Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia
Abstract
:1. Introduction
- -
- determine the microstructure and soil fabric;
- -
- to identify the features of the formation of soil minerals under the conditions of the cryogenic factors and the influence of the river.
2. The Study Site
3. Materials and Methods
3.1. Sampling Strategy
3.2. Thermal State of Soil
3.3. Laboratory Methods
4. Results and Discussion
4.1. Impact of Cryogenic Processes on the Structures of Soils
4.2. Impact of Cryogenic Processes on the Geochemistry of Soils
4.3. Impact of the Age of Deposits on the Soils Development
4.4. Soil Fabric of the Lena River Delta
4.4.1. Micromorphological Characteristic of Study Soils from First Terrace
4.4.2. Micromorphological Characteristic of Study Soils from Third Terrace (Samoylov Isl.)
4.4.3. Micromorphological Characteristic of Study Soils from Third Terraces (Sardakh Island.)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boike, J.; Kattenstroth, B.; Abramova, K.; Bornemann, N.; Chetverova, A.; Fedorova, I.; Fröb, K.; Grigoriev, M.; Grüber, M.; Kutzbach, L.; et al. Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences 2013, 10, 2105–2128. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, V.; Orlova, K.; Abakumov, E. Soils of the Lena River Delta, Yakutia, Russia: Diversity, Characteristics and Humic Acids Molecular Composition. Polarforschung 2018, 88, 135–150. [Google Scholar]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Swift, R.S. Organic Matter Characterization. Methods Soil Anal. 1996, 5, 1011–1069. [Google Scholar] [CrossRef] [Green Version]
- Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.M. Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences 2013, 10, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.M. Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth 2014, 5, 595–609. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.Y.; Ping, C.L.; Michaelson, G.J. Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Org. Geochem. 2002, 33, 407–419. [Google Scholar] [CrossRef]
- Davis, T.N. Permafrost: A Guide to Frozen Ground in Transition; University of Alaska Press: Fairbanks, AK, USA, 2001; 351p. [Google Scholar]
- Ejarque, E.; Abakumov, E. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 2016, 7, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Stolbovoy, V.; Tarnocai, C.; Broll, G.; Spaargaren, O.; Montanarella, L. Soil Atlas of the Northern Circumpolar Region, European Commission; Publications Office of the European Union: Luxembourg, 2010; pp. 1–144. [Google Scholar]
- Szymański, W.; Skiba, M.; Wojtuń, B.; Drewnik, M. Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma 2015, 253–254, 1–11. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Gagarina, E.I.; Sapega, V.F.; Vlasov, D.Y. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Sci. 2013, 46, 1219–1229. [Google Scholar] [CrossRef]
- Konistsev, V.; Rogov, V. Micromorphology of cryogenic soils. Eurasian Soil Sci. 1977, 2, 119–125. [Google Scholar]
- Glazovskya, M. Biogeochemical weathering of volcanic rocks of andesite composition under subantarctic periglacial conditions. Izv. Ras. Ser. Geogr. 2002, 3, 39–48. [Google Scholar]
- Lindbo, D.L.; Stolt, M.H.; Vepraskas, M.J. 8-Redoximorphic Features. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 129–147. [Google Scholar] [CrossRef]
- Sizov, O.; Volvakh, A.; Molodkov, A.; Vishnevskiy, A.; Soromotin, A.; Abakumov, E. Lithological and geomorphological indicators of glacial genesis in the upper Quaternary strata, Nadym River basin, Western Siberia. Solid Earth 2020, 11, 2047–2074. [Google Scholar] [CrossRef]
