholar] [CrossRef]
- Monié, P. Preservation of Hercynian 40Ar/39Ar ages through high-pressure low temperature Alpine metamorphism in the Western Alps. Eur. J. Mineral. 1990, 2, 343–361. [Google Scholar] [CrossRef]
- Guillot, F.; Schaltegger, U.; Bertrand, J.-M.; Deloule, E.; Baudin, T. Zircon U-Pb geochronology of Ordovician magmatism in the polycyiclic Ruitor Massif (Internal W-Alps). Int. J. Earth Sci. 2002, 91, 964–978. [Google Scholar] [CrossRef]
- Giacomini, F.; Braga, R.; Tiepolo, M.; Tribuzio, R. New constraints on the origin and age of Variscan eclogitic rocks (Ligurian Alps, Italy). Contrib. Miner. Pet. 2007, 153, 29–53. [Google Scholar] [CrossRef]
- Maino, M.; Gaggero, L.; Langone, A.; Seno, S.; Fanning, M. Cambro-Silurian magmatisms at the northern Gondwana margin (Penninic basement of the Ligurian Alps). Geosci. Front. 2019, 10, 315–330. [Google Scholar] [CrossRef]
- Pfeiffer, H.R.; Biino, G.; Ménot, R.P.; Stille, P. Ultramafic rocks in the pre-Mesozoic basement of the Central and External Western Alps. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 119–143. [Google Scholar]
- Schaltegger, U.; Gebauer, D.; von Quadt, A. The mafic-ultramafic rock association of Loderio-Biasca (lower Pennine nappes, Ticino, Switzerland): Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem. Geol. 2002, 186, 265–279. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fugenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Eichhorn, R.; Loth, G.; Höll, R.; Finger, F.; Schermaier, A.; Kennedy, A. Multistage variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib. Mineral. Petrol. 2000, 139, 418–435. [Google Scholar] [CrossRef]
- Eichhorn, R.; Loth, G.; Kennedy, A. Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data. Contrib. Mineral. Petrol. 2001, 142, 147–162. [Google Scholar] [CrossRef]
- Kozlik, M.; Raitha, J.G.; Gerdes, A. U–Pb, Lu–Hf and trace element characteristics of zircon from the Felbertal scheelite deposit (Austria): New constraints on timing and source of W mineralization. Chem. Geol. 2016, 421, 112–126. [Google Scholar] [CrossRef]
- Vavra, G.; Frisch, W. 1989. Pre-Variscan back-arc and island-arc magmatism in the Tauern window (Eastern Alps). Tectonophysics 1989, 169, 271–280. [Google Scholar] [CrossRef]
- Poli, M.E.; Zanferrari, A. The Agordo basement (NE Italy): A 500 Ma-long geological record in the Southalpine crust, IGCP No. 276. In Contributions to the Geology of Italy with Special Regards to the Paleozoic Basements; Carmignani, L., Sassi, F.P., Eds.; Newsletter: Siena, Italy, 1992; pp. 283–296. [Google Scholar]
- Castellarin, A.; Selli, L.; Picotti, V.; Cantelli, L. La tettonica delle Dolomiti nelle quadro delle Alpi Meridionali. Mem. Della Soc. Geol. Ital. 1998, 53, 133–143. [Google Scholar]
- Zanchetta, S.; Malusà, G.M.; Zanchi, A. Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 2015, 7, 662–681. [Google Scholar] [CrossRef] [Green Version]
- Cassinis, G.; Perotti, C.R.; Ronchi, A. Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations. Int. J. Earth Sci. Geol. 2012, 101, 129–157. [Google Scholar] [CrossRef]
- Giobbi Origoni, E.; Gregnanin, A. The crystalline basement of the “Massiccio delle Tre Valli Bresciane”: New petrographic and chemical data. Mem. Soc. Geol. It. 1983, 26, 133–144. [Google Scholar]
- Mottana, A.; Nicoletti, M.; Petrucciani, G.; Liborio, G.; De Capitani, L.; Bocchio, R. Pre-Alpine and Alpine evolution of the Southalpine basement of the Orobic Alps. Geol. Rundsch. 1985, 74, 353–366. [Google Scholar] [CrossRef]
- Gansser, A.; Pantic, N. Prealpine events along the Eastern Insubric Line (Tonale Line, northern Italy). Eclogae Geol. Helv. 1988, 81, 567–577. [Google Scholar]
- Milano, P.F.; Pennacchioni, G.; Spalla, M.I. Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps). Eclogae Geol. Helv. 1988, 81, 273–293. [Google Scholar]
