Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. In Situ Survey
3.1.1. Engineering–Geological Survey
3.1.2. Terrestrial Laser Scanning
Point Cloud Acquisition
Topographic Survey and Point Cloud Georeferencing
3.1.3. In Situ Stress Tests
- -
- Δi = Δεi.computed – Δεi.observed residual corresponding to the i-th observation;
- -
- σε = ΣΔi2/(N − 2) standard deviation of the residuals.
3.2. Rock Slope Stability Analysis
3.2.1. Finite Element Method in RS3©
Model Creation
- Geometry, arrangement, and sequence of excavation;
- In situ stress state (main stress and orientation values);
- Strength and deformation characteristics of rock mass units and other large-scale geological structures.
Model Calibration
3.2.2. Distinct Element Method in UDEC©
Model Creation
Model Calibration
4. Results
4.1. Engineering–Geological Data
4.2. Point Cloud Coregistration and Georeferencing
4.3. Data from In Situ Stress Tests
4.4. RS3© Modeling
4.5. UDEC© Modeling
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, K.; Li, Y.; Ma, G.; Hu, X.; Liu, B.; Ma, Z.; Xu, Z. Failure mode analysis of post-seismic rockfall in shattered mountains exemplified by detailed investigation and numerical modelling. Landslides 2021, 18, 425–446. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Stewart, T.; Marsh, J. Numerical modelling of slope damage in large, slowly moving rockslides: Insights from the Downie Slide, British Columbia, Canada. Eng. Geol. 2020, 273, 105693. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Brideau, M.; Ghirotti, M. Using pre-failure and post-failure remote sensing data to constrain the three-dimensional numerical model of a large rock slope failure. Landslides 2021, 18, 827–847. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Ju, S.; Lyu, Q.; Liu, T. Utilization of 3D Laser Scanning for Stability Evaluation and Deformation Monitoring of Landslides. J. Environ. Public Health 2022, 2022, 8225322. [Google Scholar] [CrossRef] [PubMed]
- Vanneschi, C.; Eyre, M.; Francioni, M.; Coggan, J. The use of Remote Sensing Techniques for monitoring and Characterization of Slope Instability. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 191, pp. 150–157. [Google Scholar]
- Cai, J.; Zhang, L.; Dong, J.; Dong, X.; Li, M.; Xu, Q.; Liao, M. Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM. Eng. Geol. 2022, 305, 106730. [Google Scholar] [CrossRef]
- Salvini, R.; Mastrorocco, G.; Esposito, G.; Di Bartolo, S.; Coggan, J.; Vanneschi, C. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy), Nat. Hazards Earth Syst. Sci. 2018, 18, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Bar, N.; Kostadinovski, M.; Tucker, M.; Byng, G.; Rachmatullah, R.; Maldonado, A.; Pötschb, M.; Gaichb, A.; McQuillan, A.; Yacoubc, T. Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models. Int. J. Min. Sci. Technol. 2020, 30, 651–658. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Peng, X.; Wang, E.; Wang, S. Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope. Landslides 2019, 16, 1645–1661. [Google Scholar] [CrossRef]
- Salvini, R.; Riccucci, S.; Gullì, D.; Giovannini, R.; Vanneschi, C.; Francioni, M. Geological application of UAV photogrammetry and terrestrial laser scanning in marble quarrying (Apuan Alps, Italy). In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2015; Volume 5, pp. 979–983. [Google Scholar]
- Fuad, N.A.; Ismail, Z.; Majid, Z.; Darwin, N.; Ariff, M.F.M.; Idris, K.M.; Yusoff, A.R. Accuracy evaluation of digital terrain model based on different flying altitudes and conditional of terrain using UAV LiDAR technology. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 169, p. 012100. [Google Scholar]
