A Geotechnical Investigation of 2017 Chattogram Landslides
Abstract
:1. Introduction
2. Study Area
2.1. Location
2.2. Physiography of the Study Area
2.3. Geological Formation of the Study Area
2.4. Rainfall Characteristics
3. Chattogram Landslides of 2017
3.1. Extent of the Disaster Occurred
3.2. Main Causes of the Landslides
4. Field Investigation
4.1. Soil Samples Collection
4.2. Observations during the Site Visit
5. Numerical Modeling
5.1. Methodology
5.2. Result and Discussion
6. Remedial Measures for Landslide Prevention
7. Conclusions
- All the existing hill slopes had slope angles greater than 50°, and from the numerical analysis, it is found that most of the slopes were susceptible to failure. Therefore, the angle of slopes must be lowered or soil retaining measures need to be adopted for increasing the stability and safety of the slopes.
- The hill slopes are vulnerable to rainfall-induced failure due to the soil type, which is silty clay in most cases. This type of soil leads to soil saturation, which, in turn, triggers landslides.
- The results of the FEM analysis were found similar to the field observations. Depending on the type of soil and angle of the slope, different types of failure occur.
- Addressing the failure mechanism and field investigation of the soil, adequate measures should be taken to prevent landslides. Appropriate water drainage systems, retaining systems for protection of hill slopes and valleys, geofabric slope protection and erosion control systems, natural and plant-based efficient biological protection systems, etc., should be considered.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasierb, B.; Grodecki, M.; Gwóźdź, R. Geophysical and Geotechnical Approach to a Landslide Stability Assessment: A Case Study. Acta Geophys. 2019, 67, 1823–1834. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Islam, M.S.; Islam, T. Landslides in Chittagong hill tracts and possible measures. In Proceedings of the International Conference on Disaster Risk Mitigation, Dhaka, Bangladesh, 23–24 September 2017. [Google Scholar]
- Sorbino, G.; Nicotera, M.V. Unsaturated Soil Mechanics in Rainfall-Induced Flow Landslides. Eng. Geol. 2013, 165, 105–132. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, K.; Kim, J.; Kim, Y. Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes. Sustainability 2017, 9, 1280. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, S.; Gratchev, I. Prediction of Shallow Rainfall-Induced Landslides Using Shear Strength of Unsaturated Soil. Indian Geotech. J. 2021, 1–12. [Google Scholar] [CrossRef]
- Ahmed, A.; Alam, M.J.B.; Islam, M.A.; Hossain, M.S. Comparison of Numerical Modeling Results from Laboratory and Field Obtained Unsaturated Flow Parameters. MATEC Web Conf. 2021, 337, 02008. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Fustos, I.; Abarca-del-Río, R.; Mardones, M.; González, L.; Araya, L.R. Rainfall-Induced Landslide Identification Using Numerical Modelling: A Southern Chile Case. J. S. Am. Earth Sci. 2020, 101, 102587. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.M.; Zhang, K.B.; Yu, H.; Tao, Z.Y. Field Investigation and Numerical Study of a Siltstone Slope Instability Induced by Excavation and Rainfall. Landslides 2020, 17, 1485–1499. [Google Scholar] [CrossRef]
- Teja, T.S.; Dikshit, A.; Satyam, N. Determination of Rainfall Thresholds for Landslide Prediction Using an Algorithm-Based Approach: Case Study in the Darjeeling Himalayas, India. Geosciences 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Sultana, T. Landslide disaster in Bangladesh: A case study of Chittagong university campus. Inter. J. Res. Appl. Natur. Soc. Scien. 2013, 1, 35–42. [Google Scholar]
- Islam, A. Measures for landslide Prevention in Chittagong Hill Tracts of Bangladesh. Ph.D. Thesis, Department of Civil. Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, 2018. [Google Scholar]
- Sarker, A.A.; Rashid, A.K.M.M. Landslide and Flashflood in Bangladesh. In Disaster Risk Reduction Approaches in Bangladesh; Shaw, R., Mallick, F., Islam, A., Eds.; Disaster Risk Reduction; Springer: Tokyo, Japan, 2013; pp. 165–189. [Google Scholar] [CrossRef]
- Petley, D. Fatal Landslides in 2017. The Landslide Blog. 2018. Available online: https://blogs.agu.org/landslideblog/2018/04/08/fatal-landslides-2017/ (accessed on 20 July 2021).
