The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean
Abstract
:1. Introduction
2. Geological Framework and Previous Work
3. Geochronological Characterisation
3.1. Late Neoproterozoic: Continental Rift
3.2. Cambrian–Earliest Devonian: Continental Arc
3.3. Devonian–Carboniferous: Magmatic Hiatus
3.4. Permian: Continental Arc
3.5. Triassic (250–208 Ma): Continental Rift
3.6. Late Triassic–Jurassic (213–145 Ma): Unfoliated Intrusions of a Continental Arc
3.7. Early Cretaceous: Foliated Igneous Rocks of a Continental Arc
4. Geochemical and Isotopic Characterisation
4.1. Whole Rock Geochemical Compositions: Arcs
4.2. Radiogenic and Stable Isotopic Compositions: Arcs
4.3. Whole Rock Geochemical Compositions: Rifts
4.4. Radiogenic and Stable Isotopic Compositions: Rifts
5. Thermochronology
5.1. Cambrian-Carboniferous Constraints
5.2. Permian-Mesozoic Constraints
6. Tectonic Synthesis Based on the Geochemical and Isotopic Data
6.1. Late Neoproterozoic
6.2. Cambrian to Carboniferous
6.3. Permian
6.4. Triassic
6.5. Latest Triassic–Early Cretaceous (213–112 Ma)
7. Conclusions
- Rifting and the initiation of the Wilson Cycle during 623–531 Ma is recorded by olivine bearing gabbros and ultramafic rocks of the Huarguallá Gabbro unit that is exposed along the western flank of the Cordillera Real, and a nepheline syenite in the Llanos Basin of Colombia. The units form part of the geographically dispersed Central Iapetus Magmatic Province, and their location is consistent with the continental reconstruction of Tegner et al. (2019) [95], which juxtaposes northwestern Gondwana with late Neoproterozoic dyke complexes within Baltica. Stratigraphic constraints on the formation of rift-basalts of the Puncoviscana Belt (Argentina), suggests they formed within the same setting, during the rift stage of the Iapetus Wilson Cycle.
- Subduction of Iapetan oceanic lithosphere gave rise to active margin magmatism in northwestern Gondwana during ~499 Ma ~414 Ma, The period during 499–467 is characterised by compression, forming orthogneisses with a pervasive foliation and upper amphibolite Barrovian metamorphism. Compression was coeval with extension located further east along the northern Gondwanan margin, during the opening of the Rheic Ocean, suggesting that Iapetan oceanic lithosphere was being subducted to the west of the Rheic rift axis. Extension prevailed after ~467 Ma, possibly due to westward propagation of the Rheic extensional axis, and perhaps also as a response to gravitational collapses of the orogen, although this is not constrained. These intrusions are mainly preserved inboard of younger arcs (Mérida Andes and the Santander Massif), although smaller Ordovician crustal blocks are preserved in the Cordillera Central, which may be windows to an extensive Ordovician basement sequence. The arc rocks are coeval with the Famatinian arc and arc-related intrusions in the Eastern Cordillera of Peru, and probably represent the northern extent of the same arc-subduction system. The occurrence of hornblende orthogneisses and an unconformity in the southern Merida Andes during 453–445 Ma may be a consequence of a second compressive phase that started at ~450 Ma. The isotopic compositions of the Cambrian–Earliest Devonian intrusions suggest they share a common history along the margin of Gondwana, and are not derived from Laurentia. The lack of Cambrian-Earliest Devonian magmatism in Ecuador reflects its inboard position relative to arc-crustal blocks that now form part of southwestern North America, and detached during Triassic rifting.
- With the exception of minor Carboniferous stocks that formed during 330–310 Ma, the period during ~414 and ~296 Ma is characterised by a paucity of magmatism. The origin of a minor peak of Devonian-aged detrital zircons in Devonian sedimentary rocks in Colombia remains enigmatic, and Carboniferous detrital zircons in Carboniferous sedimentary units may be derived from an arc on the Triassic rifted conjugate margin, or from the south (e.g., Peru). Carboniferous 40Ar/39Ar white mica plateau dates (407–342 Ma) and some zircon U-Pb ages of magmatic rims of geographically dispersed Ordovician igneous rocks have been interpreted to record a possible Carboniferous period of amphibolite facies metamorphism, which may reflect collision events between Laurentia and Gondwana, during the early stages of the amalgamation of Pangaea.
- Subduction of Pacific lithosphere formed a continental arc during 294–253 Ma along western Pangaea, which was dismembered in South America by sinistral displacement along the southern Caribbean Plate boundary Zone, and is preserved in geographically dispersed regions. The arc reworked and assimilated Sunsas (~1 Ga) and Famatinian (Cambrian-Earliest Devonian) continental crust. Compression drove regional metamorphism, rock uplift and exhumation at the end of the Permian (255–250 Ma), which is recorded in the Mérida Andes, Sierra Nevada de Santa Marta, and the Triassic conjugate margins including the Chiapas Massif and the Chortis Block, forming the waning stage of the amalgamation of Pangaea ~50 Ma after the Ouachita-Marathon suture.
- Magmatic underplating and anatexis of continental crust during 245–225 Ma occurred during progressive thinning of the continental lithosphere during rifting along western Pangaea. Rifting advanced to complete separation of continental crust by ~216 Ma, and the formation of oceanic lithosphere between the conjugate margins of northwestern South America and basement terranes of Mexico and Central America. The rifting event is recorded by amphibolitised tholeiitic basaltic dykes and extensive tracts of migmatites and S-type granites within the conjugate margins. Various Triassic units in the Chaucús Complex, Chortis Block, Maya Block, the Mixteca Terrane (Mexico and Central America) formed within the Triassic arc and back-arc. Rifting north of the Huancabamba Deflection was accompanied by subduction, and occurred within a backarc. Triassic rifting represents the early stage of the fragmentation of Pangaea, eventually leading to the opening of the proto-Caribbean Seaway and Central Atlantic at ~195 Ma.
