Computing Elastic Moduli of Igneous Rocks Using Modal Composition and Effective Medium Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining Modal Composition
2.2. Hooke’s Law
2.3. Voigt–Reuss–Hill Average
2.4. Effect of Porosity on Effective Moduli
2.5. Kuster and Toksoz Formulation
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 1979, 16, 135–140. [Google Scholar]
- Standard D7012 ASTM; Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International: West Conshohocken, PA, USA, 2014.
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Najibi, A.R.; Ghafoori, M.; Lashkaripour, G.R.; Asef, M.R. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J. Pet. Sci. Eng. 2015, 126, 78–82. [Google Scholar] [CrossRef]
- Aligholi, S.; Lashkaripour, G.R.; Ghafoori, M.; TrighAzali, S. Evaluating the relationships between NTNU/SINTEF drillability indices with index properties and petrographic data of hard igneous rocks. Rock Mech. Rock Eng. 2017, 50, 2929–2953. [Google Scholar] [CrossRef]
- ISRM. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In Suggested Methods Prepared by the Commission on Testing Methods; Ulusay, R., Hudson, J.A., Eds.; International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group: Ankara, Turkey, 2007. [Google Scholar]
- Bass, J.D. Elasticity of minerals, glasses, and melts. In Mineral Physics and Crystallography: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; pp. 45–63. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Aligholi, S.; Lashkaripour, G.R.; Ghafoori, M. Estimating engineering properties of igneous rocks using semi-automatic petro-graphic analysis. Bull. Eng. Geol. Environ. 2019, 78, 2299–2314. [Google Scholar] [CrossRef]
- Aligholi, S.; Khajavi, R.; Razmara, M. Automated mineral identification algorithm using optical properties of crystals. Comput. Geosci. 2015, 85, 175–183. [Google Scholar] [CrossRef]
- Aligholi, S.; Lashkaripour, G.R.; Khajavi, R.; Razmara, M. Automatic mineral identification using color tracking. Pattern Recognit. 2017, 65, 164–174. [Google Scholar] [CrossRef]
- Aligholi, S.; Khajavi, R.; Khandelwal, M.; Armaghani, D.J. Mineral Texture Identification Using Local Binary Patterns Equipped with a Classification and Recognition Updating System (CARUS). Sustainability 2022, 14, 11291. [Google Scholar] [CrossRef]
- Karato, S.-I. Deformation of Earth Materials. In An Introduction to the Rheology of Solid Earth; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Aligholi, S.; Lashkaripour, G.R.; Ghafoori, M. Strength/brittleness classification of igneous intact rocks based on basic physical and dynamic properties. Rock Mech. Rock Eng. 2017, 50, 45–65. [Google Scholar] [CrossRef]
- Brace, W.F. Some new measurements of the linear compressibility of rocks. J. Geophys. Res. 1965, 70, 391–398. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Kuster, G.T.; Toksoz, M.N. Velocity and attenuation of seismic waves in two-phase media. Geophysics 1974, 39, 587–618. [Google Scholar] [CrossRef]
- Berryman, J.G. Long-wavelength propagation in composite elastic media. J. Acoust. Soc. Am. 1980, 68, 1809–1831. [Google Scholar] [CrossRef]