- Diella, V.; Spalla, M.I.; Tunesi, A. Contrasted thermo-mechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy). J. Metamorph. Geol. 1992, 10, 203–219. [Google Scholar] [CrossRef]
- Siletto, G.B.; Spalla, M.I.; Tunesi, A.; Lardeaux, J.M.; Colombo, A. Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 583–596. [Google Scholar]
- Gosso, G.; Siletto, G.B.; Spalla, M.I. International ophiolite symposium field excursion guide—Continental rifting to ocean floor metamorphism (21st–23rd September 1995): First day: H-T/L-P metamorphism and structures in the South-Alpine basement near Lake Como, Orobic Alps; intracontinental imprints of the Permo-Triassic rifting. Ofioliti 1997, 22, 133–145. [Google Scholar]
- Spalla, M.I.; Gosso, G. Pre-Alpine tectonometamorphic units in the central Southern Alps: Structural and metamorphic memory. Mem. Sci. Geol. 1999, 51, 221–229. [Google Scholar]
- Spalla, M.I.; Siletto, G.B.; di Paola, S.; Gosso, G. The role of structural and metamorphic memory in the distinction of tectono-metamorphic units: The basement of the Como lake in the Southern Alps. J. Geodyn. 2000, 30, 191–204. [Google Scholar] [CrossRef]
- Spalla, M.I.; Zanoni, D.; Gosso, G.; Zucali, M. Deciphering the geologic memory of a Permian conglomerate of the Southern Alps by pebble P-T estimates. Int. J. Earth Sci. 2009, 98, 203–226. [Google Scholar] [CrossRef]
- Zanoni, D.; Spalla, M.I.; Gosso, G. Vestiges of lost tectonic units in conglomerate pebbles? A test in Permian sequences of the Southalpine Orobic Alps. Geol. Mag. 2010, 147, 98–122. [Google Scholar] [CrossRef]
- Boriani, A.; Giobbi Origoni, E.; Borghi, A.; Caironi, V. The evolution of the Serie dei Laghi (Strona-Ceneri and Scisti dei Laghi): The upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics 1990, 182, 103–118. [Google Scholar] [CrossRef]
- Giobbi Origoni, E.; Zappone, A.; Boriani, A.; Bocchio, R.; Morten, L. Relics of pre-Alpine ophiolites in the Serie dei Laghi (Western Southern Alps). Schweiz. Mineral. Petrogr. Mitt. 1997, 77, 187–207. [Google Scholar]
- Franz, L.; Romer, R.L. Caledonian high-pressure metamorphism in the Strona-Ceneri Zone (Southern Alps of southern Switzerland and northern Italy). Swiss J. Geosci. 2007, 100, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Spalla, M.I.; Gosso, G.; Marotta, A.M.; Zucali, M.; Salvi, F. Analysis of natural tectonic systems coupled with numerical modelling of the polycyclic continental lithosphere of the Alps. Int. Geol. Rev. 2010, 52, 1268–1302. [Google Scholar] [CrossRef]
- Ring, U.; Richter, C. 1994. The Variscan structural and metamorphic evolution of the eastern Southalpine basement. J. Geol. Soc. Lond. 1994, 151, 755–766. [Google Scholar] [CrossRef]
- Hammerschmidt, K.; Stöckhert, B. A K-Ar and 40Ar/39Ar study on white micas from the Brixen Quartzophyllite, southern Alps. Evidence for argon loss at low temperatures. Contrib. Mineral. Petrol. 1987, 95, 393–406. [Google Scholar] [CrossRef]
- Schönlaub, H.P.; Histon, K. The Palaeozoic evolution of the Southern Alps. Mitt. Österr. Geol. Ges. 2000, 92, 15–34. [Google Scholar]
- Pondrelli, M.; Corradini, C.; Simonetto, L.; Corriga, M.G.; Kido, E.; Mossoni, A.; Spalletta, C.; Suttner, T.J.; Carta, N. Depositional evolution of a lower Paleozoic portion of the Southalpine domain: The Mt. Pizzul area (Carnic Alps, Italy). Int. J. Earth Sci. 2014, 104, 147–178. [Google Scholar] [CrossRef]
- Venturini, C. Field Workshop on Carboniferous to Permian Sequence of the Pramollo-Nassfeld Basin (Carnic Alps), 2–8 September 1990; Mus. Friulano Sci. Nat.: Udine, Italy, 1990; pp. 1–159. [Google Scholar]
- Spalletta, C.; Venturini, C. Late Devonian-early Carboniferous synsedimentary tectonic evolution of the Palaeocarnic domain (Southern Alps, Italy). Giorn. Geol. 1995, 56, 211–222. [Google Scholar]