- Lupachev, A.; Abakumov, E.; Gubin, S. The Influence of Cryogenic Mass Exchange on the Composition and Stabilization Rate of Soil Organic Matter in Cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet-Lanoë, B.; Fox, C.A.; Gubin, S.V. Micromorphology of Cryosols. In Cryosols: Permafrost-Affected Soils; Kimble, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 365–390. [Google Scholar] [CrossRef]
- Makeev, O. The Soil Cryology; Russian Academy of Science: Moscow, Russia, 2019; 464p. [Google Scholar]
- Smith, C.A.S.; Fox, C.A.; Hargrave, A.E. Development of soil structure in some turbic cryosols in the Canadian low Arctic. Can. J. Soil Sci. 1991, 71, 11–29. [Google Scholar] [CrossRef]
- Ilieva, R.; Vergilov, Z.; Groseve, M. Micromorphology of organic matter in the Antarctic soils. Bulg. J. Ecol. Sci. 2003, 2, 52–54. [Google Scholar]
- Rogov, V.; Konistsev, V. The influence of cryogenesis on clay materials. Cryospere Earth 2008, 12, 51–59. [Google Scholar]
- Bronnikova, M.A. Interpretation of micromorphological features of soils and regoliths. Eurasian Soil Sci. 2011, 44, 824–828. [Google Scholar] [CrossRef]
- Schaefer, C.E.G.R.; Simas, F.N.B.; Gilkes, R.J.; Mathison, C.; da Costa, L.M.; Albuquerque, M.A. Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma 2008, 144, 104–115. [Google Scholar] [CrossRef]
- Stolt, M.H.; Lindbo, D.L. 17-Soil Organic Matter. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 369–396. [Google Scholar] [CrossRef]
- Vliet-Lanoë, B.V. 6-Frost Action. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 81–108. [Google Scholar] [CrossRef]
- Wilson, M.A.; Righi, D. 12-Spodic Materials. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 251–273. [Google Scholar] [CrossRef]
- Knoblauch, C.; Beer, C.; Sosnin, A.; Wagner, D.; Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Chang. Biol. 2013, 19, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Kutzbach, L.; Wagner, D.; Pfeiffer, E.-M. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 2004, 69, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Lara, R.J.; Rachold, V.; Kattner, G.; Hubberten, H.W.; Guggenberger, G.; Skoog, A.; Thomas, D.N. Dissolved organic matter and nutrients in the Lena River, Siberian Arctic: Characteristics and distribution. Mar. Chem. 1998, 59, 301–309. [Google Scholar] [CrossRef]
- Polyakov, V.I.; Chegodaeva, N.A.; Abakumov, E.V. Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic. Vestn. Tomsk. Gos. Univ. Biol. 2019, 47, 6–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirrmeister, L.; Grosse, G.; Schwamborn, G.; Andreev, A.A.; Meyer, H.; Kunitsky, V.V.; Kuznetsova, T.V.; Dorozhkina, M.V.; Pavlova, E.Y.; Bobrov, A.A.; et al. Late Quaternary History of the Accumulation Plain North of the Chekanovsky Ridge (Lena Delta, Russia): A Multidisciplinary Approach. Polar Geogr. 2003, 27, 277–319. [Google Scholar] [CrossRef] [Green Version]
- Bolshiyanov, D.Y.; Makarov, A.S.; Schneider, V.; Stoof, G. Origin and Development of the Delta Lena River; AARI: St. Petersburg, Russia, 2013; p. 268. [Google Scholar]
- Boike, J.; Nitzbon, J.; Anders, K.; Grigoriev, M.; Bolshiyanov, D.; Langer, M.; Lange, S.; Bornemann, N.; Morgenstern, A.; Schreiber, P.; et al. A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: An opportunity to validate remote-sensing data and land surface, snow, and permafrost models. Earth Syst. Sci. Data 2019, 11, 261–299. [Google Scholar] [CrossRef] [Green Version]
- WRB, F. IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015; FAO: Rome, Italy, 2015; 195p. [Google Scholar]
- Bowman, G.; Hutka, J. Particle Size Analysis. In Soil Physical Measurment and Interpritation for Land Evaluation; McKezie, N., Coughlan, K., Cresswell, H., Eds.; CSIRO Publishing: Victoria, UK, 2002; pp. 224–239. [Google Scholar]
