Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy)
Abstract
:1. Introduction
2. Geological Setting
Seismotectonic Setting
3. Engineering-Geological Analysis of the Lake Campotosto Basin
3.1. Results of Engineering-Geological Analysis
3.1.1. Geological Mapping and Landslide Inventory
3.1.2. Geomechanical Features
- Class I: recent alluvial deposits, from fine to coarse, with the presence of peat lenses, that outcrop mainly in the Sella Pedicate Valley and in the northern part of the basin.
- Class II: rock mass with an arenaceous component much greater than the pelitic one (arenaceous content > 70%); GSI values are typical of poorly-fractured rock masses, i.e., GSI > B65; Jv < 10. It outcrops in the northern part of the study area.
- Class III: rock mass with arenaceous content > 70%, but with lower GSI values, typical of a fractured rock mass, i.e., GSI < B65 and Jv > 10.
- Class IV: arenaceous rock mass with a relatively abundant pelitic component, slightly to moderately fractured. In particular, the arenaceous component is between 50% and 70%; C45 < GSI < C60; 5 < Jv < 20.
- Class V: intensely fractured rock mass, with F25 < GSI < F40 and Jv > 20; the rock mass of class V represents a strip about 1 km wide that cross-maps the study area (in purple in Figure 7) along the Campotosto active fault system.
4. Local Seismic Response Study of the Poggio Cancelli Valley
4.1. Engineering-Geological Modeling
4.2. Geophysical Investigations
4.3. Numerical Modeling
Lithological Unit | γn (kN/m3) | Vs (m/s) | Jv |
---|---|---|---|
Alluvial fan (GM) | 18 | 300 | Seed & Idriss [110] |
Eluvial-colluvial deposit (SW) | 18 | 250 | Seed & Idriss [110] |
Debris deposit (SWDF) | 18 | 250 | Seed & Idriss [110] |
Tilled soil and anthropic material (SM) | 18 | 120 | Rollins et al. [111] |
Sandy silt (LM) | 19 | 250 | Rollins et al. [111] |
Clayey silt (LASL) | 19 | 300 | Rollins et al. [111] |
Laga Fm. flysch (ALS) | 22 | 1100 | - |
4.4. Results of the Local Seismic Response Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Geli, L.; Bard, P.Y.; Jullien, B. The effect of topography on earthquake ground motion: A review and new results. Bull. Seism. Soc. Am. 1988, 78, 42–63. [Google Scholar]
- Bouchon, M.; Schultz, C.A.; Toksöz, M.N. Effect of three-dimensional topography on seismic motion. J. Geophys. Res. Solid Earth 1996, 101, 5835–5846. [Google Scholar] [CrossRef]
- Bard, P.Y.; Bouchon, M. The two-dimensional resonance of sediment-filled valleys. Bull. Seism. Soc. Am. 1985, 75, 519–541. [Google Scholar]
- Borcherdt, R.D. Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am. 1970, 60, 29–61. [Google Scholar]
- Lenti, L.; Martino, S.; Paciello, A.; Mugnozza, G.S. Evidence of two-dimensional amplification effects in an alluvial valley (Valnerina, Italy) from velocimetric records and numerical models. Bull. Seism. Soc. Am. 2009, 99, 1612–1635. [Google Scholar] [CrossRef]
- Martino, S.; Minutolo, A.; Paciello, A.; Rovelli, A.; Mugnozza, G.S.; Verrubbi, V. Evidence of amplification effects in fault zone related to rock mass jointing. Nat. Hazards 2006, 39, 419–449. [Google Scholar] [CrossRef]
- Brune, J.N.; Allen, C.R. A low-stress-drop, low-magnitude earthquake with surface faulting: The Imperial, California, earthquake of March 4, 1966. Bull. Seism. Soc. Am. 1967, 57, 501–514. [Google Scholar]
- Westaway, R.; Jackson, J. Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature 1984, 312, 436–438. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Analysis of soil liquefaction: Niigata earthquake. J. Soil Mech. Found. Div. 1967, 93, 83–108. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Review of soil liquefaction characteristics during major earthquakes of the twenty-first century. Nat. Hazards 2013, 65, 2375–2384. [Google Scholar] [CrossRef]
- Keefer, D.K. Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Eng. Geol. 2000, 58, 231–249. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, X.M.; Huang, R.Q.; Van Westen, C. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bull. Eng. Geol. Environ. 2009, 68, 373–386. [Google Scholar] [CrossRef]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’Angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.M.; Iannucci, R.; et al. Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides 2019, 16, 1221–1241. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; Antonielli, B.; Bozzano, F.; Caprari, P.; Discenza, M.E.; Esposito, C.; Fiorucci, M.; Iannucci, R.; Marmoni, G.M.; Schilirò, L. Landslides triggered after the 16 August 2018 Mw 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides 2020, 17, 1177–1190. [Google Scholar] [CrossRef]
- Granger, K.; Jones, T.; Leiba, M.; Scott, G. Community risk in Cairns: A multi-hazard risk assessment. Aust. J. Emerg. Manag. 1999, 14, 29–30. [Google Scholar]
- Kappes, M.; Keiler, M.; Glade, T. From Single- to Multi-Hazard Risk Analyses: A Concept Addressing Emerging Challenges. In Mountain Risks: Bringing Science to Society, Proceedings of the Mountain Risk International Conference, Florence, Italy, 24–26 November 2010; CERG: Strasbourg, France; pp. 351–356.