- East-dipping subduction of the Farallon Plate formed a calc-alkaline continental arc that commenced in northwestern South America at ~213 Ma, representing the onset of the Andean cycle. The arc axis migrated oceanward at ~194 Ma, and formed a long/lived continental arc during 193–112 Ma within Colombia and Ecuador, and was accompanied by progressive thinning of the continental crust. Trench retreat of the east dipping-subduction zone accelerated along northwestern South America at ~144 Ma, and extension during 144–115 Ma formed syn-tectonic granitoid intrusions within Ecuador, attenuated the continental margin forming thin intra-arc basins characterised by transitional crust, and resulted in an oceanward migration of the arc axes, which became progressively more isotopically juvenile and geochemically depleted. Rapid extension rifted some narrow continental slivers (e.g., the Chaucha Block) from the margin
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spikings, R.; Paul, A.; Vallejo, C.; Reyes, P. Constraints on the Ages of the Crystalline Basement and Palaeozoic Cover Exposed in the Cordillera Real, Ecuador: 40Ar/39Ar Analyses and Detrital Zircon U/Pb Geochronology. Gondwana Res. 2021, 90, 77–101. [Google Scholar] [CrossRef]
- Van der Lelij, R.; Spikings, R.; Ulianov, A.; Chiaradia, M.; Mora, A. Palaeozoic to Early Jurassic History of the Northwestern Corner of Gondwana, and Implications for the Evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Res. 2016, 31, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Tazzo-Rangel, M.D.; Weber, B.; González-Guzmán, R.; Valencia, V.A.; Frei, D.; Schaaf, P.; Solari, L.A. Multiple Metamorphic Events in the Palaeozoic Mérida Andes Basement, Venezuela: Insights from U–Pb Geochronology and Hf–Nd Isotope Systematics. Int. Geol. Rev. 2019, 61, 1557–1593. [Google Scholar] [CrossRef]
- Mantilla Figueroa, L.C.; Bissig, T.; Cottle, J.M.; Hart, C.J.R. Remains of Early Ordovician Mantle-Derived Magmatism in the Santander Massif (Colombian Eastern Cordillera). J. S. Am. Earth Sci. 2012, 38, 1–12. [Google Scholar] [CrossRef]
- Mantilla Figueroa, L.C.; Bissig, T.; Valencia, V.; Hart, C.J.R. The Magmatic History of the Vetas-California Mining District, Santander Massif, Eastern Cordillera, Colombia. J. S. Am. Earth Sci. 2013, 45, 235–249. [Google Scholar] [CrossRef]
- Leal-Mejía, H.; Shaw, R.P.; Melgarejo i Draper, J.C. Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America; Frontiers in Earth Sciences; Cediel, F., Shaw, R.P., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 253–410. ISBN 978-3-319-76131-2. [Google Scholar]
- Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. Geochronology, Geochemistry and Tectonic Evolution of the Western and Central Cordilleras of Colombia. Lithos 2011, 125, 875–896. [Google Scholar] [CrossRef]
- Martens, U.; Restrepo, J.J.; Ordóñez-Carmona, O.; Correa-Martínez, A.M. The Tahamí and Anacona Terranes of the Colombian Andes: Missing Links between the South American and Mexican Gondwana Margins. J. Geol. 2014, 122, 507–530. [Google Scholar] [CrossRef]
- Correa-Martínez, A.M.; Martens, U.; Rodríguez, G. Collage of Tectonic Slivers Abutting the Eastern Romeral Fault System in Central Colombia. J. S. Am. Earth Sci. 2020, 104, 102794. [Google Scholar] [CrossRef]
- Horton, B.K.; Saylor, J.E.; Nie, J.; Mora, A.; Parra, M.; Reyes-Harker, A.; Stockli, D.F. Linking Sedimentation in the Northern Andes to Basement Configuration, Mesozoic Extension, and Cenozoic Shortening: Evidence from Detrital Zircon U-Pb Ages, Eastern Cordillera, Colombia. Geol. Soc. Am. Bull. 2010, 122, 1423–1442. [Google Scholar] [CrossRef]
- Piraquive, A.; Kammer, A.; Bernet, M.; Cramer, T.; von Quadt, A.; Gómez, C. Neoproterozoic to Jurassic Tectono-Metamorphic Events in the Sierra Nevada de Santa Marta Massif, Colombia: Insights from Zircon U-Pb Geochronology and Trace Element Geochemistry. Int. Geol. Rev. 2021, 1–33. [Google Scholar] [CrossRef]
- Viscarret, P.; Wright, J.; Urbani, F. New U-Pb Zircon Ages of El Baúl Massif, Cojedes State, Venezuela. Rev. Téc. Ing. Univ. Zulia. 2009, 32, 210–221. [Google Scholar]
- Feo-Codecido, G.; Smith, F.D., Jr.; Aboud, N.; di Giacomo, E. Basement and Paleozoic Rocks of the Venezuelan Llanos Basins. Mem. Geol. Soc. 1984, 162, 173–187. [Google Scholar]
- Mišković, A.; Spikings, R.A.; Chew, D.M.; Košler, J.; Ulianov, A.; Schaltegger, U. Tectonomagmatic Evolution of Western Amazonia: Geochemical Characterization and Zircon U-Pb Geochronologic Constraints from the Peruvian Eastern Cordilleran Granitoids. Geol. Soc. Am. Bull. 2009, 121, 1298–1324. [Google Scholar] [CrossRef]
- Restrepo, J.J.; Toussaint, J.F. Unidades Litologicas de Los Alrededores de Medellın; Centro Journal: New York, NY, USA, 1984; pp. 1–26. [Google Scholar]
- Bustamante, A.; Juliani, C. Unraveling an Antique Subduction Process from Metamorphic Basement around Medellín City, Central Cordillera of Colombian Andes. J. S. Am. Earth Sci. 2011, 32, 210–221. [Google Scholar] [CrossRef]
- Litherland, M.; Aspden, J.A.; Jemielita, R.A. The Metamorphic Belts of Ecuador; Overseas Memoir of the British Geological Survey; British Geological Survey: Nottingham, UK, 1994; Volume 11. [Google Scholar]
- Gomez, J.; Nivia, A.; Jimenez, D.M.; Tejada, M.L.; Sepulveda, J.; Osorio, J.A.; Gaona, T.; Dieferix, H.; Uribe, H.; Mora, M. Geological Map of Colombia 2007. Escala 1:1′000.000. Available online: https://www2.sgc.gov.co/ProgramasDeInvestigacion/Geociencias/Documents/Descargables/Gomez-et-al-2007_GMC_PDF.pdf (accessed on 10 November 2021).
