Spatial Relationships between Pockmarks and Sub-Seabed Gas in Fjordic Settings: Evidence from Loch Linnhe, West Scotland
Abstract
:1. Introduction
- How widespread and how deep is the (near-surface) sub-seabed gas stored in Scotland’s fjordic sediments?
- What can the distribution of sub-seabed gas tell us about pockmark formation and possible trigger mechanisms?
- Can we infer pockmark age relationships or activity status based on present-day gas presence or absence?
2. Materials and Methods
2.1. Study Site and Geological Setting
2.1.1. Multibeam Echo-Sounder Bathymetry
2.1.2. Sub-Seabed Geophysical Data
2.2. Inverse Distance Weighting
2.3. Hot-Spot Analysis
3. Results
3.1. Hot-Spot Analysis
3.2. Seismic Interpretation
3.3. IDW
4. Interpretation and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schuller, V.F. Untersuchungen uber die machtigkeit von schlickschichten mit hilfe des echographen. Dtsch. Hydrogr. Zeitsehrift 1952, 5, 220–231. [Google Scholar] [CrossRef]
- Jones, G.B.; Floodgate, G.D.; Bennell, J.D. Chemical and microbiological aspects of acoustically turbid sediments: Preliminary investigations. Mar. Geotechnol. 1986, 6, 315–332. [Google Scholar] [CrossRef]
- Taylor, D.I. Nearshore shallow gas around the U. K. coast. Cont. Shelf Res. 1992, 12, 1135–1144. [Google Scholar] [CrossRef]
- Baltzer, A.; Tessier, B.; Nouzé, H.; Bates, R.; Moore, C.; Menier, D. Seistec seismic profiles: A tool to differentiate gas signatures. Mar. Geophys. Res. 2005, 26, 235–245. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Meldahl, P.; Heggland, R.; Bril, B.; de Groot, P. The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part I methodology. In SEG Technical Program Expanded Abstracts 1999; Society of Exploration Geophysicists: Tulsa, OK, USA, 1999. [Google Scholar]
- Camargo, J.M.R.; Silva, M.V.B.; Júnior, A.V.F.; Araújo, T.C.M. Marine geohazards: A bibliometric-based review. Geosciences 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Orange, D.L.; García-García, A.; McConnell, D.; Lorenson, T.; Fortier, G.; Trincardi, F.; Can, E. High-resolution surveys for geohazards and shallow gas: NW Adriatic (Italy) and Iskenderun Bay (Turkey). Mar. Geophys. Res. 2005, 26, 247–266. [Google Scholar] [CrossRef]
- Riboulot, V.; Imbert, P.; Cattaneo, A.; Voisset, M. Fluid escape features as relevant players in the enhancement of seafloor stability? Terra Nov. 2019, 31, 540–548. [Google Scholar] [CrossRef]
- Gafeira, J.; Long, D. Geological investigation of pockmarks in the Braemar Pockmarks and surrounding area. JNCC 2015, 571, 1–92. [Google Scholar]
- Böttner, C.; Berndt, C.; Reinardy, B.T.I.; Geersen, J.; Karstens, J.; Bull, J.M.; Callow, B.J.; Lichtschlag, A.; Schmidt, M.; Elger, J.; et al. Pockmarks in the Witch Ground Basin, Central North Sea. Geochem. Geophys. Geosystems 2019, 20, 1698–1719. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Kastanos, N.; Ferentions, G. A pockmark field in the Patras Gulf (Greece) and its activation during the 14/7/93 seismic event. Mar. Geol. 1995, 130, 333–344. [Google Scholar] [CrossRef]
- Hovland, M.; Gardner, J.V.; Judd, A.G. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2002, 2, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Fannin, N.G.T. Use of Regional Geological Surveys in the North Sea and Adjacent Areas in the Recognition of Offshore Hazards; Institute of Geological Sciences, Continental Shelf Division: Berlin, Germany, 1979. [Google Scholar]
- Hovland, M.; Sommerville, J. Characteristics of two natural gas seepages in the North Sea. Mar. Pet. Geol. 1985, 2, 319–326. [Google Scholar] [CrossRef]
- Hovland, M.; Judd, A.G.; King, L.H. Characteristic features of pockmarks on the North Sea Floor and Scotian Shelf. Sedimentology 1984, 31, 471–480. [Google Scholar] [CrossRef]