- Gill, J.C.; Malamud, B.D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dynam. 2016, 7, 659–679. [Google Scholar] [CrossRef] [Green Version]
- Marzocchi, W.; Mastellone, M.L.; Di Ruocco, A.; Novelli, P.; Romeo, E.; Gasparini, P. Principles of Multirisk Assessment: Interaction amongst Natural and Man-Induced Risks (Project Report); Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeld, K.; Glade, T. Challenges of Analyzing Multi-hazard Risk: A Review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Perry, R.W.; Lindell, M.K. Volcanic risk perception and adjustment in a multi-hazard environment. J. Volcanol. Geoth. Res. 2008, 172, 170–178. [Google Scholar] [CrossRef]
- Shi, P.; Yang, X.; Liu, F.; Li, M.; Pan, H.; Yang, W.; Fang, J.; Sun, S.; Tan, C.; Tang, H.; et al. Mapping Multi-Hazard Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 287–306. [Google Scholar]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- van Westen, C.J.; Montoya, L.; Boerboom, L. Multi-Hazard Risk Assessment using GIS in urban areas: A case study for the city of Turrialba, Costa-Rica. In Proceedings of the Regional Workshop on Best Practise in Disaster Mitigation, Bali, Indonesia, 14–26 September 2002; pp. 120–136. [Google Scholar]
- Lari, S.; Frattini, P.; Crosta, G.B. Local scale multiple quantitative risk assessment and uncertainty evaluation in a densely urbanised area (Brescia, Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 3387–3406. [Google Scholar] [CrossRef] [Green Version]
- Forte, G.; De Falco, M.; Santangelo, N.; Santo, A. Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece). Geosciences 2019, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A methodology for an integrated risk assessment of spatially relevant hazards. J. Environ. Plan. Man. 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Grünthal, G.; Thieken, A.; Schwarz, J.; Radtke, K.; Smolka, A.; Merz, B. Comparative risk assessment for the city of cologne—storms, floods, earthquakes. Nat. Hazards 2006, 38, 21–44. [Google Scholar] [CrossRef] [Green Version]
- van Westen, C.J.; Kappes, M.S.; Luna, B.Q.; Frigerio, S.; Glade, T.; Malet, J.-P. Medium-Scale Multi-Hazard Risk Assessment of Gravitational Processes. In Mountain Risks: From Prediction to Management and Governance; van Asch, T., Corominas, J., Greiving, S., Malet, J.-P., Sterlacchini, S., Eds.; Springer: Dordrecht, The Netherland, 2014; pp. 201–231. [Google Scholar]
- Neri, M.; Le Cozannet, G.; Thierry, P.; Bignami, C.; Ruch, J. A method for multi-hazard mapping in poorly known volcanic areas: An example from Kanlaon (Philippines). Nat. Hazards Earth Syst. Sci. 2013, 13, 1929–1943. [Google Scholar] [CrossRef] [Green Version]
- Meletti, C.; Montaldo, V. Stime di Pericolosità Sismica per Diverse Probabilità di Superamento in 50 Anni: Valori di ag. Progetto DPC-INGV S1, Deliverable D2. 2007. Available online: http://esse1.mi.ingv.it/d2.html (accessed on 22 February 2021).
