Magnetic Anomalies of the Tyrrhenian Sea Revisited: A Processing Workflow for Enhancing the Resolution of Aeromagnetic Data
Abstract
:1. Introduction
2. Materials and Methods
- Similar to the reduction to the pole, the transformed field has a simple relationship with their sources, being rather independent of the magnetization direction;
- Their computation does not require unknown quantities in input, differently from the reduction to the pole;
- The transformed field shows an increased resolving power with respect to the original field, because their computation includes a differentiation process.
- Downward continuation of original magnetic anomalies to the sea-level altitude; this process was performed using the stabilized approach proposed by [13];
- Computation of the L-transform of the downward continued data to obtain a high-resolution field, easily relatable with the position of their sources.
3. Geological Settings
3.1. Tyrrhenian Sea
3.2. Marsili Seamount
3.3. Ischia Island
3.4. Gaeta Gulf
4. Comparison of Enhanced Aeromagnetic Data with Shipborne Magnetic Data in Three Selected Areas in the Tyrrhenian Sea
4.1. Aeromagnetic Data
4.2. Magnetic Data in the Ischia Area
4.3. Magnetic Data in the Gaeta Gulf Area
4.4. Magnetic Data in the Marsili Seamount Area
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, A.; Mohammed, Y.A. Mapping Basement Structures in the Northwestern Offshore of Abu Dhabi from High-Resolution Aeromagnetic Data. Geophys. Prospect. 2016, 64, 726–740. [Google Scholar] [CrossRef]
- Bruno, P.P.G.; de Alteriis, G.; Florio, G. The Western Undersea Section of the Ischia Volcanic Complex (Italy, Tyrrhenian Sea) Inferred by Marine Geophysical Data. Geophys. Res. Lett. 2002, 29, 57-1–57-4. [Google Scholar] [CrossRef] [Green Version]
- Grauch, V.J.S.; Hudson, M.R.; Minor, S.A. Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico. Geophysics 2001, 66, 707–720. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Li, S.L.; Leão-Santos, M. A paradigm shift in magnetic data interpretation: Increased value through magnetization inversions. Lead. Edge 2021, 40, 89–98. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G.; Rapolla, A. 2.5D Modelling of Somma–Vesuvius Structure by Aeromagnetic Data. J. Volcanol. Geotherm. Res. 1998, 82, 239–247. [Google Scholar] [CrossRef]
- Bouligand, C.; Glen, J.M.G.; Blakely, R.J. Distribution of Buried Hydrothermal Alteration Deduced from High-Resolution Magnetic Surveys in Yellowstone National Park. J. Geophys. Res. Solid Earth 2014, 119, 2595–2630. [Google Scholar] [CrossRef]
- Pilkington, M.; Tschirhart, V. Practical Considerations in the Use of Edge Detectors for Geologic Mapping Using Magnetic Data. Geophysics 2017, 82, J1–J8. [Google Scholar] [CrossRef]
- Okubo, Y.; Graf, R.J.; Hansen, R.O.; Ogawa, K.; Tsu, H. Curie Point Depths of the Island of Kyushu and Surrounding Areas, Japan. Geophysics 1985, 50, 481–494. [Google Scholar] [CrossRef]
- Accomando, F.; Vitale, A.; Bonfante, A.; Buonanno, M.; Florio, G. Performance of Two Different Flight Configurations for Drone-Borne Magnetic Data. Sensors 2021, 21, 5736. [Google Scholar] [CrossRef]
- Galley, C.G.; Jamieson, J.W.; Lelièvre, P.G.; Farquharson, C.G.; Parianos, J.M. Magnetic Imaging of Subseafloor Hydrothermal Fluid Circulation Pathways. Sci. Adv. 2020, 6, eabc6844. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Evjen, H.M. The place of the vertical gradient in gravitational interpretations. Geophysics 1936, 1, 127–136. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. A Stable Downward Continuation by Using the ISVD Method. Geophys. J. Int. 2002, 151, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Stavrev, P.; Gerovska, D. Magnetic Field Transforms with Low Sensitivity to the Direction of Source Magnetization and High Centricity. Geophys. Prospect. 2000, 48, 317–340. [Google Scholar] [CrossRef]
