Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario
Abstract
:1. Introduction
2. Semiarid Central Andes
3. Geographical Context
4. Debris and Hyperconcentrated Flows
4.1. Debris Flows, Hyperconcentrated Flows, and Debris Flood Records
4.2. Debris Flows Characterization
4.3. Spatial Distribution
5. Main Causes of Debris Flows in the Central Andes Region
5.1. Precipitation
5.2. Temperatures and Zero-Isotherm
5.3. Climate Phenomena—ENSO Role
6. Environmental Impacts
6.1. Alteration on Stream Dynamics
6.2. Effects of Landslide Dams on Streams and Valleys
6.3. Impact on Ecosystems
7. Discussion Concerning Climate Change and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauser, A. Remociones en masa en Chile; Bull. No 59; Servicio Nacional de Geología y Minería: Santiago, Chile, 2000; p. 75.
- Valenzuela, L.; Varela, J. El Alfalfal rock fall and debris flow in Chilean Andes Mountains. In Proceedings of the 9th Panamerican Conference on Soil Mechanics and Foundation Engineering, Viña del Mar, Chile, 9–13 December 1991; Volume 1, pp. 357–371. [Google Scholar]
- Espizúa, L.E. Megadeslizamientos pleistocénicos en el valle del río Mendoza, Argentina. In Proceedings of the XVI Congreso Geológico Argentino, La Plata, Argentina, 20–23 September 2005; Volume 3, pp. 477–482. [Google Scholar]
- Moreiras, S.M.; Coronato, A. Landslide processes in Argentina. Dev. Earth Surf. Process. 2009, 13, 301–332. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Páez, S.M. Historical damages and secondary effects related to intraplate shallow seismicity of Central Western Argentina. Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc. Lond. 2015, 399, 369–382. [Google Scholar] [CrossRef]
- Fauqué, L.; Cortés, J.M.; Folguera, A.; Etcheverría, M. Avalanchas de rocas asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata. Rev. Asoc. Geológica Argent. 2000, 55, 419–423. [Google Scholar]
- Moreiras, S.M. Frequency of debris flows and rockfall along the Mendoza river valley (Central Andes), Argentina: Associated risk and future scenario. Quat. Int. 2006, 158, 110–121. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Hermanns, R.L.; Fauqué, L. Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32°S). Quat. Sci. Rev. 2015, 112, 45–58. [Google Scholar] [CrossRef]
- Moreiras, S.M. The Plata rock avalanche: Deciphering the occurrence of this huge collapse in a glacial valley of the Central Andes (33° S). Rock Avalanche Front. 2020. [Google Scholar] [CrossRef]
- Paez, M.S.; Moreiras, S.M.; Brenning, A.; Giambiagi, L.B. Flujos de detritos-aluviones históricos en la cuenca del Río Blanco (32°55’–33°10’ Y 69°10’–69°25’), Mendoza. Rev. Asoc. Geológica Argent. 2013, 70, 488–498. [Google Scholar]
- Sepúlveda, S.A.; Moreiras, S.M.; Lara, M.; Alfaro, A. Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: Characteristics and consequences. Landslides 2015, 12, 115–133. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Vergara Dal Pont, I.; Araneo, D. Were merely storm-landslides driven by the 2015-2016 Niño in the Mendoza River valley? Landslides 2018, 15, 997–1014. [Google Scholar] [CrossRef]
- Fuenzalida, H.; Aceituno, P.; Falvey, M.; Garreaud, R.D. Estudio de la Variabilidad Climática en Chile para el Siglo XXI: Resumen Ejecutivo; Universidad de Chile: Santiago, Chile, 2006. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; Le-Quesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2019, 40, 421–439. [Google Scholar] [CrossRef]
- Moreiras, S.M. Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza province, Argentina. Landslides 2005, 2, 53–59. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Lisboa, M.S.; Mastrantonio, L. The role of snow melting upon landslides in the central Argentinean Andes. Earth Surf. Process. Landf. 2012, 37, 1106–1119. [Google Scholar] [CrossRef]
- Vergara, I.; Moreiras, S.M.; Araneo, D.; Garreaud, R. Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends. Nat. Hazards Earth Syst. Sci. 2020, 20, 1353–1367. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Osorio, R.; Casassa, G. Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol. 2008, 54, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Skermer, N.A.; VanDine, D.F. Debris flows in history. In Debris Flows and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8, pp. 25–51. [Google Scholar] [CrossRef]
- Lliboutry, L. Glaciers of the wet Andes. Glaciers S. Am. Satell. Image Atlas Glaciers World 1998, 1386, 1148. [Google Scholar]
- Barcaza, G.; Nussbaumer, S.U.; Tapia, G.; Valdés, J.; García, J.L.; Videla, Y.; Amapola, A.; Arias, V. Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann. Glaciol. 2017, 58 Pt 2, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration (NOAA). Available online: https://github.com/cameronleger/goes16-background (accessed on 6 November 2020).
