StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth Rate Calculation
2.2. Propagation of Uncertainties
2.3. Seasonal Growth Rates and Significant Seasonal Differences
2.4. Outliers
2.5. Case Studies
3. Results
- Obir Cave, Austria
- St. Michaels Cave, Gibraltar
- Inner Space Cavern, Texas
- Larga Cave, Puerto Rico
4. Discussion
- calculation of speleothem growth rates
- quick evaluation of growth influencing parameters
- identification of seasonal growth bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments, 1st ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D.; McDermott, F. Modification and preservation of environmental signals in speleothems. Earth Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef]
- Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 2009, 28, 412–432. [Google Scholar] [CrossRef]
- Edwards, R.L.; Chen, J.; Wasserburg, G. 238U234U230Th232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar] [CrossRef]
- Richards, D.A. Uranium-series Chronology and Environmental Applications of Speleothems. Rev. Miner. Geochem. 2003, 52, 407–460. [Google Scholar] [CrossRef]
- Pourmand, A.; Tissot, F.L.H.; Arienzo, M.; Sharifi, A. Introducing a Comprehensive Data Reduction and Uncertainty Propagation Algorithm for U-Th Geochronometry with Extraction Chromatography and Isotope Dilution MC-ICP-MS. Geostand. Geoanal. Res. 2014, 38, 129–148. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D. 230Th/U-dating of fossil corals and speleothems. E&G Quat. Sci. J. 2008, 57, 52–76. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Burns, S.J.; Piperno, D.R.; Asmerom, Y.; Polyak, V.J.; Moy, C.M.; Christenson, K. A 1500-year El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. J. Geophys. Res. Space Phys. 2004, 109, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [PubMed]
- Spötl, C.; Mangini, A. Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: Implications for the absolute chronology of Greenland ice cores. Earth Planet. Sci. Lett. 2002, 203, 507–518. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Treble, P.C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 2009, 28, 449–468. [Google Scholar] [CrossRef]
- Cruz, F.W.; Vuille, M.; Burns, S.J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R.L.; Karmann, I.; Auler, A.S.; Nguyen, H. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2009, 2, 210–214. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Barkan, E.; Bergel, S.; Vieten, R.; Affek, H.P. Triple oxygen isotope fractionation between CaCO3 and H2O in inorganically precipitated calcite and aragonite. Chem. Geol. 2020, 539, 119500. [Google Scholar] [CrossRef]
- Li, H.; Sinha, A.; André, A.A.; Spötl, C.; Vonhof, H.B.; Meunier, A.; Kathayat, G.; Duan, P.; Voarintsoa, N.R.G.; Ning, Y.; et al. A multimillennial climatic context for the megafaunal extinctions in Madagascar and Mascarene Islands. Sci. Adv. 2020, 6, eabb2459. [Google Scholar] [CrossRef] [PubMed]
- James, E.W.; Banner, J.L.; Hardt, B. A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochem. Geophys. Geosyst. 2015, 16, 1044–1051. [Google Scholar] [CrossRef]
- Riechelmann, D.F.C.; Schröder-Ritzrau, A.; Scholz, D.; Fohlmeister, J.; Spötl, C.; Richter, D.K.; Mangini, A. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site. J. Hydrol. 2011, 409, 682–695. [Google Scholar] [CrossRef]
- Riechelmann, D.F.; Deininger, M.; Scholz, D.; Riechelmann, S.; Schröder-Ritzrau, A.; Spötl, C.; Richter, D.K.; Mangini, A.; Immenhauser, A. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data. Geochim. Cosmochim. Acta 2013, 103, 232–244. [Google Scholar] [CrossRef]
- Frisia, S.; Fairchild, I.J.; Fohlmeister, J.; Miorandi, R.; Spötl, C.; Borsato, A. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim. Cosmochim. Acta 2011, 75, 380–400. [Google Scholar] [CrossRef]
- Spötl, C.; Fairchild, I.J.; Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta 2005, 69, 2451–2468. [Google Scholar] [CrossRef]
- Baldini, J.U.; McDermott, F.; Hoffmann, D.L.; Richards, D.A.; Clipson, N. Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet. Sci. Lett. 2008, 272, 118–129. [Google Scholar] [CrossRef]
- Mattey, D.P.; Fairchild, I.J.; Atkinson, T.C.; Latin, J.-P.; Ainsworth, M.; Durell, R. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. Geol. Soc. London Spéc. Publ. 2010, 336, 323–344. [Google Scholar] [CrossRef]
- Mattey, D.; Atkinson, T.; Barker, J.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M. Carbon dioxide, ground air and carbon cycling in Gibraltar karst. Geochim. Cosmochim. Acta 2016, 184, 88–113. [Google Scholar] [CrossRef]
- Vieten, R.; Winter, A.; Warken, S.F.; Schröder-Ritzrau, A.; Miller, T.E.; Scholz, D. Seasonal temperature variations controlling cave ventilation processes in cueva larga, Puerto Rico. Int. J. Speleol. 2016, 45, 259–273. [Google Scholar] [CrossRef]
- Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A. J. Sediment. Res. 2007, 77, 615–622. [Google Scholar] [CrossRef]
- Baker, A.J.; Mattey, D.P.; Baldini, J.U. Reconstructing modern stalagmite growth from cave monitoring, local meteorology, and experimental measurements of dripwater films. Earth Planet. Sci. Lett. 2014, 392, 239–249. [Google Scholar] [CrossRef]
