Distribution and Assessment of Trace Elements Contamination in Sediments of Conceição River Basin, Brazil
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Chemical Analysis
3.2. Methodologies for Trace Elements Assessment
3.2.1. Enrichment Factor (EF)
3.2.2. Contamination Factor (CF) and Pollution Load Index (PLI)
3.2.3. Ecological Risk Assessment (RI)
3.2.4. Sediment Quality Control Guidelines
3.3. Statistical Analyses
3.4. Spatial Representation of Geochemical Data
4. Results and Discussions
4.1. Distribution of Trace Elements in Sediments
4.2. Enrichment Factor
4.3. Contamination Factor and Pollution Load Index
4.4. Ecological Risk Assessment
4.5. Multivariate Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Birch, G.; Apostolatos, C.; Taylor, S. A remarkable recovery in the Sydney Rock Oyster (Saccostrea glomerata) popu-lation in a highly urbanised estuary (Sydney Estuary, Australia). J. Coast. Res. 2013, 29, 1009–1015. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, E.; Zhang, E.; Li, K.; Shen, J. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. Catena 2016, 145, 193–203. [Google Scholar] [CrossRef]
- Parra, R.R.; Roeser, H.M.P.; Leite, M.G.P.; Nalini, H.A., Jr.; Guimarães, A.T.A.; Pereira, J.C.; Friese, K. Influência Antrópica na Geoquímica de Água e Sedimentos do Rio Conceição, Quadrilátero Ferrífero, Minas Gerais—Brasil. Geochim. Bras. 2007, 21, 036–049. [Google Scholar]
- Mendes, M.A.M. Influência Antrópica nas Características Hidrossedimentológicas e Geoquímicas da Bacia do Ribeirão Caraça, Quadrilátero Ferrífero, MG. Dissertação (Mestrado)–Universidade Federal de Ouro Preto. Escola de Minas. Dep. De Geologia. Programa De Pós-Grad. Em Evolução Crustal E Recur. Nat. 2007, 1, 1–90. [Google Scholar]
- Vicq, R.; Matschullat, J.; Leite, M.G.P.; Nalini Jr, H.A.; Mendonça, F.P.C. Iron Quadrangle stream sediments, Brazil: Geochemical maps and reference values. Environ. Earth Sci. 2015, 7, 25–35. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Ganugapenta, S.; Nadimikeri, J.; Chinnapolla, S.R.R.B.; Ballari, L.; Madiga, R.; Tella, L.P. Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. Int. J. Sediment. Res. 2018, 33, 294–302. [Google Scholar] [CrossRef]
- Hillman, A.; Abbott, M.; Yu, J.; Bain, D.; Chiou-Peng, T. Environmental legacy of coppermetallurgy and mongol silver smelting recorded in Yunnan lake sediments. Environ. Sci. Technol. 2015, 49, 3349–3357. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, L.; Li, J.; Wang, C.; Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. Catena 2014, 119, 52–60. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística: Censo Nacional. Material Disponível on Line Através do Site. 2010. Available online: http://www.censo2010.ibge.gov.br (accessed on 5 April 2015).