- Francioni, M.; Salvini, R.; Stead, D.; Giovannini, R.; Riccucci, S.; Vanneschi, C.; Gullì, D. An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Comput. Geotech. 2015, 67, 46–63. [Google Scholar] [CrossRef]
- Francioni, M.; Salvini, R.; Stead, D.; Coggan, J. Improvements in the integration of remote sensing and rock slope modelling. Nat. Hazards 2019, 90, 975–1004. [Google Scholar] [CrossRef]
- Huang, Y.H. Slope Stability Analysis by the Limit Equilibrium Method; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 1–365. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Kveldsvik, V.; Kaynia, A.M.; Nadim, F.; Bhasin, R.; Nilsen, B.; Einstein, H.H. Dynamic distinct-element analysis of the 800m high Åknes rock slope. Int. J. Rock Mech. Min. Sci. 2009, 46, 686–698. [Google Scholar] [CrossRef]
- Alejano, L.; Ferrero, A.M.; Ramírez-Oyanguren, P.; Fernandez, M.A. Comparison of limit-equilibrium, numerical and physical models of wall slope stability. Int. J. Rock Mech. Min. 2011, 48, 16–26. [Google Scholar] [CrossRef]
- Xu, B.; Liu, S.; Wang, J. An Analysis of Slope Stability Based on Finite Element Method and Distinct Element Method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; p. 2148. [Google Scholar]
- Rocscience RS3: 3D Finite Element Analysis. Version 4.013. Available online: https://www.rocscience.com/help/rs3/ (accessed on 5 August 2022).
- Bar, N.; McQuillan, A. 3D limit equilibrium slope stability analysis for anisotropic and faulted rock masses in Australian coal and iron ore mines. In Proceedings of the ISRM International Symposium-10th Asian Rock Mechanics Symposium, Singapore, 28 October–3 November 2018. [Google Scholar]
- McQuillan, A.; Yacoub, T.; Bar, N.; Coli, N.; Leoni, L.; Rea, S.; Bu, J. Three-dimensional slope stability modelling and its interoperability with interferometric radar data to improve geotechnical design. In Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering; Dight, P.M., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2020; pp. 1349–1358. [Google Scholar]
- Leeman, E.R. Rock stress measurements using the trepanning stress-relieving technique. Mine Quarry Eng. 1964, 30, 250–255. [Google Scholar]
- Wortonincki, G. CSIRO triaxial stress measurement cell. In Comprehensive Rock Engineering-Principles, Practice & Projects; Hudson, J.A., Ed.; Pergamon: London, UK, 1993; Volume 3, pp. 329–394. [Google Scholar]
- Ferrero, A.M.; Migliazza, M.; Segalini, A.; Gullì, D. In Situ stress measurements interpretations in large underground marble quarry by 3D modeling. Int. J. Rock Mech. Min. Sci. 2013, 60, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Gullì, D.; Pellegri, M.; Cortopassi, A. Experimental Approach for Stability Evaluations of Carrara Marble Basins. Landslide Sci. Pract. Spat. Anal. Model. 2013, 3, 211–217. [Google Scholar]
- Ouanas, A.B.; Gunzburger, Y.; Lahaie, F.; Piguet, J.P.; Barnichon, J.D. Mechanical testing of hollow cores to determine elastic parameters of anisotropic rocks using the CSIRO HI cell. In European Rock Mechanics Symposium 2010 (Eurock 2010); Zhao, J., Labiouse, V., Dudt., J.P., Mathier, J.F., Eds.; Taylor & Francis Group: London, UK, 2010; pp. 103–106. [Google Scholar]
- Krietsch, H.; Gischig, V.; Jalali, M.R.; Amann, F.; Evans, K.F.; Doetsch, J.; Valley, B. Stress measurements in crystalline rock: Comparison of overcoring, hydraulic fracturing and induced seismicity results. In 51st US Rock Mechanics/Geomechanics Symposium; ARMA, American Rock Mechanics Association: Alexandria, VA, USA, 2017; 8p. [Google Scholar]