- Dreybrodt, W. Speleothem Deposition. In Encyclopedia of Caves; White, W.B., Culver, D.C., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 769–777. ISBN 9780123838322. [Google Scholar]
- Dreybrodt, W. Chemical kinetics, speleothem growth and climate. Boreas 1999, 28, 347–356. [Google Scholar] [CrossRef]
- Kaufmann, G. Stalagmite growth and palaeo-climate: The numerical perspective. Earth Planet. Sci. Lett. 2003, 214, 251–266. [Google Scholar] [CrossRef]
- Kaufmann, G.; Dreybrodt, W. Stalagmite growth and palaeo-climate: An inverse approach. Earth Planet. Sci. Lett. 2004, 224, 529–545. [Google Scholar] [CrossRef]
- Weedon, G.P. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Casteel, R.C.; Banner, J.L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies. Chem. Geol. 2015, 392, 43–58. [Google Scholar] [CrossRef]
- Hansen, M.; Dreybrodt, W.; Scholz, D. Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO2 during speleothem growth. Geochim. Cosmochim. Acta 2013, 107, 242–251. [Google Scholar] [CrossRef]
- Dreybrodt, W. Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O–CO2–CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta 2008, 72, 4712–4724. [Google Scholar] [CrossRef]
- Van Beynen, P.E.; Soto, L.; Polk, J. Paleo-Precipitation Determination as Derived from Speleothems in Central Florida, USA. J. Cave Karst Stud. 2008, 70, 25–34. [Google Scholar]
- Vaks, A.; Gutareva, O.S.; Breitenbach, S.F.M.; Avirmed, E.; Mason, A.J.; Thomas, A.; Osinzev, A.V.; Kononov, A.M.; Henderson, G. Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science 2013, 340, 183–186. [Google Scholar] [CrossRef]
- Cruz, F.; Karmann, I.; Magdaleno, G.; Coichev, N.; Viana, O. Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil. J. Hydrol. 2005, 302, 1–12. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D.L. StalAge—An algorithm designed for construction of speleothem age models. Quat. Geochronol. 2011, 6, 369–382. [Google Scholar] [CrossRef]
- Breitenbach, S.F.M.; Rehfeld, K.; Goswami, B.; Baldini, J.U.L.; Ridley, H.E.; Kennett, D.J.; Prufer, K.M.; Aquino, V.V.; Asmerom, Y.; Polyak, V.J.; et al. COnstructing Proxy Records from Age models (COPRA). Clim. Past 2012, 8, 1765–1779. [Google Scholar] [CrossRef]
- Tortelli, D.M.; Walter, M. Modeling and rendering the growth of speleothems in real-time. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Rome, Italy, 27–29 February 2009; Volume 2, pp. 27–35. [Google Scholar]
- Sherwin, C.M.; Baldini, J.U. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems. Geochim. Cosmochim. Acta 2011, 75, 3915–3929. [Google Scholar] [CrossRef]
- Vieten, R.; Warken, S.; Winter, A.; Scholz, D.; Miller, T.; Spötl, C.; Schröder-Ritzrau, A. Monitoring of Cueva Larga, Puerto Rico—A First Step to Decode Speleothem Climate Records. In Karst Groundwater Contamination and Public Health; White, W., Herman, J., Herman, E., Rutigliano, M., Eds.; Springer: Cham, Germany, 2017. [Google Scholar] [CrossRef]
- Vieten, R.; Warken, S.; Winter, A.; Schröder-Ritzrau, A.; Scholz, D.; Spötl, C. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico. J. Geophys. Res. Biogeosci. 2018, 123, 879–888. [Google Scholar] [CrossRef]
- Baker, A.; Genty, D.; Dreybrodt, W.; Barnes, W.L.; Mockler, N.J.; Grapes, J. Testing Theoretically Predicted Stalagmite Growth Rate with Recent Annually Laminated Samples: Implications for Past Stalagmite Deposition. Geochim. Cosmochim. Acta 1998, 62, 393–404. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Yu, P.S. Outlier detection for high dimensional data. ACM SIGMOD Rec. 2001, 30, 37–46. [Google Scholar] [CrossRef]
- Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Crosby, T.; Iglewicz, B.; Hoaglin, D.C. How to Detect and Handle Outliers. Technometrics 1994, 36, 315. [Google Scholar] [CrossRef]
- Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000, 8, 237–253. [Google Scholar] [CrossRef]
- Hansen, M.; Scholz, D.; Schöne, B.R.; Spötl, C. Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3. Chem. Geol. 2019, 509, 20–44. [Google Scholar] [CrossRef]
- Fritts, H.C. Growth-Rings of Trees: Their Correlation with Climate. Science 1966, 154, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Mühlinghaus, C.; Scholz, D.; Mangini, A. Modelling stalagmite growth and δ13C as a function of drip interval and temperature. Geochim. Cosmochim. Acta 2007, 71, 2780–2790. [Google Scholar] [CrossRef]
- Dreybrodt, W. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem. Geol. 1980, 29, 89–105. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieten, R.; Hernandez, F. StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences 2021, 11, 187. https://doi.org/10.3390/geosciences11050187
Vieten R, Hernandez F. StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences. 2021; 11(5):187. https://doi.org/10.3390/geosciences11050187
Chicago/Turabian StyleVieten, Rolf, and Francisco Hernandez. 2021. "StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations" Geosciences 11, no. 5: 187. https://doi.org/10.3390/geosciences11050187
APA StyleVieten, R., & Hernandez, F. (2021). StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences, 11(5), 187. https://doi.org/10.3390/geosciences11050187