- Islam, M.S.; Islam, M.A. Reduction of Landslide Risk and Water-Logging Using Vegetation. E3S Web Conf. 2018, 65, 06003. [Google Scholar] [CrossRef]
- Abedin, J.; Rabby, Y.W.; Hasan, I.; Akter, H. An Investigation of the Characteristics, Causes, and Consequences of June 13, 2017, Landslides in Rangamati District Bangladesh. Geoenvironmen. Disast. 2020, 7, 23. [Google Scholar] [CrossRef]
- Gafur, A.; Jensen, J.R.; Borggaard, O.K.; Petersen, L. Runoff and Losses of Soil and Nutrients from Small Watersheds under Shifting Cultivation (Jhum) in the Chittagong Hill Tracts of Bangladesh. J. Hydrol. 2003, 274, 30–46. [Google Scholar] [CrossRef]
- Rahman, T. Landslide Risk Reduction of the Informal Foothill Settlements of Chittagong City through Strategic Design Measure. Ph.D. Thesis, BRAC University, Dhaka, Bangladesh, 2012. [Google Scholar]
- Khan, Y.A.; Lateh, H.; Baten, M.A.; Kamil, A.A. Critical Antecedent Rainfall Conditions for Shallow Landslides in Chittagong City of Bangladesh. Environ. Earth Sci. 2012, 67, 97–106. [Google Scholar] [CrossRef]
- Kamesh Raju, K.A. Geology of Bangladesh: K.U. Reimann, 1993. with a Contribution by K. Hiller. Gebruder Borntraeger, Stuttgart, VIII + 160 Pp. Price: DM 124.00. ISBN 3-443-11020-7. Earth Sci. Rev. 1994, 36, 262–263. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B. Landslides Induced by June 2017 Rainfall in Chittagong Hill Tracts, Bangladesh: Causes and Prevention—Field Report; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2018. [Google Scholar]
- Chisty, K.U. Landslide in Chittagong City: A Perspective on Hill Cutting. J. Bangladesh Inst. Plann. 2014, 7, 1–17. [Google Scholar]
- Ahmed, R.; Kim, I.-K. Patterns of Daily Rainfall in Bangladesh During the Summer Monsoon Season: Case Studies at Three Stations. Phys. Geogr. 2003, 24, 295–318. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes. Landslides Anal. Control. 1978, 176, 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Gerscovich, D.M.S.; Vargas, E.A.; de Campos, T.M.P. On the Evaluation of Unsaturated Flow in a Natural Slope in Rio de Janeiro, Brazil. Eng. Geol. 2006, 88, 23–40. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Anderson, S.A. Determination of Shear Strength of Hawaiian Residual Soil Subjected to Rainfall-Induced Landslides. Géotechnique 1998, 48, 73–82. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G. Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. J. Geotech. Geoenviron. Eng. 2010, 136, 85–98. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The landslide handbook—A guide to understanding landslides: Reston, Virginia, U.S. Geol. Surv. Circ. 2008, 1325, 129. [Google Scholar]
- Elahi, T.E.; Islam, M.A.; Islam, M.S. Stability Analysis of Selected Hill Slopes of Rangamati. In Proceedings of the 4th International Conference on Advanced in Civil Engineering (ICACE-2018), Chittagong, Bangladesh, 19–21 December 2018. [Google Scholar]
- Islam, M.S.; Hussain, M.A.; Khan, Y.A.; Chowdhury, M.A.I.; Haque, M.B. Slope Stability Problem in the Chittagong City, Bangladesh. J. Geotech. Eng. 2014, 1, 13–25. [Google Scholar] [CrossRef]
- Pradhan, S.P.; Vishal, V.; Singh, T.N. Finite Element Modelling of Landslide Prone Slopes around Rudraprayag and Agastyamuni in Uttarakhand Himalayan Terrain. Nat. Hazards 2018, 94, 181–200. [Google Scholar] [CrossRef]