- Blumetti, A.M.; Dramis, F.; Michetti, A.M. Fault-generated mountain fronts in the Central Apennines (Central Italy): Geomorphological features and seismotectonic implications. Earth Surf. Proc. Land. 1993, 18, 203–223. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P. Paleoseismology of silent faults in the Central Apennines (Italy): The Mt. Vettore and Laga Mts. faults. Ann. Geophys. 2003, 46, 5. [Google Scholar]
- Lai, C.G.; Corigliano, M.; Agosti, M. Dighe e Terremoti: Il Caso del Sisma Aquilano; Progettazione Sismica: Pavia, Italy, 2009; pp. 183–205. [Google Scholar]
- Centamore, E.; Cantalamessa, G.; Micarelli, A.; Potetti, M.; Berti, D.; Bigi, S.; Morelli, C.; Ridolfi, M. Stratigrafia e analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle zone limitrofe. Studi Geologici Camerti 1991, 2, 125–131. [Google Scholar]
- Adamoli, L.; Calamita, F.; Pizzi, A. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50.000. Foglio 349 Gran Sasso d’Italia; ISPRA Servizio Geologico d’Italia: Roma, Italy, 2010. [Google Scholar]
- Artoni, A. Messinian events within the tectono-stratigraphic evolution of the Southern Laga Basin (Central Apennines, Italy). Boll. Soc. Geol. Ital. 2003, 122, 447–466. [Google Scholar]
- Milli, S.; Moscatelli, M.; Stanzione, O.; Falcione, F. Sedimentology and physical stratigraphy of the Messinian turbidite deposits of the Laga Basin (central Apennines, Italy). Ital. J. Geosci. 2007, 126, 255–281. [Google Scholar]
- Galadini, F.; Galli, P. Active tectonics in the central Apennines (Italy)–Input data for seismic hazard assessment. Nat. Hazards 2000, 22, 225–268. [Google Scholar] [CrossRef]
- Calabresi, G.; Manfredini, G. Terreni Coesivi Poco Consistenti in Italia. Riv. Ital. Geotec. 1976, 10, 49–64. [Google Scholar]
- Calamita, F.; Pizzi, A. Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (central Italy). Mem. Soc. Geol. It. 1994, 48, 541–548. [Google Scholar]
- Lavecchia, G.; Brozzetti, F.; Barchi, M.; Menichetti, M.; Keller, J.V. Seismotectonic zoning in east-central Italy deduced from an analysis of the Neogene to present deformations and related stress fields. Geol. Soc. Am. Bull. 1994, 106, 1107–1120. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Stili strutturali nei sistemi di sovrascorrimento della Catena del Gran Sasso (Appennino Centrale). Studi Geologici Camerti 1990, special issue, 37–50. [Google Scholar]
- Patacca, E.; Scandone, P. Post-Tortonian Mountain Building in the Apennines. The Role of the Passive Sinking of a Relic Lithospheric Slab. In Advances in Earth Science Research; Boriani, A., Bonafede, M., Piccardo, G.B., Vai, G.B., Eds.; Accademia Nazionale dei Lincei: Roma, Italy, 1989; Volume 80, pp. 157–176. [Google Scholar]
- Boccaletti, M.; Ciaranfi, N.; Cosentino, D.; Deiana, G.; Gelati, R.; Lentini, F.; Massari, F.; Moratti, G.; Pescatore, T.; Ricci Lucchi, F.; et al. Palinspastic restoration and paleogeographic reconstruction of the peri-Tyrrhenian area during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 77, 41-IN13. [Google Scholar] [CrossRef]
- Funiciello, R.; Tozzi, M.; Trigari, A.; Scipioni, L. Tettonica compressiva ed evoluzione cinematica dell’area di Cima Alta (Appennino centrale, Teramo). Boll. Soc. Geol. Ital. 1993, 112, 615–633. [Google Scholar]
- Cacciuni, A.; Centamore, E.; Di Stefano, R.; Dramis, F. Evoluzione morfotettonica della conca di Amatrice. Studi Geologici Camerti 1995, 95–100. [Google Scholar]
- Boncio, P.; Lavecchia, G.; Milana, G.; Rozzi, B. Seismogenesis in Central Apennines, Italy: An integrated analysis of minor earthquake sequences and structural data in the Amatrice-Campotosto area. Ann. Geophys. 2004, 47, 1723–1742. [Google Scholar]
- Galadini, F.; Messina, P. Plio-Quaternary changes of the normal fault architecture in the central Apennines (Italy). Geodin. Acta 2001, 14, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Galadini, F.; Falcucci, E.; Gori, S.; Zimmaro, P.; Cheloni, D.; Stewart, J.P. Active faulting in source region of 2016–2017 Central Italy event sequence. Earthq. Spectra 2018, 34, 1557–1583. [Google Scholar] [CrossRef]