- Berryman, J.G. Mixture theories for rock properties. In Rock Physics and Phase Relations: A Handbook of Physical Constants; AGU: Washington, DC, USA, 1995. [Google Scholar]
- Lama, R.D.; Vutukuri, V.S. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results; Trans Tech Publications: Clausthal, Germany, 1978. [Google Scholar]
Rock Code | Qtz | Pl | Afs | Bt | Ms | Am | Chl | Cpx | Opx | Ol | Grt | OM | Ep | Gl | AM | Rock Name * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 28 | 35 | 20 | 17 | - | - | - | - | - | - | - | - | - | - | Zrn | Micro-monzogranite |
R2 | 38 | 24 | 28 | 3 | 7 | - | - | - | - | - | - | - | - | - | - | Monzogranite |
R3 | 31 | 21 | 34 | 4 | 9 | - | 1 | - | - | - | - | - | - | - | - | Monzogranite |
R4 | - | 41 | - | - | - | 5 | - | 8 | 5 | - | 2 | 2 | 1 | 36 | - | Hyalo-basaltic andesite |
R5 | 32 | 34 | 27 | 4 | - | 2 | - | - | - | - | - | 1 | - | - | - | Monzogranite |
R6 | - | 47 | - | - | - | 4 | - | 19 | 5 | 9 | - | 13 | 3 | - | - | Basalt |
R7 | 37 | 22 | 31 | 7 | - | 1 | 2 | - | - | - | - | - | - | - | Zrn | Monzogranite |
R8 | 37 | 18 | 38 | 5 | - | 1 | 1 | - | - | - | - | - | - | - | Zrn | Syenogranite |
R9 | 41 | 14 | 40 | 2 | - | 1 | 2 | - | - | - | - | - | - | - | Zrn | Syenogranite |
R10 | 26 | 17 | 48 | 6 | - | - | 1 | - | - | - | - | - | 2 | - | - | Syenogranite |
R11 | 12 | 34 | 7 | 9 | - | 3 | - | - | - | - | - | 3 | - | 32 | - | Hyalo-dacite |
R12 | 29 | 38 | 22 | 4 | - | 3 | 2 | - | - | - | 1 | 1 | - | - | - | Monzogranite |
R13 | 14 | 46 | 16 | - | - | 12 | 9 | - | - | - | - | 3 | - | - | Zrn | Quartz Monzodiorite |
R14 | 12 | 59 | 3 | - | - | 7 | 9 | 4 | - | - | - | 6 | - | - | - | Andesite |
R15 | 1 | 64 | 1 | 3 | - | 23 | 3 | - | - | - | 1 | 4 | - | - | Spn | Diorite |
R16 | 4 | 63 | 6 | - | - | 14 | 8 | - | - | - | - | 5 | - | - | - | Andesite |
R17 | 28 | 29 | 35 | 5 | - | - | 3 | - | - | - | - | - | - | - | - | Monzogranite |
R18 | - | 48 | - | 4 | - | 3 | - | 16 | 6 | - | 9 | 6 | 8 | - | - | Gabbro |
R19 | - | 36 | - | 5 | - | 7 | - | 18 | 11 | 14 | - | 2 | 7 | - | - | Gabbro |
R20 | - | 57 | 2 | 4 | - | 6 | - | - | 11 | 8 | 1 | 5 | 6 | - | Zrn | Diorite |
R21 | - | 58 | 3 | 4 | - | 4 | - | 13 | 3 | 7 | 1 | 4 | 3 | - | - | Diorite |
R22 | 13 | 33 | 41 | 1 | - | 9 | - | - | - | - | - | 3 | - | - | - | Quartz Monzonite |
R23 | 7 | 40 | 44 | 1 | - | 6 | - | - | - | - | - | 2 | - | - | - | Quartz Monzonite |
R24 | 12 | 24 | 56 | 2 | - | 4 | - | - | - | - | - | 2 | - | - | - | Quartz Syenite |
R25 | 3 | 69 | 7 | 4 | - | 14 | - | - | - | - | - | 3 | - | - | - | Andesite |
R26 | 27 | 41 | 19 | 6 | - | 4 | 1 | - | - | - | - | 2 | - | - | Spn | Granodiorite |
R27 | 29 | 45 | 9 | 7 | - | 6 | 2 | - | - | - | 1 | 1 | - | - | Spn | Granodiorite |
R28 | - | 59 | - | 8 | - | 5 | - | 12 | 4 | - | - | 2 | 6 | 4 | - | Micro-gabbro |
Elastic Modulus | Qtz | Pl | Afs | Bt | Ms | Am | Chl | Cpx | Opx | Ol | Grt | OM | Ep | Gl (Sio2) | Gl (Andesite) | Gl (Basalt) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | 37.7 | 70.6 | 56.2 | 49.9 | 58.2 | 90.2 | 81.0 | 104.5 | 104.4 | 131.8 | 159.4 | 142.6 | 106.2 | 36.5 | 52.5 | 62.9 |
G | 44.4 | 34.3 | 28.4 | 27.1 | 35.3 | 46.2 | 27.0 | 62.0 | 63.9 | 65.9 | 90.4 | 114.5 | 61.2 | 31.2 | 33.6 | 36.5 |