- Singh, T.N.; Singh, R.; Singh, B.; Sharma, L.K.; Singh, R.; Ansari, M.K. Investigations and Stability Analyses of Malin Village Landslide of Pune District, Maharashtra, India. Nat. Hazards 2016, 81, 2019–2030. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Krabbenhoft, K.; Tinti, S. A Case Study and Implication: Particle Finite Element Modelling of the 2010 Saint-Jude Sensitive Clay Landslide. Landslides 2020, 17, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Plaxis B.V. PLAXIS 2D Reference Manual; Plaxis B.V.: Computerlaan, The Netherlands, 2018. [Google Scholar]
- Sowers, G.F. Introductory Soil Mechanics & Foundations. Geotech. Eng. 1979, 92–93, 114–117. [Google Scholar]
- Chowdhury, E.; Islam, A.; Islam, D.M.S.; Shahriar, S.; Alam, T. Design, Operation and Performance Evaluation of a Portable Perforated Steel Tray Rainfall Simulator. In Proceedings of the 14th Global Engineering and Technology Conference, Dhaka, Bangladesh, 29–30 December 2017; pp. 29–30. [Google Scholar]
- Islam, M.A.; Islam, M.S.; Chowdhury, M.E.; Badhon, F.F. Influence of Vetiver Grass (Chrysopogon Zizanioides) on Infiltration and Erosion Control of Hill Slopes under Simulated Extreme Rainfall Condition in Bangladesh. Arab. J. Geosci. 2021, 14, 119. [Google Scholar] [CrossRef]
- Islam, T.; Islam, M.A.; Islam, M.S.; Abedin, M.Z. Effect of fine content on shear strength behavior of sandy soil. In Proceedings of the 14th Global Engineering and Technology Conference, Dhaka, Bangladesh, 29–30 December 2017; p. 63. [Google Scholar] [CrossRef]
- Chowdhury, M.E.; Islam, M.A.; Islam, T.; Khan, N. Evaluation of shear strength of cohesionless soil from maximum, minimum dry density and fines content using polynomial surface fitting method. Electron. J. Geotech. Eng. 2018, 23, 31–56. [Google Scholar]
- Islam, M.S.; Khan, A.J.; Siddique, A.; Saleh, A.M.; Nasrin, S. Control of erosion of hill slope top soil using geo jute and vegetation. In Proceedings of the National Seminar on Jute Geotextiles, Dhaka, Bangladesh, April 2014; pp. 27–34. [Google Scholar]
- Badhon, F.F.; Islam, M.S.; Islam, M.A.; Arif, M.Z.U. A Simple Approach for Estimating Contribution of Vetiver Roots in Shear Strength of a Soil–Root System. Innov. Infrastruct. Solut. 2021, 6, 96. [Google Scholar] [CrossRef]
- Neto, M.I.M.; Mahler, C.F. Study of the Shear Strength of a Tropical Soil with Grass Roots. Soils Rocks 2017, 40, 31–37. [Google Scholar]
- Badhon, F.F.; Islam, M.S.; Islam, M.A. Contribution of Vetiver Root on the Improvement of Slope Stability. Indian Geotech. J. 2021, 1–12. [Google Scholar] [CrossRef]
- Islam, M.S.; Badhon, F.F. A mathematical model for shear strength prediction of vetiver rooted soil. In Geo-Congress 2020: Engineering, Monitoring, and Management of Geotechnical Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 96–105. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.S.; Elahi, T.E. Effectiveness of Vetiver Grass on Stabilizing Hill Slopes: A Numerical Approach. In Geo-Congress 2020: Engineering, Monitoring, and Management of Geotechnical Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 106–115. [Google Scholar] [CrossRef]
- Elahi, T.E.; Islam, M.A.; Islam, M.S. Effect of vegetation and nailing for prevention of landslides in Rangamati. In Proceedings of the International Conference on Disaster Risk Management (ICDRM), Dhaka, Bangladesh, 12–14 January 2019. [Google Scholar]
- Islam, M.A.; Hossain, M.S.; Badhon, F.F.; Bhandari, P. Performance Evaluation of Recycled-Plastic-Pin-Supported Embankment over Soft Soil. J. Geotech. Geoenviron. Eng. 2021, 147, 04021032. [Google Scholar] [CrossRef]