- Compagnucci, R.H.; Agosta, E.A.; Vargas, W.M. Climatic change and quasi-oscillations in central-west Argentina summer precipitation: Main features and coherent behavior with southern African region. Clim. Dyn. 2002, 18, 421–435. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Villalba, R.; Luckman, B.H.; Le Quesne, C.; Aravena, J.C. Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Clim. 2006, 19, 6334–6352. [Google Scholar] [CrossRef]
- Garreaud, R.; Fuenzalida, H. The Influence of Andes on cut off lows: A modeling study. Mon. Wea. Rev. 2007, 135, 1596–1613. [Google Scholar] [CrossRef] [Green Version]
- Seluchi, M.E.; Garreaud, R.D.; Norte, F.A.; Saulo, A.C. Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev. 2006, 134, 3317–3335. [Google Scholar] [CrossRef] [Green Version]
- Viale, M.; Bianchi, E.; Cara, L.; Ruiz, L.; Villalba, R.; Pitte, P.; Masiokas, M.; Rivera, J.; Zalazar, L. Contrasting Climates at Both Sides of the Andes in Argentina and Chile. Front. Environ. Sci. 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Cara, L.; Masiokas, M.; Viale, M.; Villalba, R. Análisis de la cobertura nival de la cuenca superior del río Mendoza a partir de imágenes MODIS. Meteorológica 2016, 41, 21–36. [Google Scholar]
- Díaz, H.F.; Kiladis, G.N. Atmosferic teleconnections associated with the extremes phases of Southern Oscillation. In El Niño Historical and Paleoclimatic Aspects of the Southern Oscillation; Diaz, M., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 27–28. [Google Scholar]
- Montecinos, A.; Díaz, A.; Aceituno, P. Seasonal Diagnostic and Predictability of Rainfall in Subtropical South America Based on Tropical Pacific SST. J. Clim. 2000, 13, 746–758. [Google Scholar] [CrossRef]
- Agosta, E.A.; Compagnucci, R.H. Central-West Argentina summer precipitation variability and atmospheric teleconnections. J. Clim. 2012, 25, 1657–1677. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Arnould, G. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 2020, 104953. [Google Scholar] [CrossRef]
- Zazulie, N.; Rusticucci, M.; Raga, G.B. Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: Past performance (1980–2005). Clim. Dyn. 2017, 49, 3937–3957. [Google Scholar] [CrossRef]
- González, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. The 2010-2015 Megadrought and its influence on the fire regime in central and south central Chile. Ecosphere 2018, 9, e02300. [Google Scholar] [CrossRef] [Green Version]
- NASA Earth Observatory (18 April 2019) Long-Term Drought Parches Chile. Available online: https://earthobservatory.nasa.gov/images/145874/long-term-drought-parches-chile (accessed on 20 October 2020).