- Leal-Mejia, H.; Draper, J.; Shaw, R. Phanerozoic gold metallogeny in the Colombian Andes. In Proceedings of the Let’s Talk Ore Deposits—Eleventh Biennial SGA Meeting, Antofagasta, Chile, 26–29 September 2011. [Google Scholar]
- Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M. Permian to Triassic I to S-Type Magmatic Switch in the Northeast Sierra Nevada de Santa Marta and Adjacent Regions, Colombian Caribbean: Tectonic Setting and Implications within Pangea Paleogeography. J. S. Am. Earth Sci. 2010, 29, 772–783. [Google Scholar] [CrossRef]
- Cochrane, R.; Spikings, R.; Gerdes, A.; Ulianov, A.; Mora, A.; Villagómez, D.; Putlitz, B.; Chiaradia, M. Permo-Triassic Anatexis, Continental Rifting and the Disassembly of Western Pangaea. Lithos 2014, 190–191, 383–402. [Google Scholar] [CrossRef]
- Bustamante, C.; Archanjo, C.J.; Cardona, A.; Bustamante, A.; Valencia, V.A. U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the North Andes. J. Geol. 2017, 125, 487–500. [Google Scholar] [CrossRef]
- Paul, A.N.; Spikings, R.A.; Ulianov, A.; Ovtcharova, M. High Temperature (>350 °C) Thermal Histories of the Long Lived (>500 Ma) Active Margin of Ecuador and Colombia: Apatite, Titanite and Rutile U-Pb Thermochronology. Geochim. Cosmochim. Acta 2018, 228, 275–300. [Google Scholar] [CrossRef]
- Spikings, R.A.; Paul, A. The Permian—Triassic History of Magmatic Rocks of the Northern Andes (Colombia and Ecuador): Super-continent Assembly and Disassembly; Servicio Geológico Colombiano: Bogotá, Columbia, 2019; p. 15. [Google Scholar]
- Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C. Permian–Carboniferous Arc Magmatism in Southern Mexico: U–Pb Dating, Trace Element and Hf Isotopic Evidence on Zircons of Ear-liest Subduction beneath the Western Margin of Gondwana. Int. J. Earth Sci. 2014, 103, 1287–1300. [Google Scholar] [CrossRef]
- Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Pelaez, C. Geochronological, Isotopic, and Geochemical Data from Permo-Triassic Granitic Gneisses and Granitoids of the Colombian Central Andes. J. S. Am. Earth Sci. 2006, 21, 355–371. [Google Scholar] [CrossRef]
- Weber, B.; Iriondo, A.; Premo, W.R.; Hecht, L.; Schaaf, P. New Insights into the History and Origin of the Southern Maya Block, SE México: U–Pb–SHRIMP Zircon Geochronology from Metamorphic Rocks of the Chiapas Massif. Int. J. Earth Sci. 2007, 96, 253–269. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Franz, L.; Min, M.; Bachmann, R.; Martens, U.; Stanek, K.; Stübner, K.; Nelson, B.K.; Herrmann, U.; Weber, B.; et al. The North American-Caribbean Plate Boundary in Mexico-Guatemala-Honduras. Geol. Soc. Lond. Spec. Publ. 2009, 328, 219–293. [Google Scholar] [CrossRef]
- Ward, D.E.; Goldsmith, R.; Restrepo, H.A. Open-File Report. 1974. Available online: https://pubs.er.usgs.gov/publication/ofr74258 (accessed on 10 November 2021).