- Dorr, J.N. Physiographic, stratigraphic, and structural development of the Quadrilátero Ferrífero, Minas Gerais. U.S. Geol. Survey. Professional. Paper 1969, A1–A110. [Google Scholar]
- Schorscher, H.D. Komatiítos na estrutura “Greenstone Belt” Série Rio das Velhas, Quadrilátero Ferrífero, Minas Gerais, Brasil. Sbg Congr. Bras. De Geol. 1986, 30, 292–293. [Google Scholar]
- Ladeira, E.A. Metallogenesis of gold at the Morro Velho Mine and in Nova Lima District, Quadrilátero Ferrífero, Minas Gerais, Brazil. Tese. Ph.D. Thesis, University of Westtern Ontario, London, UK, 1980; p. 272. [Google Scholar]
- Renger, F.E.; Noce, C.M.; Romano, A.W.; Machado, N. Evolução sedimentar do Supergrupo Minas: 500 m.a. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos 1994, 2, 1–11. [Google Scholar] [CrossRef]
- Alkmim, F.F.; Marshak, S. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 1998, 90, 29–58. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Carvalho Júnior, I.M.; Teixeira, W. Petrologia, geoquímica e geocronologia dos diques máficos do complexo metamórfico Bonfim Setentrional (Quadrilátero Ferrífero) e suas implicações na evolução crustal do cráton do São Francisco Meridional. Rev. Bras. Geociências 1998, 28, 29–44. [Google Scholar] [CrossRef]
- Moreira, H.; Lana, C.; Nalini, H.A. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Res. 2016, 275, 84–99. [Google Scholar] [CrossRef]
- Lobato, L.M.; Achstschin, A.B.; Timbó, M.A.; Baltazar, O.F.; Silva, S.L.; Reis, L.B.; Baars, F.J. Geologia do Quadrilátero Ferrífero: Integração e correção cartográfica em SIG. Codemig; Universidade Federal Minas Gerais: Belo Horizonte, Brazil, 2004. [Google Scholar]
- Brasil. Departamento Nacional de Produção Mineral. Anuário Mineral. Brasileiro: Principais Substâncias Metálicas Coord. Geral Wagner Fernandes Pinheiro, Osvaldo Barbosa Ferreira Filho, Carlos Augusto Ramos Neves Equipe Técnica por Marina Dalla Costa; DNPM: Brasília, Brazil, 2017; p. 33.
- Vale Report. Available online: http://www.vale.com/brasil/pt/business/reports/4t19/paginas/producao.aspx (accessed on 20 January 2020).
- Bølviken, B.; Bogen, J.; Jartun, M.; Langedal, M.; Ottesen, R.; Volden, T. Overbank sediments: A natural bed blending sampling medium for large—scale geochemical mapping. Chemom. Intell. Lab. Syst. 2004, 74, 183–199. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.J.; Demetriades, A.; Lis, J.; Tarvinen, T. Sampling. In Geochemical Atlas of Europe. Part 1 Back-ground Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Calmano, W.; Förstner, U. Sediments and Toxic Substances: Environmental Effects and Ecotoxicity, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996; 332p. [Google Scholar]
- Ferreira, A.; Inácio, M.; Morgado, P.; Batista, M.; Pereira, V.; Pinto, M. Low-density geochemical mapping in Portugal. Appl. Geochem. 2001, 16, 1323–1331. [Google Scholar] [CrossRef]
- Albanese, S.; De Vivo, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2007, 93, 21–34. [Google Scholar] [CrossRef]
- Lynch, J. Provisional elemental values for eight new geochemical lake sediment and stream sediment references ma-terials LKSD-1, LKSD-2, LKSD-3, and LKSD-4. Geostand. Newslet 1990, 14, 153–167. [Google Scholar] [CrossRef]
- Ridgway, J.; Shimmield, G. Estuaries as Repositories of Historical Contamination and their Impact on Shelf Seas. Estuar. Coast. Shelf Sci. 2002, 55, 903–928. [Google Scholar] [CrossRef]
- Salomons WFörstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany; Tokyo, Japan, 1984. [Google Scholar]
- Dickinson, W.W.; Dunbar, G.B.; McLeod, H. Heavy metal history from cores in Wellington Harbour, New Zealand. Environ. Earth Sci. 1996, 27, 59–69. [Google Scholar] [CrossRef]
- Hornung, H.; Krom, M.D.; Cohen, Y. Trace metal distribution in sediments and benthic fauna of Haifa Bay, Israel. Estuar. Coast. Shelf Sci. 1989, 29, 43–56. [Google Scholar] [CrossRef]