- Stoker, M.; Bradwell, T.; Wilson, C.; Harper, C.; Smith, D.; Brett, C. Pristine fjord landsystem revealed on the sea bed in the Summer Isles region, NW Scotland. Scottish J. Geol. 2006, 42, 89–99. [Google Scholar] [CrossRef]
- Audsley, A.; Bradwell, T.; Howe, J.A.; Baxter, J.M. Distribution and classification of pockmarks on the seabed around western Scotland. J. Maps 2019, 15, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.A.; Moreton, S.G.; Morri, C.; Morris, P. Multibeam bathymetry and the depositional environments of Kongsfjorden and Krossfjorden, western Spitsbergen, Svalbard. Polar Res. 2003, 22, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Senger, K.; Hovland, M.; Römer, M.; Braathen, A. Geological controls on shallow gas distribution and seafloor seepage in an Arctic fjord of Spitsbergen, Norway. Mar. Pet. Geol. 2019, 107, 237–254. [Google Scholar] [CrossRef]
- Roy, S.; Hovland, M.; Braathen, A. Evidence of fl uid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of sea floor morphology, marine sediments and tectonics. Mar. Geol. 2016, 380, 67–78. [Google Scholar] [CrossRef]
- Smeaton, C.; Austin, W.E.N.; Davies, A.L.; Baltzer, A.; Howe, J.A.; Baxter, J.M. Scotland’s forgotten carbon: A national assessment of mid-latitude fjord sedimentary carbon stocks. Biogeosciences 2017, 14, 5663–5674. [Google Scholar] [CrossRef] [Green Version]
- Smeaton, C.; Austin, W.; Turrell, W. Re-Evaluating Scotlands Sedimentary Carbon Stocks. In Scottish Marine and Freshwater Science, 2nd ed.; Marine Scotland: Edinburgh, UK, 2020; Volume 11. [Google Scholar]
- Krämer, K.; Holler, P.; Herbst, G.; Bratek, A.; Ahmerkamp, S.; Neumann, A.; Bartholomä, A.; Van Beusekom, J.E.E.; Holtappels, M.; Winter, C. Abrupt emergence of a large pockmark field in the German Bight, southeastern North Sea. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Lohrberg, A.; Schmale, O.; Ostrovsky, I.; Niemann, H.; Held, P.; Deimling, J.S. Von Discovery and quantification of a widespread methane ebullition event in a coastal inlet (Baltic Sea) using a novel sonar strategy. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wüest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. Ocean. 2006, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Smeaton, C.; Hunt, C.A.; Turrell, W.R.; Austin, W.E.N. Marine Sedimentary Carbon Stocks of the United Kingdom’s Exclusive Economic Zone. Front. Earth Sci. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- McIntyre, K.L. Offshore Records of Ice Extent and Deglaciation, Loch Linnhe, Western Scotland; University of Aberdeen: Aberdeen, UK, 2012. [Google Scholar]
- Greene, D. The Loch Lomond Stadial Ice Cap in Western Lochaber; University of Edinburgh: Edinburgh, UK, 1995. [Google Scholar]
- Stewart, M.; Strachan, R.A.; Holdsworth, R.E. Structure and early kinematic history of the Great Glen Fault Zone, Scotland. Tectonics 1999, 18, 326–342. [Google Scholar] [CrossRef]
- Mcintyre, K.L.; Howe, J.A. Scottish west coast fjords since the last glaciation: A review. Geol. Soc. Lond. Spec. Publ. 2010, 344, 305–329. [Google Scholar] [CrossRef]
- Howe, J.A.; Anderton, R.; Arosio, R.; Dove, D.; Bradwell, T.; Crump, P.; Cooper, R.; Cocuccio, A. The seabed geomorphology and geological structure of the Firth of Lorn, western Scotland, UK, as revealed by multibeam echo-sounder survey. Earth Environ. Sci. Trans. R. Soc. Edinb. 2015, 105, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Golledge, N.R.; Hubbard, A.L.; Sugden, D.E. Mass balance, flow and subglacial processes of a modelled Younger Dryas ice cap in Scotland. J. Glaciol. 2009, 55, 32–42. [Google Scholar] [CrossRef] [Green Version]
- IHO International Hydrographic Organization standards for hydrographic surveys. Stand. Hydrogr. Surv. 2020, S44, 51.