- Montes, C.; Guzman, G.; Bayona, G.; Cardona, A.; Valencia, V.; Jaramillo, C. Clockwise Rotation of the Santa Marta Massif and Simultaneous Paleogene to Neogene Deformation of the Plato-San Jorge and Cesar-Ranchería Basins. J. S. Am. Earth Sci. 2010, 29, 832–848. [Google Scholar] [CrossRef]
- Weber, M.; Cardona, A.; Valencia, V.; García-Casco, A.; Tobón, M.; Zapata, S. U/Pb Detrital Zircon Provenance from Late Cretaceous Metamorphic Units of the Guajira Peninsula, Colombia: Tectonic Implications on the Collision between the Car-ibbean Arc and the South American Margin. J. S. Am. Earth Sci. 2010, 29, 805–816. [Google Scholar] [CrossRef]
- Restrepo, J.J.; Ordóñez-Carmona, O.; Armstrong, R.; Pimentel, M.M. Triassic Metamorphism in the Northern Part of the Tahamí Terrane of the Central Cordillera of Colombia. J. S. Am. Earth Sci. 2011, 32, 497–507. [Google Scholar] [CrossRef]
- Aspden, J.A.; McCourt, W.J.; Brook, M. Geometrical Control of Subduction-Related Magmatism: The Mesozoic and Cenozoic Plutonic History of Western Colombia. J. Geol. Soc. 1987, 144, 893–905. [Google Scholar] [CrossRef]
- Chew, D.; Magna, T.; Kirkland, C.; Miskovic, A.; Cardona, A.; Spikings, R.; Schaltegger, U. Detrital Zircon Fingerprint of the Proto-Andes: Evidence for a Neoproterozoic Active Margin? Precambrian Res. 2008, 167, 186–200. [Google Scholar] [CrossRef]
- Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; et al. Metamorphic and Geochronogical Study of the Triassic El Oro Metamorphic Complex, Ecuador: Implications for High-Temperature Metamorphism in a Forearc Zone. Lithos 2013, 156–159, 41–68. [Google Scholar] [CrossRef]
- Spikings, R.; Cochrane, R.; Villagomez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. The Geological History of Northwestern South America: From Pangaea to the Early Collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Res. 2015, 27, 95–139. [Google Scholar] [CrossRef]
- Noble, S.R.; Aspden, J.A.; Jemielita, R. Northern Andean Crustal Evolution: New U-Pb Geochronological Constraints from Ecuador. Geol. Soc. Am. Bull. 1997, 109, 789–798. [Google Scholar] [CrossRef]
- Correa-Martinez, A.M. Petrogênese e Evolução Do Ofiolito de Aburrá, Cordilhera Central Dos Andes Colombianos; Universidade de Brasília: Brasilia, Brazil, 2007. [Google Scholar]
- Chiaradia, M.; Vallance, J.; Fontboté, L.; Stein, H.; Schaltegger, U.; Coder, J.; Richards, J.; Villeneuve, M.; Gendall, I. U–Pb, Re–Os, and 40Ar/39Ar Geochronology of the Nambija Au-Skarn and Pangui Porphyry Cu Deposits, Ecuador: Implications for the Jurassic Metallogenic Belt of the Northern Andes. Min. Depos. 2009, 44, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, C.; Cardona, A.; Bayona, G.; Mora, A.; Valencia, V.; Gehrels, G.; Vervoort, J. U-Pb LA-ICP-MS Geochronology and Regional Correlation of Middle Jurassic Instrusive Rocks from the Garzon Massif, Upper Magdalena Vallez and Central Cor-dillera, Southern Colombia. Boletín Geol. 2010, 32, 93–109. [Google Scholar]
- Bustamante, C.; Archanjo, C.J.; Cardona, A.; Vervoort, J.D. Late Jurassic to Early Cretaceous Plutonism in the Colombian Andes: A Record of Long-Term Arc Maturity. Geol. Soc. Am. Bull. 2016, 128, 1762–1779. [Google Scholar] [CrossRef]
- Rodríguez, G.; Arango, M.I.; Zapata, G.; Bermúdez, J.G. Petrotectonic Characteristics, Geochemistry, and U-Pb Geochronology of Jurassic Plutons in the Upper Magdalena Valley-Colombia: Implications on the Evolution of Magmatic Arcs in the NW Andes. J. S. Am. Earth Sci. 2018, 81, 10–30. [Google Scholar] [CrossRef]
- Spikings, R.A.; Cochrane, R.; Vallejo, C.; Villagomez, D.; Van der Lelij, R.; Paul, A.; Winkler, W. Latest triassic to early cre-taceous tectonics of the Northern Andes: Geochronology, geochemistry, isotopic tracing, and thermochronology. In Andean Tectonics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 173–208. ISBN 978-0-12-816009-1. [Google Scholar]
- Restrepo, M.; Bustamante, C.; Cardona, A.; Beltrán-Triviño, A.; Bustamante, A.; Chavarría, L.; Valencia, V.A. Tectonic Im-plications of the Jurassic Magmatism and the Metamorphic Record at the Southern Colombian Andes. J. S. Am. Earth Sci. 2021, 111, 103439. [Google Scholar] [CrossRef]
- Colmenares, F. Evolución Geohistorica de La Sierra Nevada de Santa Marta; Ingeominas: Bogotá, Colombia, 2007. [Google Scholar]
- Cochrane, R.; Spikings, R.; Gerdes, A.; Winkler, W.; Ulianov, A.; Mora, A.; Chiaradia, M. Distinguishing between In-Situ and Accretionary Growth of Continents along Active Margins. Lithos 2014, 202–203, 382–394. [Google Scholar] [CrossRef]
- Bass, M.; Shagam, R. Edades Rb–Sr de Las Rocas Cristalinas de Los Andes Merideños, Venezuela; Ministerio de Minas e Hi-drocarburos de Venezuela: Caracas, Venezuela, 1959. [Google Scholar]
- Martin-Bellizia, C.; Ramirez, C.; Menendez, A.; Rios, J.H.; Benaim, N. Edades Isotópicas de Rocas Venezolanas. Boletín Geol. 1968, 10, 356–380. [Google Scholar]