- Bhandari, P.; Zaman, M.N.B.; Islam, M.A.; Badhon, F.F.; Hossain, M.S. Increasing shearing resistance of MSE wall base using recycled plastic pins. In Proceedings of the International Foundations Congress and Equipment Expo, Dallas, TX, USA, 10–14 May 2021; pp. 44–54. [Google Scholar] [CrossRef]
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide Prediction, Monitoring and Early Warning: A Concise Review of State-of-the-Art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, K. Modeling and Mapping Landslide Susceptibility Zones Using GIS Based Multivariate Binary Logistic Regression (LR) Model in the Rorachu River Basin of Eastern Sikkim Himalaya, India. Model. Earth Syst. Environ. 2018, 4, 69–88. [Google Scholar] [CrossRef]
- Ahmed, B. Landslide Susceptibility Mapping Using Multi-Criteria Evaluation Techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 2015, 12, 1077–1095. [Google Scholar] [CrossRef] [Green Version]
- Biswas, R.N.; Islam, M.N.; Islam, M.N. Modeling on Management Strategies of Slope Stability and Susceptibility to Landslides Catastrophe at Hilly Region in Bangladesh. Model. Earth Syst. Environ. 2017, 3, 977–998. [Google Scholar] [CrossRef]
Sample ID | Location | Latitude | Longitude | Slope Height (m) | Slope Angle |
---|---|---|---|---|---|
S-1 | Manikchari | 22°38′55.8492″ N | 92°8′15.7956″ E | 15 | 70° |
S-2 | Manikchari (South) | 22°38′41.7948″ N | 92°8′18.5316″ E | 10 | 50° |
S-3 | Shapchari Shalbagan | 22°38′49.1352″ N | 92°7′50.3904″ E | 10 | 65° |
S-4 | Deppoyachari | 22°38′38.9184″ N | 92°8′35.9544″ E | 16 | 70° |
S-5 | Moddhapara | 22°38′46.5684″ N | 92°8′45.9984″ E | 13 | 45° |
S-6 | Kaching | 22°41′32.2008″ N | 92°6′20.7684″ E | 12 | 50° |
Natural Moisture Content (%) | In-Situ Moist Density (kN/m3) | Atterberg Limits | % Finer No. 200 Sieve | USCS Soil Classifi-cation | Shear Strength Parameters | |||
---|---|---|---|---|---|---|---|---|
Liquid Limit | Plasticity Index | Cohesion c (kPa) | Friction Angle ϕ (°) | |||||
S-1 | 13.34 | 18.54 | 28 | 4 | 21.7 | SM | 1.3 | 39.7 |
S-2 | 13.86 | 19.02 | 35 | 10 | 47.4 | SC | 8.6 | 37.3 |
S-3 | 25.60 | 18.98 | 33 | 13 | 72.0 | CL | 18.1 | 10.3 |
S-4 | 18.41 | 19.00 | 24 | 6 | 66.5 | CL-ML | 9.4 | 27.4 |
S-5 | 23.82 | 19.34 | 26 | 14 | 62.2 | CL | 12.9 | 32.7 |
S-6 | 15.46 | 16.80 | 24 | 9 | 42.6 | SM-SC | 1.8 | 30.2 |
Sample ID | USCS Soil Classification | Factor of Safety (before Rainfall) | Failure Type |
---|---|---|---|
S-1 | SM | 0.896 | Shallow wedge failure |
S-2 | SC | 1.304 | Toe failure |
S-3 | CL | 0.542 | Toe failure |
S-4 | CL-ML | 0.855 | Toe failure |
S-5 | CL | 1.275 | Face failure |
S-6 | SM-SC | 0.819 | Toe failure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Islam, M.S.; Jeet, A.A. A Geotechnical Investigation of 2017 Chattogram Landslides. Geosciences 2021, 11, 337. https://doi.org/10.3390/geosciences11080337
Islam MA, Islam MS, Jeet AA. A Geotechnical Investigation of 2017 Chattogram Landslides. Geosciences. 2021; 11(8):337. https://doi.org/10.3390/geosciences11080337
Chicago/Turabian StyleIslam, Md. Azijul, Mohammad Shariful Islam, and Abhijeet Acharjee Jeet. 2021. "A Geotechnical Investigation of 2017 Chattogram Landslides" Geosciences 11, no. 8: 337. https://doi.org/10.3390/geosciences11080337
APA StyleIslam, M. A., Islam, M. S., & Jeet, A. A. (2021). A Geotechnical Investigation of 2017 Chattogram Landslides. Geosciences, 11(8), 337. https://doi.org/10.3390/geosciences11080337