- Falcucci, E.; Gori, S.; Bignami, C.; Pietrantonio, G.; Melini, D.; Moro, M.; Saroli, M.; Galadini, F. The Campotosto seismic gap in between the 2009 and 2016-2017 seismic sequences of central Italy and the role of inherited lithospheric faults in regional seismotectonic settings. Tectonics 2018, 37, 2425–2445. [Google Scholar] [CrossRef]
- Falcucci, E.; Gori, S.; Galadini, F.; Fubelli, G.; Moro, M.; Saroli, M. Active faults in the epicentral and mesoseismal Ml 6.0 24, 2016 Amatrice earthquake region, central Italy. Methodological and seismotectonic issues. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Valoroso, L.; Chiaraluce, L.; Piccinini, D.; Di Stefano, R.; Schaff, D.; Waldhauser, F. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. J. Geophys. Res. 2013, 118, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Tondi, E.; Jablonská, D.; Volatili, T.; Michele, M.; Mazzoli, S.; Pierantoni, P.P. The Campotosto linkage fault zone between the 2009 and 2016 seismic sequences of central Italy: Implications for seismic hazard analysis. Geol. Soc. Am. Bull. 2020. [Google Scholar] [CrossRef]
- Castelli, V.; Camassi, R.; Caracciolo, C.H.; Locati, M.; Meletti, C.; Rovida, A. New insights in the seismic history of Monti della Laga area. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. J. Geophys. Res. Solid Earth 2003, 108, 2294. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Valoroso, L.; Piccinini, D.; Di Stefano, R.; De Gori, P. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res. 2011, 116, B12311. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks and source models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Barchi, M.R.; Carannante, S.; Collettini, C.; Mirabella, F.; Pauselli, C.; Valoroso, L. The role of rheology, crustal structures and lithology in the seismicity distribution of the northern Apennines. Tectonophysics 2017, 694, 280–291. [Google Scholar] [CrossRef]
- Bignami, C.; Tolomei, C.; Pezzo, G.; Guglielmino, F.; Atzori, S.; Trasatti, E.; Antonioli, A.; Stramondo, S.; Salvi, S. Source identification for situational awareness of the August 24th 2016 Central Italy event. Ann. Geophys. Discuss. 2016, 59. [Google Scholar] [CrossRef]
- Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M. Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophys. Res. Lett. 2016, 43, 10745–10752. [Google Scholar] [CrossRef]
- Gruppo di Lavoro INGV sul Terremoto in Centro Italia. Relazione Sullo Stato Delle Conoscenze Sulla Sequenza Sismica in Centro Italia 2016–2017 (aggiornamento al 2 febbraio 2017); INGV: Roma, Italy, 2017. [Google Scholar] [CrossRef]
- Livio, F.; Michetti, A.M.; Vittori, E.L.; Piccardi, L.; Tondi, E.; Roberts, G. Surface faulting during the August 24, 2016, Central Italy earthquake (Mw 6.0): Preliminary results. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Pucci, S.; De Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Caciagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Carminati, E.; Bignami, C.; Doglioni, C.; Smeraglia, L. Lithological control on multiple surface ruptures during the 2016–2017Amatrice-Norcia seismic sequence. J. Geodyn. 2020, 134, 101676. [Google Scholar] [CrossRef]
- Smeraglia, L.; Billi, A.; Carminati, E.; Cavallo, A.; Doglioni, C. Field-to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics 2017, 712, 156–169. [Google Scholar] [CrossRef]
- ISRM. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. In ISRM & ISRM Turkish National Group; Ulusay, R., Hudson, J.A., Eds.; ISRM Commissions on Testing Methods: Ankara, Turkey, 2007; p. 628. ISBN 978-975-93675-4-1. [Google Scholar]
- Palmström, A.; Sharma, V.I.; Saxena, K. In-Situ Characterization of Rocks; Balkema Publication: Rotterdam, The Netherland, 2001; pp. 1–40. [Google Scholar]
- Marinos, P.; Hoek, E. Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull. Eng. Geol. Environ. 2001, 60, 85–92. [Google Scholar] [CrossRef]
- Calamita, F.; Adamoli, L.; Pizzi, A.; Chiocchini, M.; Rusciadelli, G.; Di Simone, S.; Centamore, E.; Pieruccini, P.; Scisciani, V. Carta Geologica d’Italia alla Scala 1:50.000. Foglio 349 Gran Sasso d’Italia; ISPRA Servizio Geologico d’Italia: Roma, Italy, 2010. [Google Scholar]
- Saroli, M.; (Università degli Studi di Cassino e del Lazio Meridionale, Cassino, Italy); Moro, M.; (Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy). Personal communication, 2017.