- Goldsmith, R.; Marvin, R.F.; Mehnert, H.H. Radiometric Ages in the Santander Massif, Eastern Cordillera, Colombian Andes; United States Geological Survey Professional Paper 750-D; United States Geological Survey: Reston, VA, USA, 1971; pp. 44–49. [Google Scholar]
- Feininger, T.; Barrero, D.; Castro, N. Geología de Antioquia et Caldas—Sub-Zona II-B. Bol. Geol. Bogota 1972, 20, 173. [Google Scholar]
- Bellizzia, A.; Pimentel, N. Terreno Mérida: Un Cinturón Alóctono Herciniano En La Cordillera de Los Andes de Venezuela; European Association of Geoscientists & Engineers location: Caracas, Venezuela, 1994; pp. 277–290. [Google Scholar]
- Aleman, A.; Ramos, V.A. The Northern Andes. In Tectonic Evolution of South America; SciELO Analytics: Santiago de Chile, Chile, 2000; pp. 453–480. [Google Scholar]
- Mejia, M.I.A.; Garcia, G.Z.; Martens, U. Caracterización Petrográfica, Geoquímica y Edad de La Sienita Nefelínica de San José Del Guaviare. Boletín Geol. 2012, 34, 15–26. [Google Scholar]
- Omarini, R.H.; Sureda, R.J.; Götze, H.-J.; Seilacher, A.; Pflüger, F. Puncoviscana Folded Belt in Northwestern Argentina: Tes-timony of Late Proterozoic Rodinia Fragmentation and Pre-Gondwana Collisional Episodes. Int. J. Earth Sci. 1999, 88, 76–97. [Google Scholar] [CrossRef]
- Tazzo-Rangel, M.D.; Weber, B.; Frei, D.; González-Guzmán, R. Depositional Age and Provenance of High-Grade Paragneisses from the Mérida Andes, Venezuela: Implications for the Ediacaran–Cambrian Tectonic Setting of Northwestern Gondwana. Lithos 2021, 404–405, 106436. [Google Scholar] [CrossRef]
- Chew, D.M.; Schaltegger, U.; Kosler, J.; Whitehouse, M.J.; Gutjahr, M.; Spikings, R.A.; Miskovic, A. U-Pb Geochronologic Evidence for the Evolution of the Gondwanan Margin of the North-Central Andes. Geol. Soc. Am. Bull. 2007, 119, 697–711. [Google Scholar] [CrossRef]
- Gutiérrez, E.G.; Horton, B.K.; Vallejo, C.; Jackson, L.J.; George, S.W.M. Provenance and geochronological insights into late cretaceous-cenozoic foreland basin development in the subandean zone and oriente basin of Ecuador. In Andean Tectonics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–268. ISBN 978-0-12-816009-1. [Google Scholar]
- Bahlburg, H.; Vervoort, J.D.; Du Frane, S.A.; Bock, B.; Augustsson, C.; Reimann, C. Timing of Crust Formation and Recycling in Accretionary Orogens: Insights Learned from the Western Margin of South America. Earth Sci. Rev. 2009, 97, 215–241. [Google Scholar] [CrossRef]
- Piraquive, A.; Kammer, A.; Gómez, C.; Bernet, M.; Muñoz-Rocha, J.A.; Quintero, C.A.; Laurent, O.; von Quadt, A.; Pe-ña-Urueña, M.L. Middle-Late Triassic Metamorphism of the Guajira Arch-Basement: Insights from Zircon U–Pb and Lu–Hf Systematics. J. S. Am. Earth Sci. 2021, 110, 103397. [Google Scholar] [CrossRef]
- Aspden, J.A.; Bonilla, W.; Duque, P. The El Oro Metamorphic Complex, Ecuador: Geology and Economic Mineral Deposits; Overseas Geology and Mineral Resources; British Geological Survey: Nottingham, UK, 1995; p. 63. [Google Scholar]
- Bayona, G.; Jiménez, G.; Silva, C.; Cardona, A.; Montes, C.; Roncancio, J.; Cordani, U. Paleomagnetic Data and K–Ar Ages from Mesozoic Units of the Santa Marta Massif: A Preliminary Interpretation for Block Rotation and Translations. J. S. Am. Earth Sci. 2010, 29, 817–831. [Google Scholar] [CrossRef]
- Carrasco, H.F. Geochronological, Geochemical and Isotopic Characterisation of the Mesozoic (160–110 Ma) Andean Margin within Ecuador; University of Geneva: Geneva, Switzerland, 2021. [Google Scholar]
- Nivia, A.; Marriner, G.F.; Kerr, A.C.; Tarney, J. The Quebradagrande Complex: A Lower Cretaceous Ensialic Marginal Basin in the Central Cordillera of the Colombian Andes. J. S. Am. Earth Sci. 2006, 21, 423–436. [Google Scholar] [CrossRef]
- Jaramillo, J.S.; Cardona, A.; León, S.; Valencia, V.; Vinasco, C. Geochemistry and Geochronology from Cretaceous Magmatic and Sedimentary Rocks at 6°35′ N, Western Flank of the Central Cordillera (Colombian Andes): Magmatic Record of Arc Growth and Collision. J. S. Am. Earth Sci. 2017, 76, 460–481. [Google Scholar] [CrossRef]
- Toussaint, J.F.; Restrepo, J.J. The Colombian Andes during cretaceous times. In Cretaceous Tectonics of the Andes; Salfity, J.A., Ed.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1994; pp. 61–100. ISBN 978-3-528-06613-0. [Google Scholar]
- Peacock, M.A. Classification of Igneous Rock Series. J. Geol. 1931, 39, 54–67. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- John, T.; Scherer, E.E.; Schenk, V.; Herms, P.; Halama, R.; Garbe-Schönberg, D. Subducted Seamounts in an Eclogite-Facies Ophiolite Sequence: The Andean Raspas Complex, SW Ecuador. Contrib. Miner. Pet. 2010, 159, 265–284. [Google Scholar] [CrossRef]
- Shervais, J.W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Rodriguez, G.; Zapata, G. Comparative Analysis of the Barroso Formation and Quebradagrande Complex: A Volcanic Arc Tholeiitic-Calcoalcaline, Segmented by the Fault System Romeral in Northern Andes. Bol. Cienc. Tierra. 2013, 33, 39–58. [Google Scholar]