- Souley, M.; Renaud, V.; Al Heib, M.; Bouffier, C.; Lahaie, F.; Nyström, A. Numerical investigation of the development of the excavation damaged zone around a deep polymetallic ore mine. Int. Jo. Rock. Mech. Min. Sci. 2018, 106, 165–175. [Google Scholar] [CrossRef]
- Adach-Pawelus, K.; Pawelus, D. Influence of Driving Direction on the Stability of a Group of Headings Located in a Field of High Horizontal Stresses in the Polish Underground Copper Mines. Energies 2021, 14, 5955. [Google Scholar] [CrossRef]
- Dahnér, C.; Dineva, S. Small-scale variations in mining-induced stresses, monitored in a seismically active underground mine. In Proceedings of the Second International Conference on Underground Mining Technology, Perth, Australia, 3–4 November 2020; Australian Centre for Geomechanics: Perth, Australia, 2020; pp. 233–246. [Google Scholar]
- Dight, P.M.; Snyman, L.A. Stress measurement for St Barbara Mines Gwalia Deeps project–one of the world’s deepest underground haulage mines. Min. Technol. 2010, 119, 246–254. [Google Scholar] [CrossRef]
- Amici, R.; Peach, G.; Nadeem, M. In-situ stress measurements in TBM tunnels prone to rockbursts. In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art; CRC Press: Boca Raton, FL, USA, 2019; pp. 597–606. [Google Scholar]
- Yang, J.; Chen, W.; Zhao, W.; Tan, X.; Tian, H.; Yang, D.; Ma, C. Geohazards of tunnel excavation in interbedded layers under high in situ stress. Eng. Geol. 2017, 230, 11–22. [Google Scholar] [CrossRef]
- Borbély, D. Tunnel-excavation-induced permeability change of rock mass around a radioactive waste repository tunnel. Cent. Eur. Geol. Cent. Eur. Geol. 2018, 61, 73–84. [Google Scholar] [CrossRef]
- Carmignani, L.; Kligfield, R. Crustal extension in the Northern Apennines: The transition from compression to extension in the Alpi Apuane core complex. Tectonics 1990, 9, 1275–1303. [Google Scholar] [CrossRef]
- Molli, G. Northern Appennine–Corsica orogenic system: An updated review. In Tectonic Aspects of the Alpine–Dinaride –Carpathian System; Siegesmund, S., Fügenschuh, B., Froidzheim, N., Eds.; Geological Society of London Special Publication: London, UK, 2008; Volume 298, pp. 413–442. [Google Scholar]
- Molli, G.; Vaselli, L. Structures, interference patterns and strain regime during mid-crustal deformation in the Alpi Apuane (Northern Appennines, Italy). In Styles of Continental Contraction; Special Papers; Mazzoli, S., Buler, R., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Volume 414, pp. 79–93. [Google Scholar]
- Molli, G.; Meccheri, M. Structural inheritance and style of reactivation at mid-crustal levels: A case study from the Alpi Apuane (Tuscany, Italy). Tectonophysics 2012, 579, 74–87. [Google Scholar] [CrossRef]
- Carmignani, L.; Giglia, G.; Kligfield, R. Structural evolution of the Apuane Alps; an example of continental margin deformation in the northern Apennines, Italy. J. Geol. 1978, 86, 487–504. [Google Scholar] [CrossRef]
- Molli, G. Deformation and fluid flow during underplating and exhumation of the Adria Continental margin: A one-day field trip in the Alpi Apuane (northern Apennines, Italy). In Deformation, Fluid Flow and Mass Transfer in the Forearc of Convergent Margins: Field Guides to the Northern Apennines in Emilia and the Apuan Alps (Italy); Vannucchi, P., Fisher, D., Eds.; The Geological Society of America: Boulder, CO, USA, 2012; Volume 28, pp. 35–48. [Google Scholar]
- Ottria, G.; Molli, G. Superimposed brittle structures in the late orogenic extension of the northern Apennine: Results from Carrara area (Alpi Apuane, NW Tuscany). TerraNova 2000, 12, 1–8. [Google Scholar] [CrossRef]
