Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Systematic Review Motivation
2.2. Data Query and Preparation
3. Results
3.1. The Geographic Distribution, Annaul Trend, and Research Area of the Shoreline Change Analysis Literature
3.2. Co-Occurrences Keywords and Co-Authorship by Country
3.3. Text Processing and Clustering Based on Title, Abstract, and Keywords Using the CiteSpace Software
3.4. Selected Keywords Using the Rayyan Bibliographic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The United Nation’s Ocean Conference. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (accessed on 3 July 2021).
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Tornqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vorosmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Voeroesmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, J.D.; Murray, A.B.; Pierce, J.L.; Bierman, P.R.; Breshears, D.D.; Crosby, B.T.; Ellis, M.; Foufoula-Georgiou, E.; Heimsath, A.M.; Houser, C.; et al. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs. Earths Future 2015, 3, 220–251. [Google Scholar] [CrossRef] [Green Version]
- Jurasinski, G.; Janssen, M.; Voss, M.; Boettcher, M.E.; Brede, M.; Burchard, H.; Forster, S.; Gosch, L.; Graewe, U.; Gruendling-Pfaff, S.; et al. Understanding the Coastal Ecocline: Assessing Sea-Land Interactions at Non-tidal, Low-Lying Coasts Through Interdisciplinary Research. Front. Mar. Sci. 2018, 5, 342. [Google Scholar] [CrossRef] [Green Version]
- Munasinghe, D.; Cohen, S.; Hand, B. Suitability Analysis of Remote Sensing Techniques for Shoreline Extraction of Global River Deltas. IEEE Geosci. Remote Sens. Lett. 2021; unpublished-submitted. Available online: https://eartharxiv.org/repository/view/176/(accessed on 22 June 2022).
- Crawford, T.W.; Rahman, M.K.; Miah, M.G.; Islam, M.R.; Paul, B.K.; Curtis, S.; Islam, M.S. Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh: Analysis of a 30-Year Shoreline Change Record and Recent Population Impacts. Ann. Am. Assoc. Geogr. 2021, 111, 1002–1024. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.Q.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Lentz, E.E.; Thieler, E.R.; Plant, N.G.; Stippa, S.R.; Horton, R.M.; Gesch, D.B. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. System and Method for Automatically Generating Systematic Reviews of a Scientific Field. U.S. Patent 8,566,360, 22 October 2013. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Yang, Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y. Bibliographic analysis of BIM success factors and other BIM literatures using Vosviewer: A theoretical mapping and discussion. In Proceedings of the 2nd Joint International Conference on Emerging Computing Technology and Sports (JICETS) 2019, Bandung, Indonesia, 25–27 November 2019; p. 042105. [Google Scholar]
- Harrison, H.; Griffin, S.J.; Kuhn, I.; Usher-Smith, J.A. Software tools to support title and abstract screening for systematic reviews in healthcare: An evaluation. BMC Med. Res. Methodol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, Z.; Sun, X. Usage patterns of scholarly articles on Web of Science: A study on Web of Science usage count. Scientometrics 2016, 109, 917–926. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Halme, P.; Toivanen, T.; Honkanen, M.; Kotiaho, J.S.; Monkkonen, M.; Timonen, J. Flawed meta-analysis of biodiversity effects of forest management. Conserv. Biol. 2010, 24, 1154–1156. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (Dsas) Version 4.0—An Arcgis Extension for Calculating Shoreline Change; No. 2008-1278; US Geological Survey: Reston, VA, USA, 2009.