- Gafeira, J.; Dolan, M.; Monteys, X. Geomorphometric characterization of pockmarks by using a GIS-based semi-automated toolbox. Geosciences 2018, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Moss, J.L.; Cartwright, J.; Cartwright, A.; Moore, R. The spatial pattern and drainage cell characteristics of a pockmark field, Nile Deep Sea Fan. Mar. Pet. Geol. 2012, 35, 321–336. [Google Scholar] [CrossRef]
- Holding, J.M.; Duarte, C.M.; Delgado-Huertas, A.; Soetaert, K.; Vonk, J.E.; Agustí, S.; Wassmann, P.; Middelburg, J.J. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 2017, 62, 1307–1323. [Google Scholar] [CrossRef] [Green Version]
- Judd, A.; Davies, G.; Wilson, J.; Holmes, R.; Baron, G.; Bryden, I. Contributions to atmospheric methane by natural seepages on the UK continental shelf. Mar. Geol. 1997, 137, 165–189. [Google Scholar] [CrossRef]
- Stoker, M.S.; Bradwell, T.; Howe, J.A.; Wilkinson, I.P.; McIntyre, K. Lateglacial ice-cap dynamics in NW Scotland: Evidence from the fjords of the Summer Isles region. Quat. Sci. Rev. 2009, 28, 3161–3184. [Google Scholar] [CrossRef] [Green Version]
- Stoker, M.; Bradwell, T. Neotectonic deformation in a Scottish fjord, Loch Broom, NW Scotland. Scottish J. Geol. 2009, 45, 107–116. [Google Scholar] [CrossRef]
- Bradwell, T.; Fabel, D.; Clark, C.D.; Chiverrell, R.C.; Small, D.; Smedley, R.K.; Saher, M.H.; Moreton, S.G.; Dove, D.; Callard, S.L.; et al. Pattern, style and timing of British–Irish Ice Sheet advance and retreat over the last 45 000 years: Evidence from NW Scotland and the adjacent continental shelf. J. Quat. Sci. 2021, 36, 871–933. [Google Scholar] [CrossRef]
- Henrichs, S.M.; Reeburgh, W.S. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 1987, 5, 191–237. [Google Scholar] [CrossRef] [Green Version]
- Ingall, E.D.; Cappellen, P. Van Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 1990, 54, 373–386. [Google Scholar] [CrossRef]
- Fader, G.B.J. Gas-related sedimentary features from the eastern Canadian continental shelf. Cont. Shelf Res. 1991, 11, 1123–1153. [Google Scholar] [CrossRef]
- Nørgaard-Pedersen, N.; Austin, W.E.N.; Howe, J.A.; Shimmield, T. The Holocene record of loch etive, western Scotland: Influence of catchment and relative sea level changes. Mar. Geol. 2006, 228, 55–71. [Google Scholar] [CrossRef]
- Svendsen, H.; Beszczynska-Møller, A.; Hagen, J.O.; Lefauconnier, B.; Tverberg, V.; Gerland, S.; Ørbøk, J.B.; Bischof, K.; Papucci, C.; Zajaczkowski, M.; et al. The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard. Polar Res. 2002, 21, 133–166. [Google Scholar] [CrossRef]
- Howe, J.A.; Austin, W.E.N.; Forwick, M.; Paetzel, M.; Harland, R.; Cage, A.G. Fjord systems and archives: A review. Geol. Soc. Lond. Spec. Publ. 2010, 344, 5–15. [Google Scholar] [CrossRef]
- Howe, J.A.; Shimmield, T.; Austin, W.E.N.; Longva, O. Post-glacial depositional environments in a mid-high latitude glacially-overdeepened sea loch, inner Loch Etive, western Scotland. Mar. Geol. 2002, 185, 417–433. [Google Scholar] [CrossRef]
- Syvitski, J.P. Water-escape sea floor depressions. In Glaciated Continental Margins: An Atlas of Acoustic Images; Davies, T.A., Bell, T., Cooper, A.K., Josenhans, H., Polyak, L., Solheim, A., Stoker, M.S., Stravers, J.A., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 160–161. ISBN 978-94-011-5820-6. [Google Scholar]