- Molli, G.; Giorgetti, G.; Meccheri, M. Tectono-metamorphic evolution of the Alpi Apuane Metamorphic Complex: New data and constraints for geodynamic models. Boll. Soc. Geol. It. 2002, 1, 789–800. [Google Scholar]
- Fellin, M.G.; Reiners, P.W.; Brandon, M.T.; Wuthrich, E.; Balestrieri, M.L.; Molli, G. Thermochronologic evidence of exhumational history of the Alpi Apuane metamorphic core complex, northern Appennines, Italy. Tectonics 2007, 26, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kligfield, R.; Hunziker, J.; Dallmeyer, R.D.; Schamel, S. Dating of deformation phases using K-Ar and 40Ar/39Ar techniques: Results from the Northern Apennines. J. Struct. Geol. 1986, 8, 781–798. [Google Scholar] [CrossRef]
- Carmignani, L.; Conti, P.; Fantozzi, P.L.; Mancini, S.; Massa, G.; Molli, G.; Vaselli, L. I marmi delle Alpi Apuane. Geoitalia 2007, 21, 19–30. [Google Scholar]
- Pandolfi Engineering s.r.l. Relazione Tecnica–Caratterizzazione Geomeccanica del Versante. 2022; 24. [Google Scholar]
- Barton, N.R. Review of a new shear strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Technical Report AFNL-TR-65-116; Air Force Weapons Laboratory: Albuquerque, NM, USA, 1966; 277p. [Google Scholar]
- Petrie, G.; Toth, K.C. Introducing to Laser Ranging, Profiling, and Scanning. In Topographic Laser Ranging and Scanning. Principles and Processing; Shan, J., Toth, K.C., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–27. [Google Scholar]
- Voegtle, T.; Schwab, I.; Landes, T. Influences of different materials on the measurement of a Terrestrial Laser Scanner (TLS). In Proceedings of the XXI Congress; The International Society for Photogrammetry and Remote Sensing (ISPRS): Beijing, China, 2008; Volume XXXVII, pp. 1061–1066. [Google Scholar]
- Pejić, M. Design and optimisation of laser scanning for tunnels geometry inspection. Tunn. Undergr. Space Technol. 2013, 37, 199–206. [Google Scholar] [CrossRef]
- Vanneschi, C.; Salvini, R.; Massa, G. Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy). Comput. Geosci. 2014, 69, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Bertacchini, E.; Boni, E.; Capitani, A.; Capra, A.; Castagnetti, C.; Corsini, A.; Dubbini, M.; Parmeggiani, E. Stazione totale per il monitoraggio Leica TM30: Test di verifica secondo norme DIN-18723 e test di funzionamento per il monitoraggio frane. In Proceedings of the National Conference Asita 2009, Bari, Italy, 1–4 December 2009. [Google Scholar]
- Beshr, A.A.A.; Elnaga, I.M.A. Investigating the accuracy of digital levels and reflectorless total stations for purposes of geodetic engineering. Alex. Eng. J. 2011, 50, 399–405. [Google Scholar] [CrossRef]
- Hill, C.D.; Sippel, K.D. Modern Deformation Monitoring: A Multi Sensor Approach. In Proceedings of the XXII FIG International Congress, Washington, DC, USA, 19–26 April 2002. [Google Scholar]
- Kirschner, H.; Stempfhuber, W. The Kinematic Potential of Modern Tracking Total Stations-A State of the Art Report on the Leica TPS1200+. In Proceedings of the 1st International Conference on Machine Control & Guidance, Zurich, Switzerland, 24–26 June 2008. [Google Scholar]
- Kontogianni, V.; Kornarou, S.; Stiros, S. Monitoring with electronic total stations: Performance and accuracy of prismatic and non-prismatic reflectors. Geotech. News 2007, 25, 30–33. [Google Scholar]
- Ganić, A.; Milutinović, A.; Tokalić, R.; Ognjanović, S. Measuring methods for cross sections of underground mine chambers. Undergr. Min. Eng. 2011, 19, 101–108. [Google Scholar]