- Läufer, A.L.; Hubich, D.H.; Loeschke, J.L. 2001. Variscan geodynamic evolution of the Carnic Alps (Austria/Italy). Int. J. Earth Sci. 2001, 90, 855–870. [Google Scholar]
- Vachard, D.; Izart, A.; Cózar, P. Mississippian (middle Tournaisian-late Serpukhovian) lithostratigraphic and tectonosedimentary units of the southeastern Montagne Noire (Hérault, France). Géologie de la France 2017, 1, 47–88. [Google Scholar]
- Alabouvette, B.; Demange, M.; Guérangé-Lozes, J.; Ambert, P. Notice Explicative de la Carte Géologique au 1:250000 de Montpellier; Bureau de Recherches Géologiques et Minières: Orléans, France, 2003. [Google Scholar]
- Kurz, W.; Fritz, H. Tectonometamorphic evolution of the Austroalpine Nappe Complex in the Central Eastern Alps consequences for the Eo-Alpine evolution of the Eastern Alps. Int. Geol. Rev. 2003, 45, 1100–1127. [Google Scholar] [CrossRef]
- Schuster, R.; Koller, F.; Hoeck, V.; Hoinkes, G.; Bousquet, R. Explanatory notes to the map: Metamorphic structure of the Alps-metamorphic evolution of the Eastern Alps. Mitt. Der Österr. Mineral. Ges. 2004, 149, 175–199. [Google Scholar]
- Schulz, B.; Bombach, K.; Pawlig, S.; Braetz, H. Neoproterozoic to early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (eastern Alps). Int. J. Earth Sci. 2004, 93, 824–843. [Google Scholar] [CrossRef]
- Neubauer, F.; Frisch, W. The Austroalpine metamorphic basement east of the Tauern Window. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 515–536. [Google Scholar]
- Neubauer, F.; Frisch, W.; Schmerold, R.; Schlöser, M. Metamorphosed and dismembered ophiolite suites in the basement units of the Eastern Alps. Tectonophysics 1989, 164, 49–62. [Google Scholar] [CrossRef]
- Neubauer, F.; Hoinkes, G.; Sassi, F.P.; Handler, R.; Höck, V.; Koller, F.; Frank, W. Pre-Alpine metamorphism of the Eastern Alps. Schweiz. Mineral. Petrogr. Mitt. 1999, 79, 41–62. [Google Scholar]
- Frisch, W.; Ménot, R.P.; Neubauer, F.; von Raumer, J.F. Correlation and volution of the Alpine basement. Schweiz. Mineral. Petrogr Mitt. 1990, 70, 265–285. [Google Scholar]
- Neubauer, F.; Frisch, W.; Hensen, B.T. Early Palaeozoic tectonothermal events in basement complexes of the Eastern Greywacke zone (eastern Alps): Evidence from U-Pb zircon data. Int. J. Earth Sci. 2002, 91, 775–786. [Google Scholar] [CrossRef]
- Faryad, S.W.; Melcher, F.; Hoinkes, G.; Puhl, J.; Meisel, T.; Frank, W. Relics of eclogite facies metamorphism in the Austroalpine basement, Hochgrössen (Speik complex), Austria. Miner. Pet. 2002, 74, 49–73. [Google Scholar]
- Melcher, F.; Meisel, T. A metamorphosed early Cambrian crust-mantle transition in the Eastern Alps. J. Petrol. 2004, 45, 1689–1723. [Google Scholar] [CrossRef]
- Chang, R.H.; Neubauer, F.; Liu, Y.J.; Yuan, S.H.; Genser, J.; Huang, Q.W.; Guan, Q.B.; Yi, S.Y. Hf isotopic constraints for the Austroalpine basement evolution of Eastern Alps: Review and new data. Earth Sci. Rev. 2021, 221, 103772. [Google Scholar] [CrossRef]
- Stüwe, K.; Schuster, R. Initiation of subduction in the Alps: Continent or ocean? Geology 2010, 38, 175–178. [Google Scholar] [CrossRef]
- Schorn, S.; Stüwe, K. The Plankogel detachment of the Eastern Alps: Petrological evidence for an orogen-scale extraction fault. J. Metam. Geol. 2016, 34, 147–166. [Google Scholar] [CrossRef]
- Herg, A.; Stüwe, K. Tectonic interpretation of the metamorphic field gradient south of the Koralpe in the Eastern Alps. Austrian J. Earth Sci. 2018, 111, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, F.; Sassi, F.P. The Austroalpine Quartzphyllites and related Paleozoic formation. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 423–439. [Google Scholar]
- Fritz, H.; Neubauer, F. Geodynamic aspects of the Silurian and Early Devonian sedimentation in the Paleozoic of Graz (Eastern Alps). Schweiz. Mineral. Petrogr. Mitt. 1988, 68, 359–367. [Google Scholar]