- Morton, R.A.; Miller, T.; Moore, L. Historical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analyses. J. Coast. Res. 2005, 21, 704–709. [Google Scholar] [CrossRef]
- Matin, N.; Hasan, G.J. A quantitative analysis of shoreline changes along the coast of Bangladesh using remote sensing and GIS techniques. Catena 2021, 201, 105185. [Google Scholar] [CrossRef]
- Islam, M.S.; Matin, M.A. Prediction of fluvial erosion rate in Jamuna River, Bangladesh. Int. J. River Basin Manag. 2022, 19, 1–13. [Google Scholar]
- Talukdar, S.; Pal, S.; Singha, P. Proposing artificial intelligence-based livelihood vulnerability index in river islands. J. Clean. Prod. 2021, 284, 124707. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal adaptation to climate change and sea-level rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Crawford, T.W.; Islam, M.S.; Rahman, M.K.; Paul, B.K.; Curtis, S.; Miah, M.G.; Islam, M.R. Coastal erosion and human perceptions of revetment protection in the Lower Meghna Estuary of Bangladesh. Remote Sens. 2020, 12, 3108. [Google Scholar]
- Udawalpola, M.R.; Hasan, A.; Liljedahl, A.; Soliman, A.; Terstriep, J.; Witharana, C. An Optimal GeoAI Workflow for Pan-Arctic Permafrost Feature Detection from High-Resolution Satellite Imagery. Photogramm. Eng. Remote Sens. 2022, 88, 181–188. [Google Scholar]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. machine-learning methods for forecasting sandy shoreline evolution using historic satellite-derived shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- AlBakri, D. A geomorphological approach to sustainable planning and management of the coastal zone of Kuwait. Geomorphology 1996, 17, 323–337. [Google Scholar] [CrossRef]
- Cenci, L.; Disperati, L.; Persichillo, M.G.; Oliveira, E.R.; Alves, F.L.; Phillips, M. Integrating remote sensing and GIS techniques for monitoring and modeling shoreline evolution to support coastal risk management. GIScience Remote Sens. 2018, 55, 355–375. [Google Scholar] [CrossRef]
Criterion | Eligibility |
---|---|
Literature type | Journal (research articles) |
Language | English |
Timeline | Between 2000 and 2021 |
Coverage | Global |
Database Name | Keywords | PrimaryResults | Query Link |
---|---|---|---|
Web of Science | Topic search: “Coastal Erosion and Shoreline Change analysis” | 963 | https://www.webofscience.com/wos/woscc/summary/f2ae0912-72ec-4bee-bc3e-22d593a168bd-510c9f41/relevance/1, last accessed on 22 July 2022 |
Scopus | “Coastal Erosion and Shoreline Change analysis” | 1362 | https://www-scopus-com.ezproxy.lib.vt.edu/results/results.uri?sort=tp-t&src=s&sid=4184aa7a495178e999eb3556e134662b&sot=a&sdt=a&cluster=scosubtype, last accessed on 22 July 2022 |
ClusterID | Size | Silhouette | Label (LSI) | Label (LLR) | Label (MI) | Average Year |
---|---|---|---|---|---|---|
0 | 69 | 0 | coastline change | preservation potential (1042.19, 0.0001) | correlation (0.92) | 2015 |
1 | 68 | 0 | living shorelines | living shoreline (2028.87, 0.0001) | correlation (1.38) | 2013 |
2 | 58 | 0 | shoreline changes | coastal aquaculture (895.27, 0.0001) | correlation (0.6) | 2014 |
3 | 57 | 0 | shoreline changes | littoral cell (1291.82, 0.0001) | correlation (1.46) | 2008 |
4 | 54 | 0 | shoreline change rates | basis function (1091.38, 0.0001) | correlation (1.83) | 2008 |
5 | 54 | 0 | climate change | beach nourishment (870.67, 0.0001) | correlation (1.1) | 2009 |
6 | 39 | 0 | shore protection | shore protection (766.06, 0.0001) | correlation (0.27) | 2008 |
7 | 37 | 0 | coastal plain | inner continental shelf (732.04, 0.0001) | correlation (0.45) | 2013 |
8 | 29 | 0 | coastal erosion | storm demand (751.28, 0.0001) | correlation (0.54) | 2007 |
9 | 27 | 0 | coastal plain | blackhawk formation (402.77, 0.0001) | correlation (0.21) | 2007 |
10 | 19 | 0 | sea-level rise | beach fill (701.66, 0.0001) | correlation (0.28) | 2013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.K.; Crawford, T.W.; Islam, M.S. Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021. Geosciences 2022, 12, 410. https://doi.org/10.3390/geosciences12110410
Rahman MK, Crawford TW, Islam MS. Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021. Geosciences. 2022; 12(11):410. https://doi.org/10.3390/geosciences12110410
Chicago/Turabian StyleRahman, Munshi Khaledur, Thomas W. Crawford, and Md Sariful Islam. 2022. "Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021" Geosciences 12, no. 11: 410. https://doi.org/10.3390/geosciences12110410
APA StyleRahman, M. K., Crawford, T. W., & Islam, M. S. (2022). Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021. Geosciences, 12(11), 410. https://doi.org/10.3390/geosciences12110410