- Ravichandran, M.; Baskaran, M.; Santschi, P.H.; Bianchi, T.S. History of Trace Metal Pollution in Sabine-Neches Estuary, Beaumont, Texas. Environ. Sci. Technol. 1995, 29, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Windom, H.L.; Smith, R.G.; Rawlinson, C., Jr. Particulate trace metal composition and flux across the south eastern US continental shelf. Mar. Chem. 1989, 27, 283–297. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Huang, J.; Nara, K.; Zong, K.; Wang, J.; Xue, S.; Peng, K.; Shen, Z.; Lian, C. Ectomycorrhizal fungal communities as-sociated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecol. 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Muñoz-Barbosa, A.; Huerta-Diaz, M.A. Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: Environmental status in 1995. Mar. Pollut. Bull. 2013, 77, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Nolting, R.; Ramkema, A.; Everaarts, J. The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Cont. Shelf Res. 1999, 19, 665–691. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Earth Sci. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal con-tamination in surface sediments from the Rybnik reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Hilton, J.; Davison, W.; Ochsenbein, U. A mathematical model for analysis of sediment coke data. Chem. Geol. 1985, 48, 281–291. [Google Scholar] [CrossRef]
- Wang, L.; Rly, G.C.X. Speciation and assessment of heavy metals in surface sediments of Jinjiang River tidal reach, southeast of China. Environ. Monit. Assess. 2011, 165, 491–499. [Google Scholar] [CrossRef]
- Suresh, G.; Ramasamy, V.; Sundarrajan, M.; Paramasivam, K. Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India. Mar. Pollut. Bull. 2015, 91, 389–400. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, L.; Zhang, F.; Ding, Y.; Gao, J.; Chen, J.; Yan, H.; Shao, W. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China. Mar. Pollut. Bull. 2013, 74, 403–412. [Google Scholar] [CrossRef]
- Woitke, P.; Wellmitz, J.; Helm, D.; Kube, P.; Lepom, P.; Litheraty, P. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 2003, 51, 633–642. [Google Scholar] [CrossRef]
- Mendez, W. Contamination of Rimac River Basin Peru, due Tomining Tailings. Master’s Thesis, Environmental Engineering and Sustainable Infrastructure, The Royal Institute of Technology (KTH), Stockholm, Sweden, 2003. [Google Scholar]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology 2009, 18, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Liu, R.; Yu, W.; Shen, Z. Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Mar. Pollut. Bull. 2015, 93, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Karageorgis, A.P.; Nikolaidis, N.P.; Karamanos, H.; Skoulikidis, N. Water and sediment quality assessment of the Ax-ios River and its coastal environment. Cont. Shelf Res. 2003, 23, 1929–1944. [Google Scholar] [CrossRef]
- Heiny, J.S.; Tate, C.M. Concentration distribution comparison of selected trace elements in bed sediment fish tissue in the South Platte River Basin U.S.A. 1992–1993. Arch. Environ. Con. Tox 1997, 32, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Mohse, N.; Alireza, P. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Speciat. Bioavailab. 2014, 26, 99–105. [Google Scholar]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J. Contamination Level, Ecological Risk, and Source Identification of Heavy Metals in the Hyporheic Zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070. [Google Scholar] [CrossRef] [Green Version]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2007, 136, 227–238. [Google Scholar] [CrossRef]
- World Health Organization. Cadmium, Lead and Tin in the Marine Environment; UNEP Regional Seas Reports and Studies No. 56; United Nations Environment Programme: Nairobi, Kenya; Available online: https://wedocs.unep.org/20.500.11822/11864 (accessed on 20 January 2020).