- EMERGEO Working Group. Terremoto di Amatrice del 24 Agosto 2016: Effetti Cosismici; INGV: Roma, Italy, 2016. [Google Scholar] [CrossRef]
- Chigira, M. Long-term gravitational deformation of rocks by mass rock creep. Eng. Geol. 1992, 32, 157–184. [Google Scholar] [CrossRef]
- Brando, G.; Pagliaroli, A.; Cocco, G.; Di Buccio, F. Site effects and damage scenarios: The case study of two historic centers following the 2016 Central Italy earthquake. Eng. Geol. 2020, 272, 105647. [Google Scholar] [CrossRef]
- Delgado, J.; López Casado, C.; Giner, J.; Estévez, A.; Cuenca, A.; Molina, S. Microtremors as a geophysical exploration tool: Applications and limitations. Pure Appl. Geophys. 2000, 157, 1445–1462. [Google Scholar] [CrossRef]
- LeBrun, B.; Duval, A.M.; Bard, P.-Y.; Monge, O.; Bour, M.; Vidal, S.; Fabriol, H. Seismic Microzonation: A Comparison between Geotechnical and Seismological Approaches in Pointe-à-Pitre (French West Indies). Bull. Earthq. Eng. 2004, 2, 27–50. [Google Scholar] [CrossRef]
- Martino, S.; Lenti, L.; Gélis, C.; Giacomi, A.C.; Santisi d’Avila, M.P.; Bonilla, L.F.; Bozzano, F.; Semblat, J.F. Influence of Lateral Heterogeneities on Strong-Motion Shear Strains: Simulations in the Historical Center of Rome (Italy). Bull. Seism. Soc. Am. 2015, 105, 2604–2624. [Google Scholar]
- Pergalani, F.; Pagliaroli, A.; Bourdeau, C.; Compagnoni, M.; Lenti, L.; Lualdi, M.; Madiai, C.; Martino, S.; Razzano, R.; Varone, C.; et al. Seismic microzoning map: Approaches, results and applications after the 2016–2017 Central Italy seismic sequence. Bull. Earthq. Eng. 2020, 18, 5595–5629. [Google Scholar] [CrossRef] [Green Version]
- ICMS Working Group. Indirizzi e criteri per la microzonazione sismica—Guidelines for seismic microzonation. Conferenza delle Regioni e delle Province autonome. Dipartimento della Protezione Civile 2008, 3. Available online: http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf (accessed on 22 February 2021).
- SMH Seismic Microzonation Handbook. Geoscience Division, Ministry of Earth Sciences, Government of India, New Delhi 2011. Available online: https://moes.gov.in/writereaddata/files/seismic_mcrozonation_manual.pdf (accessed on 22 February 2021).
- Poggi, V.; Fah, D. Guidelines and Strategies for Seismic Microzonation in Switzerland; Swiss Seismological Service; ETH Zurich: Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- ASTM. D422-63e2, Standard Test Method for Particle-Size Analysis of Soils. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM. D4318-10e1, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Nogoshi, M.; Igarashi, T. On the propagation characteristics of microtremors. J. Seism. Soc. Jpn. 1970, 23, 264–280, (In Japanese with English abstract). [Google Scholar]
- Nogoshi, M.; Igarashi, T. On the amplitude characteristics of microtremors. J. Seism. Soc. Jpn. 1971, 24, 24–40, (In Japanese with English abstract). [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railw. Techn. Res. Inst. (RTRI) 1989, 30, 25–33. [Google Scholar]
- Bour, M.; Fouissac, D.; Dominique, P.; Martin, C. On the use of microtremor recordings in seismic microzonation. Soil Dyn. Earthq. Eng. 1998, 17, 465–474. [Google Scholar] [CrossRef]
- Haghshenas, E.; Bard, P.-Y.; Theodulidis, N. SESAME WP04 Team Empirical evaluation of microtremor H/V spectral ratio. Bull. Earthq. Eng. 2008, 6, 75–108. [Google Scholar] [CrossRef]
- SESAME Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing and interpretation. In Deliverable D23.12 European Commission—Research General Directorate Project No. EVG1-CT-2000-00026 SESAME; European Commission: Grenoble, France, 2004.