Rock Code | K (GPa) | G (GPa) | ||||
---|---|---|---|---|---|---|
Voigt | Reuss | Hill | Voigt | Reuss | Hill | |
R1 | 55.0 | 51.7 | 53.3 | 34.7 | 33.5 | 34.1 |
R2 | 52.6 | 49.3 | 50.9 | 36.3 | 35.0 | 35.7 |
R3 | 53.6 | 50.7 | 52.2 | 35.1 | 33.9 | 34.5 |
R4 | 74.9 | 70.4 | 72.6 | 41.8 | 38.5 | 40.2 |
R5 | 56.4 | 52.1 | 54.2 | 36.7 | 34.9 | 35.8 |
R6 | 95.4 | 88.7 | 92.0 | 55.6 | 46.7 | 51.1 |
R7 | 52.9 | 49.5 | 51.2 | 35.6 | 34.2 | 34.9 |
R8 | 52.2 | 49.1 | 50.6 | 35.5 | 34.0 | 34.7 |
R9 | 51.3 | 48.2 | 49.8 | 35.9 | 34.3 | 35.1 |
R10 | 54.7 | 51.6 | 53.2 | 34.1 | 32.6 | 33.4 |
R11 | 55.6 | 49.1 | 52.4 | 36.2 | 33.8 | 35.0 |
R12 | 59.4 | 54.0 | 56.7 | 37.2 | 35.1 | 36.2 |
R13 | 69.1 | 63.5 | 66.3 | 37.9 | 35.2 | 36.5 |
R14 | 74.2 | 67.7 | 70.9 | 41.4 | 37.0 | 39.2 |
R15 | 78.1 | 74.7 | 76.4 | 40.4 | 37.1 | 38.8 |
R16 | 75.6 | 71.7 | 73.6 | 39.4 | 35.9 | 37.7 |
R17 | 55.6 | 52.2 | 53.9 | 34.4 | 33.2 | 33.8 |
R18 | 93.0 | 84.9 | 88.9 | 52.5 | 44.5 | 48.5 |
R19 | 93.2 | 86.8 | 90.0 | 50.9 | 45.6 | 48.2 |
R20 | 85.9 | 79.7 | 82.8 | 46.5 | 40.7 | 43.6 |
R21 | 84.6 | 78.8 | 81.7 | 45.5 | 40.1 | 42.8 |
R22 | 64.1 | 59.4 | 61.7 | 36.6 | 33.8 | 35.2 |
R23 | 64.3 | 61.1 | 62.7 | 34.6 | 32.7 | 33.6 |
R24 | 60.4 | 57.0 | 58.7 | 34.1 | 32.0 | 33.1 |
R25 | 72.6 | 69.5 | 71.1 | 37.9 | 35.6 | 36.8 |
R26 | 60.0 | 54.7 | 57.4 | 37.4 | 35.2 | 36.3 |
R27 | 61.3 | 55.2 | 58.2 | 38.1 | 36.1 | 37.1 |
R28 | 78.6 | 74.7 | 76.6 | 42.1 | 38.3 | 40.2 |
Rock Code | Porosity | K (GPa) | G (GPa) |
---|---|---|---|
R1 | 1.13 | 52.01 | 33.35 |
R2 | 1.01 | 49.85 | 34.99 |
R3 | 1.25 | 50.83 | 33.66 |
R4 | 0.65 | 71.50 | 39.70 |
R5 | 1.4 | 52.61 | 34.82 |
R6 | 0.89 | 90.10 | 50.22 |
R7 | 0.87 | 50.27 | 34.30 |
R8 | 0.86 | 49.70 | 34.11 |
R9 | 0.84 | 48.94 | 34.52 |
R10 | 0.76 | 52.32 | 32.90 |
R11 | 1.91 | 50.32 | 33.70 |
R12 | 1.49 | 54.89 | 35.15 |
R13 | 2.76 | 62.13 | 34.59 |
R14 | 0.57 | 69.96 | 38.77 |
R15 | 0.67 | 75.14 | 38.30 |
R16 | 1.26 | 71.36 | 36.80 |
R17 | 1.31 | 52.37 | 32.94 |
R18 | 0.55 | 87.75 | 47.99 |
R19 | 0.18 | 89.61 | 48.03 |
R20 | 0.18 | 82.44 | 43.45 |
R21 | 0.26 | 81.19 | 42.59 |
R22 | 2.31 | 58.50 | 33.65 |
R23 | 1.46 | 60.55 | 32.66 |
R24 | 3.57 | 54.04 | 30.88 |
R25 | 0.74 | 69.83 | 36.28 |
R26 | 1.07 | 56.07 | 35.54 |
R27 | 1.19 | 56.71 | 36.24 |
R28 | 0.29 | 76.06 | 39.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aligholi, S.; Khandelwal, M. Computing Elastic Moduli of Igneous Rocks Using Modal Composition and Effective Medium Theory. Geosciences 2022, 12, 413. https://doi.org/10.3390/geosciences12110413
Aligholi S, Khandelwal M. Computing Elastic Moduli of Igneous Rocks Using Modal Composition and Effective Medium Theory. Geosciences. 2022; 12(11):413. https://doi.org/10.3390/geosciences12110413
Chicago/Turabian StyleAligholi, Saeed, and Manoj Khandelwal. 2022. "Computing Elastic Moduli of Igneous Rocks Using Modal Composition and Effective Medium Theory" Geosciences 12, no. 11: 413. https://doi.org/10.3390/geosciences12110413
APA StyleAligholi, S., & Khandelwal, M. (2022). Computing Elastic Moduli of Igneous Rocks Using Modal Composition and Effective Medium Theory. Geosciences, 12(11), 413. https://doi.org/10.3390/geosciences12110413