Value Measured (mg kg−1) | Reference Material LKSD 01-Canada (mg kg−1) | Recovery Rate | |
---|---|---|---|
As | 29.4 ± 0.8 | 30 | 98.1 |
Cd | 1.16 ± 0.02 | 1.2 | 96.7 |
Cr | 11.3 ± 0.3 | 12 | 94.1 |
Ni | 11.7 ± 0.4 | 11 | 106.4 |
Cu | 45.3 ± 1.2 | 44 | 102.9 |
Pb | 83.8 ± 2.6 | 84 | 99.7 |
Zn | 330.7 ± 9.3 | 337 | 97.9 |
Mn | 453.6 ± 10.5 | 460 | 98.5 |
Er | Ecological Risk Potential | RI | Ecological Risk for Heavy Metals Analyzed |
---|---|---|---|
Er < 40 | Low | RI < 150 | Low |
40 < Er < 80 | Moderate | 150 < RI < 300 | Moderate |
80 < Er < 160 | Considerable | 300 < RI < 600 | Considerable |
160 < Er < 320 | High | RI > 600 | Very High |
Er > 320 | Very High |
(mg·kg−1) | Al | As | Cd | Cr | Cu | Pb | Zn | Ni | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|---|
Minimum | 40.00 | 1.63 | 0.39 | 0.2 | 0.3 | 1.04 | 7.93 | 0.7 | 1911 | 0 |
Maximum | 50,893 | 92.5 | 22.49 | 2582 | 65.9 | 58.6 | 133.4 | 679 | 453,521 | 22,450 |
Mean | 18,183 | 13.44 | 2.103 | 230.5 | 23.65 | 22.33 | 54.04 | 62.3 | 177,117 | 3539 |
Median | 12,841 | 1.63 | 1.004 | 76.9 | 25.12 | 18.67 | 51.1 | 22.6 | 145,369 | 1203 |
LRV | 34,000 | 6.1 | 0.9 | 128 | 33 | 32 | 60 | 43 | 196,000 | 1766 |
TEC | / | 9.8 | 0.99 | 43.4 | 31.6 | 35.8 | 121 | 22.7 | / | / |
PEC | / | 33 | 5 | 111 | 149 | 128 | 459 | 48.6 | / | / |
Location | As | Cd | Cr | Cu | Pb | Zn | References |
---|---|---|---|---|---|---|---|
Liaohe River, China | 9.9 | 1.2 | 35.1 | 17.8 | 10.6 | 50.2 | [49] |
Luanhe River Estuary, China | 3.4–13.6 | 0.020–0.240 | 11.6–76.2 | 9.6–35.6 | 22.6–43.7 | 12.9–94.7 | [50] |
Yangtze River Estuary, China | 9.1 | 0.2 | 79.1 | 24.7 | 23.8 | 82.9 | [51] |
Tigris River, Turkey | 2–8.5 | 0.7–3 | 28.4–163.4 | 11.2–297.2 | 62.3–392.4 | 60.1–247 | [1] |
Danube River, Europe | 8.1–388 | 1.1–32.9 | 26.5–556.5 | 31.1–8088 | 14.7–541.8 | 78–2010 | [47] |
Axios River, Greece | 1–40 | 1–11 | 39–180 | 14–93 | 11–140 | 42–271 | [52] |
South Platte River, USA | 2.8–31 | 0.1–22 | 33–71 | 18–480 | 19–270 | 82–3700 | [53] |
Rimac River, Peru | 21–1543 | 0.5–31 | 24–71 | 51–796 | 62–2281 | 160–8076 | [48] |
Luan River, China | 2.08–12.90 | 0.03–0.37 | 28.7–152.73 | 6.47–178.61 | 8.65–38.29 | 21.09–25.66 | [54] |
Average Continental Crust | 1.7 | 0.1 | 126 | 25 | 14.8 | 65 | [36] |
As | Cd | Cr | Cu | Pb | Zn | Ni | |
---|---|---|---|---|---|---|---|
% samples < TEC | 66 | 47 | 27 | 69 | 72 | 96 | 51 |
% samples between TEC-PEC | 25 | 49 | 47 | 31 | 28 | 4 | 35 |
% samples > PEC | 9 | 4 | 26 | 0 | 0 | 0 | 14 |
% (sample /PEC) < 0.5 | 76 | 76 | 33 | 100 | 100 | 88 | 63 |