- Gasser, D.; Stüwe, K.; Fritz, H. Internal structural geology of the Paleozoic of Graz. Int. J. Earth Sci. 2010, 99, 1067–1081. [Google Scholar] [CrossRef]
- Handler, R.; Dallmeyer, R.D.; Neubauer, F.; Hermann, S. 40Ar/39Ar mineral ages from the Kaintaleck nappe, Austroalpine basement, Eastern Alps. Geol. Carpath. 1999, 50, 229–239. [Google Scholar]
- Becker, L.P. Erläuterungen zu Blatt 162 Köflach. Geologische Karte der Republik Österreich 1: 50.000; Geologische, Bundesanstalt: Wien, Austria, 1979. [Google Scholar]
- Mandl, M.; Kurz, W.; Hauzenberger, C.; Fritz, H.; Klötzli, U.; Schuster, R. Pre-Alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): Constraints from in-situ LA-ICP-MS U/Pb zircon geochronology. Lithos 2018, 296–299, 412–430. [Google Scholar] [CrossRef]
- Yuan, S.-H.; Neubauer, F.; Liu, Y.-J.; Genser, J.; Liu, B.; Yu, S.-Y.; Chang, R.-H.; Guan, Q.-B. Widespread Permian granite magmatism in Lower Austroalpine units: Significance for Permian rifting in the Eastern Alps. Swiss J. Geosci. 2020, 113, 18. [Google Scholar] [CrossRef]
- Neubauer, F.; Liu, Y.-J.; Chang, R.-H.; Yuan, S.-H.; Yu, S.-Y.; Genser, J.; Liu, B.; Guan, Q.-B. The Wechsel Gneiss Complex of Eastern Alps: An Ediacaran to Cambrian continental arc and its Early Proterozoic hinterland. Swiss J. Geosci. 2020, 113, 21. [Google Scholar] [CrossRef]
- Müller, W.; Dallmeyer, R.D.; Neubauer, F.; Thöni, M. Deformation-induced resetting of Rb/Sr and 40Ar/40Ar mineral systems in a low-grade, polymetamorphic terrane (eastern Alps, Austria). J. Geol. Soc. Lond. 1999, 156, 261–278. [Google Scholar] [CrossRef]
- Schaltegger, U.; Nägler, T.N.; Corfu, F.; Maggetti, M.; Galetti, G.; Stosch, H. A Cambrian island arc in the Silvretta nappe: Constraints from geochemistry and geochronology. Schweiz. Mineral. Und Petrogr. Mitt. 1997, 77, 337–350. [Google Scholar]
- Müller, B.; Klötzli, U.; Schaltegger, U.; Flisch, M. Early Cambrian oceanic plagiogranite in the Silvretta Nappe, eastern Alps: Geochemical, zircon U/Pb and Rb-Sr data from garnet-hornblende-plagioclase gneisses. Geol. Rundsch. 1996, 85, 822–831. [Google Scholar] [CrossRef]
- Maggetti, M.; Flisch, M. Evolution of the Silvretta nappe. In The Pre-Mesozoic Geology in the Alps; von Raumer, J., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 469–484. [Google Scholar]
- Müller, B.; Klötzli, U.; Flisch, M. U-Pb and Pb-Pb zircon dating of the older orthogneiss suite in the Silvretta nappe, eastern Alps: Cadomian magmatism in the upper Austro-Alpine realm. Geol. Rundsch. 1995, 84, 457–465. [Google Scholar] [CrossRef]
- Poller, U. 1997. U/Pb single zircon study of gabbroic and granitic rocks of Val Barlas (Silvretta nappe, Switzerland). Schweiz. Mineral. Petrogr. Mitt. 1997, 77, 351–359. [Google Scholar]
- Neubauer, F. Evolution of late Neoproterozoic to early Paleozoic tectonic elements in central and southeast European Alpine mountain belts: Review and synthesis. Tectonophysics 2002, 352, 87–103. [Google Scholar] [CrossRef]
- Schulz, B.; Steenken, A.; Siegesmund, S. Geodynamic evolution of an Alpine terrane-The Austroalpine basement to the south of the Tauern Window as a part of the Adriatic plate (eastern Alps), in Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geol. Soc. Lond. Spec. Publ. 2008, 298, 5–44. [Google Scholar] [CrossRef]
- Siegesmund, S.; Oriolo, S.; Heinrichs, T.; Basei, M.A.S.; Nolte, N.; Hüttenrauch, F.; Schulz, B. Provenance of Austroalpine basement metasediments: Tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and Northern Africa. Int. J. Earth Sci. 2018, 107, 2293–2315. [Google Scholar] [CrossRef]
- Neubauer, F. The Variscan orogeny in the Austroalpine and Southalpine domains of the eastern Alps. Schweiz. Mineral. Petrogr. Mitt. 1988, 68, 339–349. [Google Scholar]