- Roy, S.; Hovland, M.; Noormets, R.; Olaussen, S. Seepage in Isfjorden and its tributary fjords, West Spitsbergen. Mar. Geol. 2015, 363, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Albert, D.B.; Martens, C.S.; Alperin, M.J. Biogeochemical processes controlling methane in gassy coastal sediments—Part 2: Groundwater flow control of acoustic turbidity in Eckernforde Bay Sediments. Cont. Shelf Res. 1998, 18, 1771–1793. [Google Scholar] [CrossRef]
- Cathles, L.M.; Su, Z.; Chen, D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar. Pet. Geol. 2010, 27, 82–91. [Google Scholar] [CrossRef]
- Kennedy, W.Q. The great Glen fault. Q. J. Geol. Soc. 1946, 102, 41–76. [Google Scholar] [CrossRef]
Seismic Facies | Seismic Characteristic | Interpretation | Setting |
---|---|---|---|
LLSF5 | Strong, continuous, parallel reflectors draped over topography. | Youngest unit, 3–4 m thick. Thin or absent on steep slopes. Terrigenous-derived, organic/inorganic, deposited under suspension. | (Holocene) Marine |
LLSF4 | Continuous, parallel, sheeted reflectors, draped in deep basins. | Directly under LLSF5 (L1) reflector. Up to 45 m deep. Thin or absent on bathymetric highs. | (Younger Dryas) Glaciomarine (distal) |
LLSF3 | Strong, continuous to discontinuous. Parallel to sub-parallel. | Occurs below LLSF4, >80 m deep. Absent from banks and shallows. | (Younger Dryas) Glaciomarine (proximal) |
LLSF2 | Lacking internal structure, chaotic reflections. Sometimes blanks underlying seismic structures. | (a) Present at the base of many slopes, occupying regions that would otherwise contain LLSF3/4. Usually does not, or only partially, obscures underlying facies. (b) Occurs as wide regions with abrupt to diffusive initial reflection. Abrupt vertical boundaries where it obscures LLSF3/LLSF4. Usually completely obscures any other reflectors. May also form as isolated domes. Interpreted as acoustic blanking due to gas scattering or attenuated seismic signal. | (a) Slumps. (b) Gas. |
LLSF1 | Strongly hyperbolic to chaotic. Discontinuous reflectors. | Present as the basal unit in most regions. In other regions they can occur as discontinuous reflections within LLSF2. Interpreted as ice-contact deposited proglacially as moraines or sub-glacially. Compacted, unsorted clay—boulder in size. Possibly bedrock (acoustic basement). | (Younger Dryas) Diamict or bedrock |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audsley, A.; Bradwell, T.; Howe, J.; Baxter, J. Spatial Relationships between Pockmarks and Sub-Seabed Gas in Fjordic Settings: Evidence from Loch Linnhe, West Scotland. Geosciences 2021, 11, 283. https://doi.org/10.3390/geosciences11070283
Audsley A, Bradwell T, Howe J, Baxter J. Spatial Relationships between Pockmarks and Sub-Seabed Gas in Fjordic Settings: Evidence from Loch Linnhe, West Scotland. Geosciences. 2021; 11(7):283. https://doi.org/10.3390/geosciences11070283
Chicago/Turabian StyleAudsley, Allan, Tom Bradwell, John Howe, and John Baxter. 2021. "Spatial Relationships between Pockmarks and Sub-Seabed Gas in Fjordic Settings: Evidence from Loch Linnhe, West Scotland" Geosciences 11, no. 7: 283. https://doi.org/10.3390/geosciences11070283
APA StyleAudsley, A., Bradwell, T., Howe, J., & Baxter, J. (2021). Spatial Relationships between Pockmarks and Sub-Seabed Gas in Fjordic Settings: Evidence from Loch Linnhe, West Scotland. Geosciences, 11(7), 283. https://doi.org/10.3390/geosciences11070283