- Castellaro, S.; Mulargia, F. The effect of velocity inversions on H/V. Pure Appl. Geophys. 2009, 166, 567–592. [Google Scholar] [CrossRef]
- Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seism. Soc. Am. 1998, 88, 228–241. [Google Scholar]
- Galea, P.; D’Amico, S.; Farrugia, D. Dynamic characteristics of an active coastal spreading area using ambient noise measurements-Anchor Bay, Malta. Geophys. J. Int. 2014, 199, 1166–1175. [Google Scholar] [CrossRef] [Green Version]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun promontory (Malta). Geophys. J. Int. 2018, 213, 1146–1161. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J. Seismol. 2020, 24, 897–916. [Google Scholar] [CrossRef]
- Martino, S.; Caprari, P.; Della Seta, M.; Esposito, C.; Fiorucci, M.; Hailemikael, S.; Iannucci, R.; Marmoni, G.M.; Martini, G.; Paciello, A.; et al. Influence of geological complexities on local seismic response in the Municipality of Forio (Ischia Island, Italy). Ital. J. Eng. Geol. Environ. 2020. [Google Scholar] [CrossRef]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 1999, 64, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Socco, L.V.; Strobbia, C. Surface-wave method for near-surface characterization: A tutorial. Near Surf. Geophys. 2004, 2, 165–185. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J. Multichannel analysis of surface waves (MASW)—Active and passive methods. Lead. Edge 2007, 26, 60–64. [Google Scholar] [CrossRef]
- Xia, J.; Xu, Y.; Miller, R.D. Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl. Geophys. 2007, 164, 941–956. [Google Scholar] [CrossRef]
- Olafsdottir, E.A.; Erlingsson, S.; Bessason, B. Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Can. Geotech. J. 2018, 55, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Ö. Seismic Data Processing; Society of Exploration Geophysicists: Tulsa, OK, USA, 1987. [Google Scholar]
- Park, C.B. Imaging dispersion of MASW data—Full vs. selective offset scheme. J. Environ. Eng. Geophys. 2011, 16, 13–23. [Google Scholar] [CrossRef]
- Wathelet, M. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophys. Res. Lett. 2008, 35, L09301. [Google Scholar] [CrossRef] [Green Version]
- Peruzzi, G.; Albarello, D. The possible effect of vertical ground motion on the horizontal seismic response at the surface of a sedimentary structure. Boll. Geof. Teor. Appl. 2017, 58, 343–352. [Google Scholar]
- Macerola, L.; Tallini, M.; Di Giulio, G.; Nocentini, M.; Milana, G. The 1-D and 2-D seismic modeling of deep quaternary basin (Downtown L’Aquila, Central Italy). Earthq. Spectra 2019, 35, 1689–1710. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Soil Moduli and Damping Factors for Dynamic Response Analyses; Report EERC; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1970; Volume 70–100, pp. 1–15. [Google Scholar]
- Rollins, K.M.; Evans, M.; Diehl, N.; Daily, W. Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. 1998, 124, 396–405. [Google Scholar] [CrossRef]
- Blumetti, A.M.; Guerrieri, L. Fault-generated mountain fronts and the identification of fault segments: Implications for seismic hazard assessment. Bol. Soc. Geol. Ital. 2007, 126, 307–322. [Google Scholar]
- Vičič, B.; Aoudia, A.; Borghi, A.; Momeni, S.; Vuan, A. Seismicity rate changes and geodetic transients in Central Apennines. Geophys. Res. Lett. 2020, 47, e2020GL090668. [Google Scholar] [CrossRef]
- Bigi, S.; Casero, P.; Chiarabba, C.; Di Bucci, D. Contrasting surface active faults and deep seismogenic sources unveiled by the 2009 L’Aquila earthquake sequence (Italy). Terra Nova 2012, 25, 21–29. [Google Scholar] [CrossRef]
- Buttinelli, M.; Pezzo, G.; Valoroso, L.; De Gori, P.; Chiarabba, C. Tectonics Inversions, Fault Segmentations, and Triggering Mechanisms in the Central Apennines Normal Fault System: Insights from High-Resolution Velocity Models. Tectonics 2018, 37, 4135–4149. [Google Scholar] [CrossRef]