- Bhattacharyya, B.K. Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics 1964, 29, 517–531. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete Time Signal Processing, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1989. [Google Scholar]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian sea and shortening in the Apennines as result of Arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Cella, F.; de Lorenzo, S.; Fedi, M.; Loddo, M.; Mongelli, F.; Rapolla, A.; Zito, G. Temperature and density of the Tyrrhenian lithosphere and slab and new interpretation of gravity field in the Tyrrhenian Basin. Tectonophysics 2006, 412, 27–47. [Google Scholar] [CrossRef]
- Kastens, K.A.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.; Glacon, G.; Hasegawa, S.; et al. ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back-arc basin evolution. Geol. Soc. Am. Bull. 1988, 100, 1140–1156. [Google Scholar] [CrossRef]
- Savelli, C.; Schreider, A.A. The opening processes in the deep Tyrrhenian basin of Marsili and Vavilov, as deduced from magnetic and chronological evidence of their igneous crust. Tectonophysics 1991, 190, 119–131. [Google Scholar] [CrossRef]
- Kastens, K.A.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Curzi, P.; Emeis, K.C.; Glacon, G.L.; Hasegawa, S.; Hieke, W.; et al. The geological evolution of the Tyrrhenian Sea: An introduction to the scientific results of ODP Leg 107. In Proceedings of the ODP Scientific Results; Kastens, K.A., Mascle, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1990; Volume 107, p. 26. [Google Scholar] [CrossRef]
- Savelli, C. Two-stage progression of volcanism (8-0 Ma) in the central Mediterranean (southern Italy). J. Geodyn. 2001, 31, 393–410. [Google Scholar] [CrossRef]
- Beccaluva, L.; Rossi, P.L.; Serri, G. Neogene to Recent volcanism of the Southern Tyrrhenian–Sicilian area: Implications for the geodynamic evolution of the Calabrian Arc. Earth Evol. Sci. 1982, 3, 222–238. [Google Scholar]
- Beccaluva, L.; Gabbianelli, G.; Lucchini, F.; Rossi, P.L.; Savelli, C. Petrology and K/Ar ages of volcanic dredged from the Eolian seamounts: Implications for geodynamic evolution of the Southern Tyhrrenian basin. Earth Planet. Sci. Lett. 1985, 74, 187–208. [Google Scholar] [CrossRef]
- Turco, E.; Zuppetta, A. A kinematic model for the Plio-Quaternary evolution of the Tyrrhenian–Apenninic system: Implications for rifting processes and volcanism. J. Volcanol. Geoth. Res. 1998, 82, 1–18. [Google Scholar] [CrossRef]
- Della Vedova, B.; Pellis, G.; Foucher, J.P.; Rhéault, J.-P. Geothermal structure of the Tyrrhenian Sea. Mar. Geol. 1984, 55, 271–289. [Google Scholar] [CrossRef]
- Beccaluva, L.; Bonatti, E.; Dupuy, C.; Ferrara, G.; Innocenti, F.; Lucchini, F.; Macera, P.; Petrin, R.; Rossi, P.L.; Serri, G.; et al. Geochemistry and Mineralogy of Volcanic Rocks from ODP Sites 650, 651, 655, and 654 in the Tyrrhenian Sea. In Proceedings of the ODP Scientific Results; Kastens, K.A., Mascle, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1990; Volume 107, pp. 49–74. [Google Scholar]
- Trua, T.; Serri, G.; Marani, M.; Renzulli, A.; Gamberi, F. Volcanological and petrological evolution of Marsili seamount (Southern Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 2002, 114, 441–464. [Google Scholar] [CrossRef]
- Cocchi, L.; Caratori Tontini, F.; Muccini, F.; Marani, M.P.; Bortoluzzi, G.; Carmisciano, C. Chronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea). Terra Nova 2009, 21, 369–374. [Google Scholar] [CrossRef]
- Florio, G.; Fedi, M.; Cella, F. Insights on the spreading of Tyrrhenian Sea from the magnetic anomaly pattern. Terra Nova 2011, 23, 127–133. [Google Scholar] [CrossRef]