- Moreiras, S.M. Análisis estadístico probabilístico de las variables que condicionan la inestabilidad de las laderas en los valles de los ríos Las Cuevas y Mendoza. Rev. Asoc. Geológica Argent. 2009, 65, 780–790. [Google Scholar]
- Junquera-Torrado, S.; Moreiras, S.M.; Sepúlveda, S.A. Huge Slope Collapses Flashing the Andean Active Orogenic Front (Argentinean Precordillera 31–33° S). In Workshop on World Landslide Forum; Springer: Berlin/Heidelberg, Germany, 2017; pp. 535–541. [Google Scholar]
- Junquera-Torrado, S.; Moreiras, S.M.; Sepúlveda, S.A. Distribution of landslides along the Andean active orogenic front (Argentinean Precordillera 31–33° S). Quat. Int. 2019, 512, 18–34. [Google Scholar] [CrossRef]
- Drewes, J.; Moreiras, S.M.; Korup, O. Permafrost activity and atmospheric warming in the Argentinian Andes. Geomorphology 2018, 323, 13–24. [Google Scholar] [CrossRef]
- Vich, A.; Pedrani, A. (Eds.) Programa de Investigación y Desarrollo: Manejo Ecológico del Piedemonte. Mendoza: Ministerio de Medio Ambiente Urbanismo y Vivienda-CRICYT; Unidad de manejo Ecológico de Cuencas: Mendoza, Argentina, 1993. [Google Scholar]
- Mikkan, R.A. Fenómenos Catastróficos Naturales que Afectan al Gran Mendoza. Ph.D. Thesis, Universidad Nacional de Cuyo, Mendoza, Argentina, 1996. [Google Scholar]
- Pérez, C.; Fiebig-Wittmaack, M.; Cepeda, J.; Pizarro-Araya, J. Capítulo 8. Desastres Naturales y Plagas en el valle del Río Elqui. In Los Sistemas Naturales de la Cuenca del Río Elqui (Región de Coquimbo, Chile): Vulnerabilidad y Cambio del Clima; Cepeda, P.J., Ed.; Ediciones Universidad de La Serena: La Serena, Chile, 2008; pp. 295–333. [Google Scholar]
- Sepúlveda, S.A.; Padilla, C. Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile. Nat. Hazards 2008, 47, 201–215. [Google Scholar] [CrossRef]
- Hungr, O. Classification and terminology. In Debris Flows and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8, pp. 9–24. [Google Scholar]
- Iverson, R.M. Debris-flow mechanics. In Debris-Flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8, pp. 105–134. [Google Scholar]
- Costa, J.E. Physical geomorphology of debris flows. In Developments and Applications of Geomorphology; Costa, J.E., Fleisher, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 268–317. [Google Scholar] [CrossRef]
- Pierson, T.C. Hyperconcentrated flow—transitional process between water flow and debris flow. In Debris Flows and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 8, pp. 159–196. [Google Scholar] [CrossRef]
- Beverage, J.P.; Culbertson, J.K. Hyperconcentrations of suspended sediment. J. Hydraul. Div. ASCE 1964, 90, 117–128. [Google Scholar]
- Hutchinson, J.N. General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrology. In Proceedings of Fifth International Symposium on Landslides; Bonnard, C., Ed.; A.A. Balkema: Rotterdam, The Netherland, 1988; Volume 1, pp. 3–35. [Google Scholar]
- Correas-Gonzalez, M.; Moreiras, S.M.; Jomelli, V.; Arnaud-Fassetta, G. Ice-dammed lake outburst flood risk in the Plomo basin, Central Andes (33o S): Perspectives from historical events. Cuad. Investig. Geográfica 2020, 46, 223–249. [Google Scholar] [CrossRef] [Green Version]
- King, W.D.V.O. The Mendoza River Flood of 10–11 January 1934-Argentina. Geogr. J. 1934, 321–326. [Google Scholar] [CrossRef]
- Prieto, M.d.R. The glacier dam on the Rio Plomo: A cyclic phenomenon? Z. Für Gletsch. Und Glazialgeol. 1986, 22, 73–78. [Google Scholar]
- Bruce, R.H.; Cabrera, G.A.; Leiva, J.C.; Lenzano, L.E. The 1985 surge and ice dam of Glaciar Grande del Nevado del Plomo, Argentina. J. Glaciol. 1987, 33, 131–132. [Google Scholar] [CrossRef] [Green Version]
- D’Odorico-Benites, P.E.; Pérez, D.J.; Sequeira, N.; Fauqué, L. El Represamiento y aluvión del Río Santa Cruz, Andes Principales (31°40′S), Provincia de San Juan. Rev. Asoc. Geológica Argent. 2009, 65, 713–724. [Google Scholar]