- Ask, D. Measurement-related uncertainties in overcoring data at the Äspö HRL, Sweden. Part 2: Biaxial tests of CSIRO HI overcore samples. Int. Jo. Rock. Mech. Min. Sci. 2006, 43, 127–138. [Google Scholar] [CrossRef]
- Walton, R.J. Hollow Inclusion (HI) Cell. Temperature Response and Correction; Internal Document; Top Rock Technologies: Beaumaris, Victoria, Australia, 2012; 13p. [Google Scholar]
- Amadei, B. Rock Anisotropy and the Theory of Stress Measurement; Springer: Berlin, Germany, 1983. [Google Scholar]
- Amadei, B. Analysis of Data Obtained with the CSIRO Cell in Anisotropic Rock Masses; Technical Report N. 141; CSIRO Division of Geomechanics: Mt. Waverley, VIC, Australia, 1986. [Google Scholar]
- Vanneschi, C.; Mastrorocco, G.; Salvini, R. Assessment of a Rock Pillar Failure by Using Change Detection Analysis and FEM Modelling. ISPRS Int. J. Geo-Inf. 2021, 10, 774. [Google Scholar] [CrossRef]
- Gullì, D.; Pellegri, M.; Marchetti, D. Mechanical behaviour of Carrara marble rock mass related to geo-structural conditions and in-situ stress. In Proceedings of the Integrating Innovation of Rock Mechanics, 8th South American Congress on Rock Mechanics, Buenos Aires, Argentina, 15–18 November 2015. [Google Scholar]
- Coulomb, C.A. Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. R. Div. Sav. 1776, 7, 343–387. [Google Scholar]
- Jiao, Y.; Zhao, J.; Ge, X. New formulation and validation of the three-dimensional extension of a static relaxation method. Adv. Eng. Softw. 2004, 35, 317–323. [Google Scholar] [CrossRef]
- Cundall, P.A. A computer model for simulating progressive largescale movements in blocky rock systems. Proc. Symp. Int. Soc. Rock Mech. 1971, 2, 8. [Google Scholar]
- Hart, R.D. An introduction to distinct element modelling for rock engineering. In Charles Fairhurst Analysis and Design Methods; Pergamon Press: Oxford, UK, 1993; pp. 245–261. [Google Scholar]
- Cundall, P.A.; Hart, R.D. Numerical modelling of discontinua. In Charles Fairhurst Analysis and Design Methods; Pergamon: Oxford, UK, 1993; pp. 231–243. [Google Scholar]
- Itasca. UDEC User’s Guide (Version 6.0); Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2014. [Google Scholar]
- Gullì, D.; Pellegri, M.; Cortopassi, A. Experimental study for stress analysis on different Carrara marble underground quarries. In Proceedings of the International Symposium on Deformation Characteristics of Geomaterials, Seoul, Korea, 1–3 September 2010; pp. 1296–1302. [Google Scholar]
- Perazzelli, P.; Graziani, A.; Rotonda, T. Stability analysis of an active marble quarry by DEM modelling. In Proceedings of the International Conference on Rock Joints and Jointed Rock Masses, Tucson, AZ, USA, 7–8 January 2009; p. 1035. [Google Scholar]
- Firpo, G.; Salvini, R.; Francioni, M.; Ranjith, P.G. Use of Digital Terrestrial Photogrammetry in rocky slope stability analysis by Distinct Elements Numerical Methods. Int. Jo. Rock. Mech. Min. Sci. 2011, 48, 1045–1054. [Google Scholar] [CrossRef]
- Francioni, M.; Salvini, R.; Stead, D.; Litrico, S. A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng. Geol. 2014, 183, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Salvini, R.; Vanneschi, C.; Garattoni, A. Modellazione Stocastica Della Fratturazione (Metodo Discrete Fracture Network) a Supporto Della Stima Previsionale di Resa All’interno di Bacini Estrattivi di Pietre Ornamentali. Geologia Tecnica e Ambientale, 03-2020: 29-46. Available online: http://www.cngeologi.it/wp-content/uploads/2020/12/GTA03-2020low.pdf (accessed on 5 August 2022).