- Ventura, G.; Milano, G.; Passaro, S.; Sprovieri, M. The Marsili ridge (Southern Tyrrhenian Sea, Italy): An island-arc volcanic complex emplaced on a ‘relict’ back-arc basin. Earth Sci. Rev. 2013, 116, 85–94. [Google Scholar] [CrossRef]
- Head, I.I.I.J.W.; Wilson, L.; Smith, D.K. Mid-ocean ridge eruptive vent morphology and substructure: Evidence for dike widths, eruption rates, and evolution of eruptions and axial volcanic ridges. J. Geophys. Res. 1996, 101, 28265–28280. [Google Scholar] [CrossRef]
- D’Antonio, M.; Tonarini, S.; Arienzo, I.; Civetta, L.; Di Renzo, V. Components and processes in the magma genesis of the Phlegrean volcanic district, Southern Italy. Spec. Pap. Geol. Soc. Am. 2007, 418, 203–220. [Google Scholar]
- Gillot, P.Y.; Chiesa, S.; Pasquaré, G.; Vezzoli, L. 33.000 yr K/Ar dating of the volcano-tectonic horst of the isle of Ischia, Gulf of Naples. Nature 1982, 229, 242–245. [Google Scholar] [CrossRef]
- Vezzoli, L. Island of Ischia. Quaderni de “La ricerca scientifica” progetto finalizzato “geodinamica”. Monogr. Final. 1998, 10, 134. [Google Scholar]
- Passaro, S.; de Alteriis, G.; Sacchi, M. Bathymetry of Ischia Island and its offshore (Italy), scale 1:50.000. J. Maps 2016, 12, 152–159. [Google Scholar] [CrossRef]
- Cusano, P.; Petrosino, S.; De Lauro, E.; Falanga, M. The whisper of the hydrothermal seismic noise at Ischia Island. J. Volcanol. Geotherm. Res. 2020, 389, 106693. [Google Scholar] [CrossRef]
- Chiodini, G.; Avino, R.; Brombach, T.; Caliro, S.; Cardellini, C.; De Vita, S.; Frondini, F.; Granirei, D.; Marotta, E.; Ventura, G. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 2004, 133, 291–309. [Google Scholar] [CrossRef]
- Paoletti, V.; Di Maio, R.; Cella, F.; Florio, G.; Motschka, K.; Roberti, N.; Secomandi, M.; Supper, R.; Fedi, M.; Rapolla, A. The Ischia volcanic island (Southern Italy): Inferences from potential field data interpretation. J. Volcanol. Geotherm. Res. 2009, 179, 69–86. [Google Scholar] [CrossRef]
- Acocella, V.; Funiciello, R. The interaction between regional and local tectonics during resurgent doming: The case of the island of Ischia, Italy. J. Volcanol. Geotherm. Res. 1999, 88, 109–123. [Google Scholar] [CrossRef]
- Molin, P.; Acocella, V.; Funiciello, R. Structural, seismic and hydrothermal features at the border of an active intermittent resurgent block: Ischia Island (Italy). J. Volcanol. Geotherm. Res. 2003, 121, 65–81. [Google Scholar] [CrossRef]
- Trincardi, F.; Zitellini, N. The rifting of the Tyrrhenian Basin. Geo-Mar. Lett. 1987, 7, 1–6. [Google Scholar] [CrossRef]
- Zitellini, N.; Marani, M.; Borsetti, M. Post-orogenic tectonic evolution of Palmarola and Ventotene Basins (Pontine Archipelago). Mem. Soc. Geol. It. 1984, 27, 121–131. [Google Scholar]
- Bruno, P.P.G.; Di Fiore, V.; Ventura, G. Seismic study of the ‘41st parallel’ Fault System offshore the Campanian-Latial continental margin, Italy. Tectonophysics 2000, 324, 37–55. [Google Scholar] [CrossRef]
- Milia, A.; Torrente, M.M. Space-time evolution of an active volcanic field in an extentional region: The example of the Campania margin (eastern Tyrrhenian Sea). In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier (Rotterdam): Rotterdam, The Netherlands, 2020; Volume 12, pp. 297–321. [Google Scholar]
- Ortolani, F.; Aprile, F. Nuovi dati sulla struttura profonda della Piana Campana ad est del fiume Volturno. Boll. Soc. Geol. It. 1978, 97, 591–608. [Google Scholar]
- Mariani, M.; Prato, R. I bacini Neogenici costieri del margine tirrenico: Approccio sismico stratigrafico. Mem. Soc. Geol. Ital. 1988, 41, 519–531. [Google Scholar]
- Bartole, R.; Savelli, D.; Tramontana, M.; Wezel, F.C. Structural and sedimentary features in the Tyrrhenian margin off Campania, Southern Italy. Mar. Geol. 1984, 55, 163–180. [Google Scholar] [CrossRef]
- Barbieri, M.; Di Girolamo, P.; Locardi, E.; Lombardi, G.; Stanzione, D. Petrology of the Calc-Alkaline Volcanics of the Parete 2 Well (Campania, Italy). Period. Mineral. 1979, 48, 53–74. [Google Scholar]