- Van der Lelij, R.; Spikings, R.; Gerdes, A.; Chiaradia, M.; Vennemann, T.; Mora, A. Multi-Proxy Isotopic Tracing of Magmatic Sources and Crustal Recycling in the Palaeozoic to Early Jurassic Active Margin of North-Western Gondwana. Gondwana Res. 2019, 66, 227–245. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Astini, R.A.; Benedetto, J.L.; Vaccari, N.E. The Early Paleozoic Evolution of the Argentine Precordillera as a Laurentian Rifted, Drifted, and Collided Terrane: A Geodynamic Model. Geol. Soc. Am. Bull. 1995, 107, 253–0273. [Google Scholar] [CrossRef]
- Harris, C.; Faure, K.; Diamond, R.E.; Scheepers, R. Oxygen and Hydrogen Isotope Geochemistry of S- and I-Type Granitoids: The Cape Granite Suite, South Africa. Chem. Geol. 1997, 143, 95–114. [Google Scholar] [CrossRef]
- Ruiz, J.; Tosdal, R.M.; Restrepo, P.A.; Murillo-Muneton, G. Pb Isotope Evidence for Colombia–Southern México Connections in the Proterozoic. Geol. Soc. Am. Spec. Pap. 1999, 336, 183–197. [Google Scholar]
- Tosdal, R.M. The Amazon-Laurentian Connection as Viewed from the Middle Proterozoic Rocks in the Central Andes, Western Bolivia and Northern Chile. Tectonics 1996, 15, 827–842. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Combined U–Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Ordóñez-Carmona, O.; Álvarez, J.J.R.; Pimentel, M.M. Geochronological and Isotopical Review of Pre-Devonian Crustal Basement of the Colombian Andes. J. S. Am. Earth Sci. 2006, 21, 372–382. [Google Scholar] [CrossRef]
- Bingen, B.; Demaiffe, D. Geochemical Signature of the Egersund Basaltic Dyke Swarm, SW Norway, in the Context of Late-Neoproterozoic Opening of the Iapetus Ocean. Nor. Geol. Tidsskr. 1999, 79, 69–86. [Google Scholar] [CrossRef]
- Spikings, R.A.; Winkler, W.; Seward, D.; Handler, R. Along-Strike Variations in the Thermal and Tectonic Response of the Continental Ecuadorian Andes to the Collision with Heterogeneous Oceanic Crust. Earth Planet. Sci. Lett. 2001, 186, 57–73. [Google Scholar] [CrossRef]
- Vallejo, C.; Spikings, R.A.; Luzieux, L.; Winkler, W.; Chew, D.; Page, L. The Early Interaction between the Caribbean Plateau and the NW South American Plate: Caribbean Plateau-South American Plate Collision. Terra Nova 2006, 18, 264–269. [Google Scholar] [CrossRef]
- Spikings, R.A.; Popov, D.V. Thermochronology of Alkali Feldspar and Muscovite at T > 150 °C Using the 40Ar/39Ar Method: A Review. Minerals 2021, 11, 1025. [Google Scholar] [CrossRef]
- Van der Lelij, R.; Spikings, R.; Mora, A. Thermochronology and Tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos 2016, 248–251, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.-F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. High Temperature (>350 °C) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochim. Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Spikings, R.A.; Crowhurst, P.V.; Winkler, W.; Villagomez, D. Syn- and Post-Accretionary Cooling History of the Ecuadorian Andes Constrained by Their in-Situ and Detrital Thermochronometric Record. J. S. Am. Earth Sci. 2010, 30, 121–133. [Google Scholar] [CrossRef]
- Villagómez, D.; Spikings, R. Thermochronology and Tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary Evolution of the Northern Andes. Lithos 2013, 160–161, 228–249. [Google Scholar] [CrossRef]
- Jaimes, E.; de Freitas, M. An Albian–Cenomanian Unconformity in the Northern Andes: Evidence and Tectonic Significance. J. S. Am. Earth Sci. 2006, 21, 466–492. [Google Scholar] [CrossRef]
- Balkwill, H.R.; Paredes, F.I.; Rodriguez, G.; Almeida, J.P. Northern part of oriente basin, Ecuador: Reflection seismic expres-sion of structures. In Petroleum Basins of South America; American Association of Petroleum Geologists: Tulsa, OK, USA, 1995; Volume 62, pp. 559–571. [Google Scholar]
- Jaillard, E.; Soler, P.; Carlier, G.; Mourier, T. Geodynamic Evolution of the Northern and Central Andes during Early to Middle Mesozoic Times: A Tethyan Model. J. Geol. Soc. 1990, 147, 1009–1022. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, L.F.; Rangel, A. Petroleum Systems of the Upper Magdalena Valley, Colombia. Mar. Pet. Geol. 2004, 21, 373–391. [Google Scholar] [CrossRef]
- Kennan, L.; Pindell, J.L. Dextral Shear, Terrane Accretion and Basin Formation in the Northern Andes: Best Explained by Interaction with a Pacific-Derived Caribbean Plate? Geol. Soc. Lond. Spec. Publ. 2009, 328, 487–531. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.M.H.; Seward, D.; Winkler, W. Chapter 36 Evolution of the Amazon basin in Ecuador with special reference to hinterland tectonics: Data from zircon fission-track and heavy mineral analysis. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 907–934. ISBN 978-0-444-51753-1. [Google Scholar]