- Pierotti, A.; Leoni, M.; Lo Presti, D. 3D FEM and DEM Analyses of Underground Openings in Competent Rock Masses. Adv. Civil. Eng. Tech 2020, 4, 10p. [Google Scholar]
- Curran, J.; Corkum, B. Examine3D; User’s guide; Rocscience: Toronto, ON, Canada, 2000. [Google Scholar]
- Gullì, D.; Pellegri, M. Stress analysis on Carrara marble quarries. In Proceedings of the 6th International Symposium on In-Situ Rock Stress, Sendai, Japan, 20–22 August 2013; p. 17. [Google Scholar]
- Berlinghieri, M.; Pandolfi, O. Three-dimensional Distinct Element Method for stability analysis of marble quarries in the Apuan Alps (Italy). IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 8. [Google Scholar] [CrossRef]
- Berlinghieri, M. Modellazione numerica al discontinuo per la coltivazione sotterranea di pietre ornamentali. In Atti del X Incontro Annuale dei Giovani Ingegneri Geotecnici, Associazione Geotecnica Italiana, Roma, Italia; Ceccato, F., Rosone, M., Stacul, S., Eds.; Associazione Geotecnica Italiana: Rome, Italy, 2021; pp. 27–30. [Google Scholar]
- Guido, S.; Acerbis, R.; Sossi, G. Practice of the Doorstopper stress measurement method during the last 30 years in Italy. IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 11. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Estenssoro, L.F. Surface singularity and crack propagation. Int. J. Solids Struct. 1979, 15, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Toupin, R.A. Saint-Venant’s Principle. Arch. Ration. Mech. Anal. 1965, 18, 83–96. [Google Scholar] [CrossRef]
- Horgan, C.O. Recent developments concerning Saint Venant’s principle: An update. Appl. Mech. Rev. 1989, 42, 295–303. [Google Scholar] [CrossRef]
- Nakamura, S.; Lakes, R. Finite element analysis of Saint-Venant end effects in micropolar elastic solids. Eng. Comput. 1995, 12, 571–587. [Google Scholar] [CrossRef]
- Hock, E.; Brown, E.T. Underground Excavations in Rock; The Institution of Mining and Metallurgy: London, UK, 1980; 527p. [Google Scholar]
- Martin, C.D.; Kaiser, P.K.; McCreath, D.R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can. Geotech. J. 1999, 36, 136–151. [Google Scholar] [CrossRef]
Lithology | Joint System | Dip (°) | Dip Direction (°) | Spacing (m) |
---|---|---|---|---|
Marble | K1 | 56 | 273 | 2–6 |
Marble | K2 (1.1) | 83 | 331 | 6–10 |
Marble | K2 (1.2) | 79 | 156 | 6–10 |
Marble | K2 (2) | 86 | 12 | 6–10 |
Marble | K3 | 64 | 180 | >10 |
Marble | K4 | 22 | 124 | >10 |
Radiolarian chert | J1 | 58 | 269 | 0.2–0.6 |
Radiolarian chert | J2 | 80 | 19 | 2–6 |
Radiolarian chert | J3 | 66 | 168 | 6–10 |
Radiolarian chert | J4 | 80 | 311 | >10 |
Cherty meta-limestone | J1 | 60 | 269 | 0.6–2 |
Cherty meta-limestone | J2 | 68 | 146 | 6–10 |