- Leloup, P.H.; Arnaud, N.; Sobel, E.R.; Lacassin, R. Alpine thermal and structural evolution of the highest external crystalline massif: Exhumation of the Mont-Blanc massif. Tectonics 2005, 24, TC4002. [Google Scholar] [CrossRef] [Green Version]
- Collombet, M.; Thomas, J.C.; Chauvin, A.; Tricart, P.; Bouillin, J.P.; Gratier, J.P. Counterclockwise rotation of the western Alps since the Oligocene: New insights from paleomagnetic data: Tertiary rotation of the Western Alps. Tectonics 2002, 21. [Google Scholar] [CrossRef]
- Thomas, J.C.; Claudel, M.E.; Collombet, M.; Tricart, P.; Chauvin, A.; Dumont, T. First paleomagnetic data from the sedimentary cover of the French Penninic Alps: Evidence for Tertiary counterclockwise rotations in the Western Alps. Earth Planet. Sci. Lett. 1999, 171, 561–574. [Google Scholar] [CrossRef]
- Schmid, S.M.; Kissling, E. The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 2000, 19, 62–85. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Neubauer, F.; Liu, Y.; Dong, Y.; Chang, R.; Genser, J.; Yuan, S. Pre-Alpine tectonic evolution of the Eastern Alps: From Prototethys to Paleotethys. Earth Sci. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Krstekanić, N.; Matenco, L.; Toljić, M.; Mandić, O.; Stojadinović, U.; Willingshofer, E. Understanding partitioning of deformation in highly arcuate orogenic systems: Inferences from the evolution of the Serbian Carpathians. Glob. Planet. Change 2020, 195, 103361. [Google Scholar] [CrossRef]
- Krstekanić, N.; Matenco, L.; Stojadinovic, U.; Willingshofer, E.; Toljić, M.; Tamminga, D. Strain partitioning in a large intracontinental strike-slip system accommodating backarc-convex orocline formation: The Circum-Moesian Fault System of the Carpatho-Balkanides. Glob. Planet. Change 2022, 206, 103714. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. Bull. Geol. Soc. Am. 1977, 88, 1305–1320. [Google Scholar] [CrossRef]
- Muttoni, G.; Kent, D.V.; Garzanti, E.; Brack, P.; Abrahamsen, N.; Gaetani, M. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth Planet. Sci. Lett. 2003, 215, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Muttoni, G.; Kent, D.V. Adria as promontory of Africa and its conceptual role in the Tethys twist and Pangea A to Pangea B transformation in the Permian. Riv. Ital. Paleont. Strat. 2019, 125, 249–269. [Google Scholar]
- Gutiérrez-Alonso, G.; Fernandez-Suarez, J.; Jeffries, T.E.; Johnston, S.T.; Pastor-Galan, D.; Murphy, J.B.; Franco, M.P.; Gonzalo, J.C. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 2011, 30, TC5008. [Google Scholar] [CrossRef] [Green Version]
- Weil, A.B.; Gutiérrez-Alonso, G.; Johnston, S.T.; Pastor-Galan, D. Kinematic constraints on buckling a lithosphere-scale orocline along the northern margin of Gondwana: A geologic synthesis. Tectonophysics 2013, 582, 25–49. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Pueyo, E.L.; Diederen, M.; García-Lasanta, C.; Langereis, C.G. Late Paleozoic Iberian orocline(s) and the missing shortening in the core of Pangea. Paleo-magnetism from the Iberian Range. Tectonics 2018, 37, 3877–3892. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faure, M.; Ferrière, J. Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences 2022, 12, 65. https://doi.org/10.3390/geosciences12020065
Faure M, Ferrière J. Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences. 2022; 12(2):65. https://doi.org/10.3390/geosciences12020065
Chicago/Turabian StyleFaure, Michel, and Jacky Ferrière. 2022. "Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline" Geosciences 12, no. 2: 65. https://doi.org/10.3390/geosciences12020065
APA StyleFaure, M., & Ferrière, J. (2022). Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences, 12(2), 65. https://doi.org/10.3390/geosciences12020065