- Villagómez, D.; Spikings, R.; Mora, A.; Guzmán, G.; Ojeda, G.; Cortés, E.; van der Lelij, R. Vertical Tectonics at a Continental Crust-Oceanic Plateau Plate Boundary Zone: Fission Track Thermochronology of the Sierra Nevada de Santa Marta, Colombia: Thermochronology of Northern Colombia. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Ernst, R.E.; Bell, K. Large Igneous Provinces (LIPs) and Carbonatites. Min. Pet. 2010, 98, 55–76. [Google Scholar] [CrossRef]
- Tegner, C.; Andersen, T.B.; Kjøll, H.J.; Brown, E.L.; Hagen-Peter, G.; Corfu, F.; Planke, S.; Torsvik, T.H. A Mantle Plume Origin for the Scandinavian Dyke Complex: A “Piercing Point” for 615 Ma Plate Reconstruction of Baltica? Geochem. Geophys. Geosyst. 2019, 20, 1075–1094. [Google Scholar] [CrossRef]
- Dalziel, I.W.D. Overview: Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation. Geol. Soc. Am. Bull. 1997, 109, 16–42. [Google Scholar] [CrossRef]
- Nance, R.D.; Murphy, J.B. Supercontinents and the Case for Pannotia. Geol. Soc. Lond. Spec. Publ. 2019, 470, 65–86. [Google Scholar] [CrossRef]
- Baldo, E.; Casquet, C.; Pankhurst, R.J.; Galindo, C.; Rapela, C.W.; Fanning, C.M.; Dahlquist, J.; Murra, J. Neoproterozoic A-Type Magmatism in the Western Sierras Pampeanas (Argentina): Evidence for Rodinia Break-up along a Proto-Iapetus Rift? Terra Nova 2006, 18, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Tollo, R.P.; Aleinikoff, J.N.; Bartholomew, M.J.; Rankin, D.W. Neoproterozoic A-Type Granitoids of the Central and Southern Appalachians: Intraplate Magmatism Associated with Episodic Rifting of the Rodinian Supercontinent. Precambrian Res. 2004, 128, 3–38. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. Earth Geography from 500 to 400 Million Years Ago: A Faunal and Palaeomagnetic Review. J. Geol. Soc. 2002, 159, 631–644. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Lawton, T.F. Carboniferous to Cretaceous Assembly and Fragmentation of Mexico. Geol. Soc. Am. Bull. 2001, 113, 1142–1160. [Google Scholar] [CrossRef]
- Elías-Herrera, M.; Ortega-Gutiérrez, F. Caltepec Fault Zone: An Early Permian Dextral Transpressional Boundary between the Proterozoic Oaxacan and Paleozoic Acatlán Complexes, Southern Mexico, and Regional Tectonic Implications: Caltepec Fault Zone. Tectonics 2002, 21, 4–18. [Google Scholar] [CrossRef]
- Restrepo-Pace, P.A.; Cediel, F. Northern South America Basement Tectonics and Implications for Paleocontinental Recon-structions of the Americas. J. S. Am. Earth Sci. 2010, 29, 764–771. [Google Scholar] [CrossRef]
- Dalziel, I.W.D. Collision and Cordilleran Orogenesis: An Andean Perspective. Geol. Soc. Lond. Spec. Publ. 1986, 19, 389–404. [Google Scholar] [CrossRef]
- Gutscher, M.-A. Andean Subduction Styles and Their Effect on Thermal Structure and Interplate Coupling. J. S. Am. Earth Sci. 2002, 15, 3–10. [Google Scholar] [CrossRef]
- Collins, W.J. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geol. J. 2002, 30, 535. [Google Scholar] [CrossRef]
- Lucassen, F.; Franz, G. The Early Palaeozoic Orogen in the Central Andes: A Non-Collisional Orogen Comparable to the Ce-nozoic High Plateau? Geol. Soc. Lond. Spec. Publ. 2005, 246, 257–273. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Collins, W.J.; Gray, C.M.; Blevin, P.L. Isotopic Evidence for Rapid Continental Growth in an Extensional Accretionary Orogen: The Tasmanides, Eastern Australia. Earth Planet. Sci. Lett. 2009, 284, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.B.; Fernandez-Suarez, J.; Jeffries, T.; Strachan, R. U–Pb (LA–ICP-MS) Dating of Detrital Zircons from Cambrian Clastic Rocks in Avalonia: Erosion of a Neoproterozoic Arc along the Northern Gondwanan Margin. J. Geol. Soc. 2004, 161, 243–254. [Google Scholar] [CrossRef]
- Linnemann, U.; Pereira, F.; Jeffries, T.E.; Drost, K.; Gerdes, A. The Cadomian Orogeny and the Opening of the Rheic Ocean: The Diachrony of Geotectonic Processes Constrained by LA-ICP-MS U–Pb Zircon Dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 2008, 461, 21–43. [Google Scholar] [CrossRef]
- Nance, R.D.; Gutiérrez-Alonso, G.; Keppie, J.D.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. Evolution of the Rheic Ocean. Gondwana Res. 2010, 17, 194–222. [Google Scholar] [CrossRef]
- Van Staal, C.R.; Barr, S.M.; Murphy, J.B. Provenance and Tectonic Evolution of Ganderia: Constraints on the Evolution of the Iapetus and Rheic Oceans. Geology 2012, 40, 987–990. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.A.; Ortega-Gutiérrez, F.; Elías-Herrera, M.; Gómez-Tuena, A.; Schaaf, P. Refining the Age of Magmatism in the Altos Cuchumatanes, Western Guatemala, by LA–ICPMS, and Tectonic Implications. Int. Geol. Rev. 2010, 52, 977–998. [Google Scholar] [CrossRef]
- Keppie, J.D.; Dostal, J.; Miller, B.V.; Ramos-Arias, M.A.; Morales-Gámez, M.; Nance, R.D.; Murphy, J.B.; Ortega-Rivera, A.; Lee, J.W.K.; Housh, T.; et al. Ordovician–Earliest Silurian Rift Tholeiites in the Acatlán Complex, Southern Mexico: Evidence of Rifting on the Southern Margin of the Rheic Ocean. Tectonophysics 2008, 461, 130–156. [Google Scholar] [CrossRef]