Cherty meta-limestone | J3 | 77 | 22 | 6–10 |
Lithology | Unit Weight (MN/m3) | Poisson’s Ratio | Young’s Modulus (MPa) | Peak Cohesion (MPa) | Peak Friction Angle (°) | Peak Tensile Strength (MPa) | Bulk Modulus (MPa) | Shear Modulus (MPa) |
---|---|---|---|---|---|---|---|---|
Marble | 0.0270 | 0.3 | 85,000 | 7.015 | 54.62 | –3.432 | 94,444 | 31,500 |
Cherty meta-limestone | 0.0256 | 0.3 | 18,500 | 1.626 | 53.81 | –0.627 | 13,333 | 7115 |
Radiolarian chert | 0.0264 | 0.3 | 16,000 | 1.745 | 56.17 | –0.609 | 15,416 | 6153 |
Joint Shear Stiffness (MPa/m) | Joint Normal Stiffness (MPa/m) | Peak Friction Angle (°) | Peak Cohesion (MPa) | Dilation Angle (°) | |
---|---|---|---|---|---|
Joint in marble | 10,000 | 40,000 | 35 | 0.05 | 5 |
Lithological boundary | 2000 | 10,000 | 25 | 0.05 | 5 |
C 1-1 | C 1-2 | C 2-1 | C 2-2 | |
---|---|---|---|---|
E [MPa] | 87,673 ± 1872 | 89,127 ± 1330 | 88,488 ± 1846 | 88,276 ± 931 |
ν | 0.37 ± 0.03 | 0.35 ± 0.02 | 0.36 ± 0.03 | 0.36 ± 0.02 |
CSIRO HI Cell | σxx [MPa] | σyy [MPa] | σzz [MPa] | τxy [MPa] | τxz [MPa] | τyz [MPa] |
---|---|---|---|---|---|---|
C 1-1 | 0.44 ± 0.41 | 0.19 ± 0.16 | 5.15 ± 0.17 | –0.24 ± 0.15 | 0.46 ± 0.10 | 0.20 ± 0.17 |
C 1-2 | 1.47 ± 0.24 | 1.86 ± 0.10 | 0.29 ± 0.10 | 0.97 ± 0.09 | 0.59 ± 0.06 | 0.88 ± 0.10 |
C 2-1 | 1.26 ± 0.28 | –0.04 ± 0.12 | 3.72 ± 0.12 | –0.49 ± 0.10 | –0.88 ± 0.06 | 0.21 ± 0.12 |
C 2-2 | 0.86 ± 0.91 | –0.80 ± 0.30 | 1.76 ± 0.39 | –1.75 ± 0.25 | –0.77 ± 0.23 | –0.30 ± 0.46 |
Current Status | Future Excavation Scenario | ||
---|---|---|---|
(MPa) | 17 | 18 | |
(MPa) | Max | 20 | 14 |
Min | −2 | −2 | |
(MPa) | Max | 2 | 3 |
Min | −9 | −9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvini, R.; Ermini, A.; De Lucia, V.; Beltramone, L.; Silvestri, D.; Rindinella, A.; Guido, S.; Marchetti, D.; Gullì, D. Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry. Geosciences 2022, 12, 441. https://doi.org/10.3390/geosciences12120441
Salvini R, Ermini A, De Lucia V, Beltramone L, Silvestri D, Rindinella A, Guido S, Marchetti D, Gullì D. Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry. Geosciences. 2022; 12(12):441. https://doi.org/10.3390/geosciences12120441
Chicago/Turabian StyleSalvini, Riccardo, Andrea Ermini, Vivien De Lucia, Luisa Beltramone, Daniele Silvestri, Andrea Rindinella, Stefano Guido, Daria Marchetti, and Domenico Gullì. 2022. "Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry" Geosciences 12, no. 12: 441. https://doi.org/10.3390/geosciences12120441
APA StyleSalvini, R., Ermini, A., De Lucia, V., Beltramone, L., Silvestri, D., Rindinella, A., Guido, S., Marchetti, D., & Gullì, D. (2022). Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry. Geosciences, 12(12), 441. https://doi.org/10.3390/geosciences12120441