- Lodygin, E.; Beznosikov, V.E.A. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Pol. Polar Res. 2017, 38, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.D.; Beznosikov, V.A. The molecular structure and elemental composition of humic substances from Albeluvisols. Chem. Ecol. 2010, 26, 87–95. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular Composition of Humic Substances in Tundra Soils (C-13-NMR Spectroscopic Study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E. Stabilization of organic material from soils and soil-like bodies in the Lena River Delta (13C-NMR spectroscopy analysis). Span. J. Soil Sci. 2020, 10, 170–190. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Dobrovolsky, G.V. Soils of the Floodplains of the Center of the Russian Plain; Izd-vo MGU: Moscow, Russia, 2005; 293p. [Google Scholar]
- Rachold, V.; Alabyan, A.; Hubberten, H.W.; Korotaev, V.N.; Zaitsev, A.A. Sediment transport to the Laptev Sea–hydrology and geochemistry of the Lena River. Polar Res. 1996, 15, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Bolshiyanov, D.; Grigoriev, M.; Maksimov, G.; Straus, J.; Schneider, W.; Pushina, Z.; Molodkov, A.; Kuksa, K.; Petrov, A. Primary Results Of The 66-Meters Borehole Drilling At Samoylov Island In The Lena River Delta. In Proceedings of the Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia, Saint-Petersburg, Russia, 23 November–4 December 2020; pp. 24–31, AARI. [Google Scholar]
Soil ID | Coordinates | Horizon * | Depth, cm | Description | Terraces with Height above the River Level | Permafrost Table, cm | Soil Name |
---|---|---|---|---|---|---|---|
Samoylov Island | |||||||
S 1−1 | N72°22′09.7″ E126°29′56.0″ | Oi | 0–10 | Slightly decomposed mosses | Third terrace, 12 m | 38 | Turbic Cryosol |
Ah | 10–20 | Mineral horizon with accumulation of humified organic matter | |||||
Cf@ | 26–38 | Mineral horizon active processes of cryoturbation | |||||
S 1−6 | N72°22′35.3″ E126°30′20.5″ | Ah | 0–20 | Mineral horizon with accumulation of humified organic matter | Third terrace, 11.4 m | 40 | Turbic Cryosol |
Cf@ | 20–40 | Mineral horizon active processes of cryoturbation | |||||
S 1−7 | N72°22′18.2″ E126°29′18.1″ | Oi | 0–6 | Slightly decomposed mosses | Third terrace, 11.6 m | 36 | Turbic Cryosol |
Bg | 6–27 | Mineral horizon with stagnic conditions | |||||
Bf@ | 27–36 | Mineral horizon with stagnic conditions and active processes of cryoturbation | |||||
S 2−1 | N72°22′41.6″ E126°31′05.1″ | Ah | 0–25 | Mineral horizon with accumulation of humified organic matter | First terrace, 6 m | 56 | Umbric Cryosol |
Bt | 25–50 | Mineral horizon with stagnic conditions | |||||
Cbf@ | 50–56 | Buried mineral horizon with active processes of cryoturbation | |||||
Sardakh Island | |||||||
S 2 | N72°34′15.5″ E127°13′11.5″ | Oi | 0–10 | Slightly decomposed mosses | Third terrace, 25 m | 27 | Histic Cryosol |
Heg | 10–15 | Accumulation of moderately decomposed organic matter in stagnic conditions | |||||
Bf@ | 15–27 | Mineral horizon with active processes of cryoturbation | |||||
S 3 | N72°34′14.7″ E127°12′28.3″ | Oi | 0–16 | Slightly decomposed mosses | Third terrace, 25 m | 31 | Histic Cryosol |
Hag | 16–25 | Accumulation of highly decomposed organic matter in stagnic conditions | |||||
Bf@ | 25–31 | Mineral horizon with active processes of cryoturbation |
Horizon * | Depth, cm | Structure | Roots | Consistence | Moisture | Age ** |
---|---|---|---|---|---|---|
S 1−1. Samoylov Island | 2230 ± 70 | |||||
Cf@ | 26–38 | Massive | Few | Viscous | Wet | |
S 1−6. Samoylov Island | ||||||
Cf@ | 20–40 | Massive | Few | Viscous | Wet | |
S 1−7. Samoylov Island | ||||||
Bf@ | 27–36 | Massive | Few | Friable | Wet | |
S 2−1. Samoylov Island | - *** | |||||