- Spikings, R.; Reitsma, M.J.; Boekhout, F.; Mišković, A.; Ulianov, A.; Chiaradia, M.; Gerdes, A.; Schaltegger, U. Characterisation of Triassic Rifting in Peru and Implications for the Early Disassembly of Western Pangaea. Gondwana Res. 2016, 35, 124–143. [Google Scholar] [CrossRef]
- Kirsch, M.; Keppie, J.D.; Murphy, J.B.; Solari, L.A. Permian-Carboniferous Arc Magmatism and Basin Evolution along the Western Margin of Pangea: Geochemical and Geochronological Evidence from the Eastern Acatlan Complex, Southern Mexico. Geol. Soc. Am. Bull. 2012, 124, 1607–1628. [Google Scholar] [CrossRef]
- Solari, L.A.; Ortega-Gutiérrez, F.; Elías-Herrera, M.; Schaaf, P.; Norman, M.; de León, R.T.; Ortega-Obregón, C.; Chiquín, M.; Ical, S.M. U-Pb Zircon Geochronology of Palaeozoic Units in Western and Central Guatemala: Insights into the Tectonic Evolution of Middle America. Geol. Soc. Lond. Spec. Publ. 2009, 328, 295–313. [Google Scholar] [CrossRef]
- Stewart, J.H.; Blodgett, R.B.; Boucot, A.J.; Carter, J.L.; Lopez, R. Exotic paleozoic strata of Gondwanan provenance near ciudad Victoria, Tamaulipas, Mexico. In Laurentia-Gondwana Connections Before Pangaea; Geological Society of America: Boulder, CO, USA, 1999; Volume 336, pp. 227–252. [Google Scholar]
- Lopez, R. High-Mg Andesites from the Gila Bend Mountains: Evidence for Hydrous Melting of the Lithosphere during Miocene Ex-Tension, and the Pre-Jurassic Geotectonic Evolution of the Coahuila Terrane, Northeastern Mexico: Grenville Basement, a Late Paleozoic Arc, Triassic Plutonism, and the Events South of the Ouachita Suture; University of California Santa Cruz: Santa Cruz, CA, USA, 1997. [Google Scholar]
- Pindell, J.; Dewey, J.F. Permo-Triassic Reconstruction of Western Pangea and the Evolution of the Gulf of Mexico and South Caribbean Region. Tectonics 1982, 1, 179–211. [Google Scholar] [CrossRef]
- Macdonald, W.D.; Hurley, P.M. Precambrian Gneisses from Northern Colombia, South America. Geol. Soc. Am. Bull. 1969, 80, 1867. [Google Scholar] [CrossRef]
- Collins, W.J.; Richards, S.W. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology 2008, 36, 559. [Google Scholar] [CrossRef]
- Senff, M. Sedimentologie, Fauna Und Fazies des Präkretazischen Mesozoikum Im Oberen Magdalenatal von Zentralkolumbien Unter Besonderer Berüecksichtigung der Obertriassischen Payande Formation; Univeristät Giessen: Giessen, Germany, 1995. [Google Scholar]
- Cediel, F.; Caceres, C. Geological Map of Colombia; Geotec, Ltd.: Bogotá, Colombia, 2000. [Google Scholar]
- Kay, S.M.; Burns, W.M.; Copeland, P.; Mancilla, O. Upper cretaceous to holocene magmatism and evidence for transient miocene shallowing of the Andean subduction zone under the Northern Neuquén basin. In Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Nequen Basin (35°–39° S Lat); Geological Society of America: Boulder, CO, USA, 2006; Volume 407, pp. 19–59. [Google Scholar]
- Pratt, W.T.; Duque, P.; Ponce, M. An Autochthonous Geological Model for the Eastern Andes of Ecuador. Tectonophysics 2005, 399, 251–278. [Google Scholar] [CrossRef]
- Mora, A.; Parra, M.; Strecker, M.R.; Sobel, E.R.; Hooghiemstra, H.; Torres, V.; Jaramillo, J.V. Climatic Forcing of Asymmetric Orogenic Evolution in the Eastern Cordillera of Colombia. Geol. Soc. Am. Bull. 2008, 120, 930–949. [Google Scholar] [CrossRef]
- Mora, A.; Gaona, T.; Kley, J.; Montoya, D.; Parra, M.; Quiroz, L.I.; Reyes, G.; Strecker, M.R. The Role of Inherited Extensional Fault Segmentation and Linkage in Contractional Orogenesis: A Reconstruction of Lower Cretaceous Inverted Rift Basins in the Eastern Cordillera of Colombia. Basin Res. 2009, 21, 111–137. [Google Scholar] [CrossRef]
- Tesón, E.; Mora, A.; Silva, A.; Namson, J.; Teixell, A.; Castellanos, J.; Casallas, W.; Julivert, M.; Taylor, M.; Ibáñez-Mejía, M.; et al. Relationship of Mesozoic Graben Development, Stress, Shortening Magnitude, and Structural Style in the Eastern Cordillera of the Colombian Andes. Geol. Soc. Lond. Spec. Publ. 2013, 377, 257–283. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spikings, R.; Van der Lelij, R. The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean. Geosciences 2022, 12, 5. https://doi.org/10.3390/geosciences12010005
Spikings R, Van der Lelij R. The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean. Geosciences. 2022; 12(1):5. https://doi.org/10.3390/geosciences12010005
Chicago/Turabian StyleSpikings, Richard, and Roelant Van der Lelij. 2022. "The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean" Geosciences 12, no. 1: 5. https://doi.org/10.3390/geosciences12010005
APA StyleSpikings, R., & Van der Lelij, R. (2022). The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean. Geosciences, 12(1), 5. https://doi.org/10.3390/geosciences12010005