- Cheloni, D.; D’Agostino, N.; Scognamiglio, L.; Tinti, E.; Bignami, C.; Avallone, A.; Giuliani, R.; Calcaterra, S.; Gambino, P.; Mattone, M. Heterogeneous behavior of the Campotosto normal fault (central Italy) imaged by InSAR GPS and strong-motion data: Insights from the 18 January 2017 events. Remote Sens. 2019, 11, 1482. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’Angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.M.; Iannucci, R.; et al. Ground effects triggered by the 24th August 2016, Mw 6.0 Amatrice (Italy) earthquake: Surveys and inventorying to update the CEDIT catalogue. Geogr. Fis. Din. Quat. 2017, 40, 77–95. [Google Scholar]
- Zimmaro, P.; Stewart, J.P. Engineering Reconnaissance of the 24 August 2016 Central Italy Earthquake; A report of the NSF-Sponsored GEER Association Team, GEER-050B, Ver, 2; Geotechnical Extreme Events Reconnaissance Association: Los Angeles, CA, USA, 2016. [Google Scholar] [CrossRef]
- Radbruch-Hall, D.H. Gravitational Creep of Rock Masses on Slopes. In Development of Geotechnical Engineering; Voight, B., Ed.; Elsevier: Amsterdam, The Netherland, 1978; Volume 14, pp. 607–658. [Google Scholar]
- Evans, S.; Scarascia Mugnozza, G.; Strom, A.; Hermanns, R.; Ischuk, A.; Vinnichenko, S. Landslides from massive rock slope failure and associated phenomena. In Landslides from Massive Rock Slope Failure; Springer: Dordrecht, The Netherland, 2006; pp. 3–52. [Google Scholar]
- Dramis, F.; Sorriso-Valvo, M. Deep-seated gravitational slope deformations, related landslide and tectonics. Eng. Geol. 1994, 38, 231–243. [Google Scholar] [CrossRef]
- Di Luzio, E.; Saroli, M.; Esposito, C.; Bianchi Fasani, G.; Cavinato, G.P.; Scarascia Mugnozza, G. Influence of structural framework on mountain slope deformation in the Maiella anticline (Central Apennines, Italy). Geomorphology 2004, 60, 417–432. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P.; Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div. 1971, 97, 1249–1273. [Google Scholar] [CrossRef]
- Idriss, I.M.; Boulanger, R.W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng. 2006, 26, 115–130. [Google Scholar] [CrossRef]
- Samui, P.; Sitharam, T.G. Machine learning modelling for predicting soil liquefaction susceptibility. Nat. Hazard Earth Sys. 2011, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
Class | Lithology | GSI | Jv |
---|---|---|---|
I | alluvial deposits | - | - |
II | arenaceous facies > 70% | B65–B75 | <10 |
III | arenaceous facies > 70% | B40–B65 | >10 |
IV | arenaceous facies < 70% | C40–C60 | 5–2 |
V | no | F25–F45 | >20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonielli, B.; Bozzano, F.; Fiorucci, M.; Hailemikael, S.; Iannucci, R.; Martino, S.; Rivellino, S.; Scarascia Mugnozza, G. Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy). Geosciences 2021, 11, 107. https://doi.org/10.3390/geosciences11030107
Antonielli B, Bozzano F, Fiorucci M, Hailemikael S, Iannucci R, Martino S, Rivellino S, Scarascia Mugnozza G. Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy). Geosciences. 2021; 11(3):107. https://doi.org/10.3390/geosciences11030107
Chicago/Turabian StyleAntonielli, Benedetta, Francesca Bozzano, Matteo Fiorucci, Salomon Hailemikael, Roberto Iannucci, Salvatore Martino, Stefano Rivellino, and Gabriele Scarascia Mugnozza. 2021. "Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy)" Geosciences 11, no. 3: 107. https://doi.org/10.3390/geosciences11030107
APA StyleAntonielli, B., Bozzano, F., Fiorucci, M., Hailemikael, S., Iannucci, R., Martino, S., Rivellino, S., & Scarascia Mugnozza, G. (2021). Engineering-Geological Features Supporting a Seismic-Driven Multi-Hazard Scenario in the Lake Campotosto Area (L’Aquila, Italy). Geosciences, 11(3), 107. https://doi.org/10.3390/geosciences11030107