Cbf@ | 50–56 | Massive | Absence | Friable | Moist | |
S 2. Sardakh Island | >50,700 | |||||
Heg | 10–15 | Single grain | Many | Friable | Moist | |
S 3. Sardakh Island | ||||||
Hag | 16–25 | Single grain | Many | Hard | Moist | |
Bf@ | 25–31 | Massive | Absence | Hard | Wet |
Horizon | Depth | Color | Particle Size Distribution | Texture Class | pH | C | N | C/N | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand (0.063–2 mm) | Silt (2–63 μm) | Clay (<2 μm) | H2O | CaCl2 | g/kg | ||||||
S 1−1. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Cf@ | 26–38 | 10 YR 6/1 | 65 | 32 | 3 | Sandy Loam | 5.98 | 4.72 | 22.2 | 1.2 | 18.5 |
S 1−6. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Cf@ | 20–40 | 10 YR 6/1 | 57 | 40 | 3 | Sandy Loam | 5.36 | 4.05 | 14 | 1.1 | 12.7 |
S 1−7. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Bf@ | 27–36 | 10 YR 6/1 | 62 | 35 | 3 | Sandy Loam | 5.83 | 4.45 | 3.4 | 0.6 | 5.6 |
S 2−1. Samoylov Isl., Umbric Cryosol, First Terrace | |||||||||||
Cbf@ | 50–56 | 7.5 YR 7/3 | 65 | 32 | 3 | Sandy Loam | 6.12 | 5.07 | 29.6 | 2.3 | 12.8 |
S 2. Sardakh Isl., Histic Cryosol, Third Terrace | |||||||||||
Heg | 10–15 | 10 YR 6/1 | 68 | 26 | 6 | Sandy Loam | 4.96 | 4.25 | 26.2 | 2 | 13.1 |
S 3. Sardakh Isl., Histic Cryosol, Third Terrace | |||||||||||
Hag | 16–25 | 10 YR 6/1 | 67 | 29 | 4 | Sandy Loam | 5.42 | 4.28 | 18.2 | 1.5 | 12.1 |
Bf@ | 25–31 | 10 YR 3/2 | 63 | 32 | 5 | Sandy Loam | 4.97 | 3.44 | 24.5 | 1.4 | 17.5 |
Horizon | Depth | SiO2 | Fe2O3 | Al2O3 | MnO | K2O | CaO | TiO2 | ZrO2 | SrO | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||
S 1−1. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Cf@ | 26–38 | 56 | 17.2 | 6.83 | 0.8 | 5.7 | 5.73 | 3.8 | 1.7 | 1.3 | 0.94 |
S 1−6. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Cf@ | 20–40 | 55.8 | 18.1 | 6.9 | 0.9 | 5.7 | 4.3 | 4.2 | 1.8 | 1.2 | 0.6 |
S 1−7. Samoylov Isl., Turbic Cryosol, Third Terrace | |||||||||||
Bf@ | 27–36 | 56.5 | 17.8 | 6.8 | 0.5 | 5.7 | 4.2 | 4.1 | 2.1 | 1.3 | 0.4 |
S 2−1. Samoylov Isl., Umbric Cryosol, First Terrace | |||||||||||
Cbf@ | 50–56 | 53.9 | 19.1 | 7.3 | 0.8 | 6.1 | 4.5 | 4.2 | 1.5 | 1.4 | 0.6 |
S 2. Sardakh Isl., Histic Cryosol, Third Terrace | |||||||||||
Heg | 10–15 | 68 | 13.5 | 5.4 | 0.7 | 3.8 | 2.4 | 3.2 | 1.1 | 0.8 | 0.5 |
S 3. Sardakh Isl., Histic Cryosol, Third Terrace | |||||||||||
Hag | 16–25 | 57.2 | 16.8 | 7.3 | 0.9 | 5.6 | 4.3 | 4.2 | 1.3 | 1.2 | 0.7 |
Bf@ | 25–31 | 76.4 | 8.4 | 3.7 | 3.2 | 2.4 | 1.9 | 1.8 | 0.8 | 0.6 | 0.4 |
n/n | SiO2 | Fe2O3 | Al2O3 | MnO | K2O | CaO | TiO2 | ZrO2 | SrO |
---|---|---|---|---|---|---|---|---|---|
SiO2 | 1 | 0.01 | 0.08 | 0.68 | 0.01 | 0.03 | 0.07 | 0.09 | 0.03 |
Fe2O3 | 1 | 0.1 | 0.53 | 0.01 | 0.12 | 0.06 | 0.07 | 0.03 | |
Al2O3 | 1 | 0.88 | 0.1 | 0.06 | 0.01 | 0.46 | 0.14 | ||
MnO | 1 | 0.42 | 0.82 | 0.98 | 0.29 | 0.25 | |||
K2O | 1 | 0.05 | 0.11 | 0.07 | 0.01 | ||||
CaO | 1 | 0.17 | 0.28 | 0.05 | |||||
TiO2 | 1 | 0.24 | 0.18 | ||||||
ZrO2 | 1 | 0.10 | |||||||
SrO | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Abakumov, E. Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia. Geosciences 2021, 11, 118. https://doi.org/10.3390/geosciences11030118
Polyakov V, Abakumov E. Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia. Geosciences. 2021; 11(3):118. https://doi.org/10.3390/geosciences11030118
Chicago/Turabian StylePolyakov, Vyacheslav, and Evgeny Abakumov. 2021. "Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia" Geosciences 11, no. 3: 118. https://doi.org/10.3390/geosciences11030118
APA StylePolyakov, V., & Abakumov, E. (2021). Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia. Geosciences, 11(3), 118. https://doi.org/10.3390/geosciences11030118