- Wezel, F.C. Structural features and basin tectonics of the Tyrrhenian Sea. In Geological Evolution of the Mediterranean Basin; Stanley, D.J., Wezel, F.C., Eds.; Wiley: New York, NY, USA, 1985; pp. 153–194. [Google Scholar]
- Selli, R. Thoughts on the geology of the Mediterranean Region. In Sedimentary Basins of Mediterranean Margins; Wezel, F.C., Ed.; Tecnoprint Ed.: Bologna, Italy, 1981; pp. 489–501. [Google Scholar]
- De Rita, D.; Funiciello, R.; Pantosti, D.; Salvini, F.; Sposato, A.; Velonà, M. Geological and structural characteristics of the Pontine islands (Italy) and implications with the evolution of the Tyrrhenian Margin. Mem. Soc. Geol. Ital. 1986, 36, 55–65. [Google Scholar]
- Cassano, E.; Fichera, R.; Arisi Rota, F. Rilievo Aeromagnetico D’italia: Alcuni Risultati Interpretativi. In Atti del v Convegno Annuale del Gruppo Nazionale di Geofisica della Terra Solida; CNR: Roma, Italy, 1986; Volume 2, pp. 939–962. [Google Scholar]
- Caratori Tontini, F.; Stefanelli, P.; Giori, I.; Faggioni, O.; Carmisciano, C. The Revised Aeromagnetic Anomaly Map of Italy. Ann. Geophys. 2004, 47, 1547–1555. [Google Scholar] [CrossRef]
- Cella, F.; Fedi, F.; Florio, G.; Rapolla, A. Boundaries of magnetic anomaly sources in the Tyrrhenian Region. Ann. Geofis. 1998, 41, 433–447. [Google Scholar] [CrossRef]
- Fedi, M.; Rapolla, A. Aeromagnetic anomaly shape analysis in the Southern Italian Region for the evaluation of crustal block rotations. J. Geodyn. 1990, 12, 149–161. [Google Scholar] [CrossRef]
- de Alteriis, G.; Fedi, M.; Passaro, S.; Siniscalchi, A. Magneto-seismic interpretation of subsurface volcanism in the Gaeta Gulf (Italy, Tyrrhenian Sea). Ann. Geophys. 2006, 49, 930–943. [Google Scholar] [CrossRef]
- Paltrinieri, D.; Viezzoli, C.; Signanini, P.; Di Sabatino, B.; D’Anna, G.; Calcara, M.; Bortoluzzi, G.; Cocchi, L.; Caratori Tontini, F. Report on the Morphobathymetric, Magnetometric, Gravimetric, CTD, Water and Bottom Sampling Investigations during Cruise MRS06 Aboard R⁄v Universitatis; ISMAR-CNR Interim Report; ISMAR-CNR: Bologna, Italy, 2006. [Google Scholar]
- Milano, M.; Fedi, M.; Fairhead, J.D. The deep crust beneath the Trans-European Suture Zone from a multiscale magnetic model: Multiscale Magnetic Model of the Tesz. J. Geophys. Res. Solid Earth 2016, 121, 6276–6292. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Fedi, M.; Fairhead, J.D. Joint analysis of the magnetic field and total gradient intensity in central Europe. Solid Earth 2019, 10, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Fedi, M.; Florio, G. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect. 2001, 49, 40–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florio, G.; Passaro, S.; de Alteriis, G.; Cella, F. Magnetic Anomalies of the Tyrrhenian Sea Revisited: A Processing Workflow for Enhancing the Resolution of Aeromagnetic Data. Geosciences 2022, 12, 377. https://doi.org/10.3390/geosciences12100377
Florio G, Passaro S, de Alteriis G, Cella F. Magnetic Anomalies of the Tyrrhenian Sea Revisited: A Processing Workflow for Enhancing the Resolution of Aeromagnetic Data. Geosciences. 2022; 12(10):377. https://doi.org/10.3390/geosciences12100377
Chicago/Turabian StyleFlorio, Giovanni, Salvatore Passaro, Giovanni de Alteriis, and Federico Cella. 2022. "Magnetic Anomalies of the Tyrrhenian Sea Revisited: A Processing Workflow for Enhancing the Resolution of Aeromagnetic Data" Geosciences 12, no. 10: 377. https://doi.org/10.3390/geosciences12100377
APA StyleFlorio, G., Passaro, S., de Alteriis, G., & Cella, F. (2022). Magnetic Anomalies of the Tyrrhenian Sea Revisited: A Processing Workflow for Enhancing the Resolution of Aeromagnetic Data. Geosciences, 12(10), 377. https://doi.org/10.3390/geosciences12100377