% (sample/PEC) > 1.5 | 8 | 4 | 17 | 0 | 0 | 0 | 10 |
Percentage of Element Samples by Class | |||||||||
---|---|---|---|---|---|---|---|---|---|
EF Parameter | As | Cd | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
Enrichment deficiency (EF < 2) | 100 | 35.3 | 68.6 | 56.9 | 56.9 | 56.9 | 70.6 | 49.01 | 52.94 |
Moderate enrichment (2 < EF < 5) | 0 | 21.6 | 23.5 | 41.1 | 19.5 | 9.8 | 19.5 | 50.99 | 35.29 |
Significant enrichment (5 < EF < 20) | 0 | 41.1 | 0 | 2 | 9.8 | 27.4 | 5.9 | 0 | 9.8 |
Very high enrichment (20 < EF < 40) | 0 | 0 | 5.9 | 0 | 11.8 | 5.9 | 2 | 0 | 2 |
Extremely high enrichment (FE > 40) | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 |
Average Value | 0.96 | 7.36 | 3.77 | 1.8 | 6.66 | 4.78 | 3.47 | 2.24 | 2.94 |
Maximum Value | 1.95 | 94.2 | 44.01 | 7.34 | 46.22 | 30.69 | 41.81 | 4.98 | 21.99 |
Minimum Value | 0.66 | 0.3 | 0.02 | 0.03 | 0.13 | 0.01 | 0.09 | 0.1 | 0.28 |
Metals | Rotated Component Matrix | ||
---|---|---|---|
PC 1 | PC 2 | PC 3 | |
As | −0.11 | 0.35 | 0.02 |
Cd | 0.14 | 0.01 | 0.84 |
Cr | −0.03 | 0.92 | −0.07 |
Cu | 0.08 | 0.70 | 0.16 |
Fe | 0.87 | −0.22 | −0.08 |
Mn | 0.41 | −0.06 | −0.64 |
Ni | −0.05 | 0.92 | −0.07 |
Pb | 0.88 | −0.22 | 0.07 |
Zn | 0.83 | 0.34 | −0.08 |
Initial eigenvalues | 2.66 | 2.27 | 1.13 |
% of variance | 29.54 | 25.21 | 12.61 |
Cumulative % | 29.54 | 54.75 | 67.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, L.P.; da Costa, R.d.V.F.; Leite, M.G.P.; Nalini Júnior, H.A.; Fonseca, R.M.F. Distribution and Assessment of Trace Elements Contamination in Sediments of Conceição River Basin, Brazil. Geosciences 2021, 11, 236. https://doi.org/10.3390/geosciences11060236
Leão LP, da Costa RdVF, Leite MGP, Nalini Júnior HA, Fonseca RMF. Distribution and Assessment of Trace Elements Contamination in Sediments of Conceição River Basin, Brazil. Geosciences. 2021; 11(6):236. https://doi.org/10.3390/geosciences11060236
Chicago/Turabian StyleLeão, Lucas Pereira, Raphael de Vicq Ferreira da Costa, Mariângela Garcia Praça Leite, Hermínio Arias Nalini Júnior, and Rita Maria Ferreira Fonseca. 2021. "Distribution and Assessment of Trace Elements Contamination in Sediments of Conceição River Basin, Brazil" Geosciences 11, no. 6: 236. https://doi.org/10.3390/geosciences11060236
APA StyleLeão, L. P., da Costa, R. d. V. F., Leite, M. G. P., Nalini Júnior, H. A., & Fonseca, R. M. F. (2021). Distribution and Assessment of Trace Elements Contamination in Sediments of Conceição River Basin, Brazil. Geosciences, 11(6), 236. https://doi.org/10.3390/geosciences11060236