- Perucca, L.P.; Esper-Angillieri, Y. El deslizamiento de rocas y detritos sobre el río Santa Cruz y el aluvión resultante por el colapso del dique natural, Andes Centrales de San Juan. Rev. Asoc. Geológica Argent. 2009, 65, 571–585. [Google Scholar]
- Penna, I.M.; Derron, M.H.; Volpi, M.; Jaboyedoff, M. Analysis of past and future dam formation and failure in the Santa Cruz River (San Juan province, Argentina). Geomorphology 2013, 186, 28–38. [Google Scholar] [CrossRef]
- Breien, H.; De Blasio, F.V.; Elverhøi, A.; Høeg, K. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 2008, 5, 271–280. [Google Scholar] [CrossRef]
- Miers, J. Travels in Chile and La Plata: Including Accounts Respecting the Geography, Geology, Statistics, Government, Finances, Agriculture, Manners, and Customs, and the Mining Operations in Chile; Baldwin, Cradock and Joy: London, UK, 1826. [Google Scholar]
- Brandt, C. Journal of a Voyage a Passage across the Cordillera de los Andes in the Winter of 1827; Henry Colburn Editions: London, UK, 1828. [Google Scholar]
- Forbes, D. Informe Sobre el Terremoto de Mendoza; Revista de la Junta de Estudios Históricos de Mendoza, 10 Primera Época); RJEHM: Mendoza, Argentina, 1938; pp. 111–120. [Google Scholar]
- Lemos, A. Apuntes de un viaje de Mendoza a Valparaiso; Impresiones del El Ferrocarril: Mendoza, Argentina, 1884. [Google Scholar]
- Proctor, R. Narraciones del viaje por la Cordillera de los Andes y Residencia de Lima y otras Partes del Perú en los años 1823 y 1824 (La Cultura Argentina); Vaccaro: Buenos Aires, Argentina, 1920. [Google Scholar]
- Kittl, E. Derrumbamientos, Deslizamientos y Torrentes en Caminos de Montaña de la República Argentina; Publicaciones Serie B (Cientifico-Tecnológica); Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: Buenos Aires, Argentina, 1939; Volume 16, pp. 3–111. [Google Scholar]
- Coleman, A.H. Mi Vida de Ferroviario Inglés en la Argentina 1887–1948; Universidad Nacional del Sur Ed: Bahía Blanca, Argentina, 1949; p. 701. [Google Scholar]
- RJEHM. Revista de Junta de Estudios históricos de Mendoza; Segunda etapa, N° 11; RJEHM: Mendoza, Argentina, 1987. [Google Scholar]
- Moreiras, S.M. Landslide incidence zonation in the Rio Mendoza valley, Mendoza province, Argentina. Earth Surf. Process. Landf. 2004, 29, 255–266. [Google Scholar] [CrossRef]
- Verdaguer, J.A. Historia eclesiástica de Cuyo. Premiat. Sc. Tipográfica Sales. Milán 1929, Tomo II, 415–425. [Google Scholar]
- Urrutia de Hazbún, R.; Lanza Lazcano, C. Catástrofes en Chile 1541–1992; Editorial La Noria: Santiago, Chile, 1993. [Google Scholar]
- Pérez, C. Cambio Climático: Vulnerabilidad, Adaptación y rol Institucional: Estudios de caso en el valle de Elqui. Master´s Thesis, Universidad de La Serena, La Serena, Chile, 2005. [Google Scholar]
- Graña-Pezoa, F. Crónicas y Recuerdos de una Inundación en el Valle del Elqui. 2007; Unpublished work. [Google Scholar]
- Sernageomin, Principales Desastres Ocurridos Desde 1980 en Chile. Available online: http://sitiohistorico.sernageomin.cl/pdf/presentaciones-geo/Primer-Catastro-Nacional-Desastres-Naturales.pdf (accessed on 4 November 2020).
- Garviso, E. Seremi de Agricultura no Tiene Disposición a Servir y no cree en los Actores Privados. El Día, 4 May 2004; 11–13. [Google Scholar]
- Hauser, A. Rock avalanche and resulting debris flow in Estero Parraguirre and Río Colorado, Región Metropolitana, Chile. In Catastrophic Landslides: Effects, Occurrence and Mechanisms. Reviews in Engineering Geology; Evans, S.G., Degraff, J.V., Eds.; Geological Society of America: Boulder, CO, USA, 2002; Volume XV, pp. 135–148. [Google Scholar]
- Casassa, G.; Marangunic, C. The 1987 Río Colorado rockslide and debris flow, central Andes, Chile. Bull. Assoc. Eng. Geol. 1993, 30, 321–330. [Google Scholar] [CrossRef]
- Vergara Dal Pont, I.; Moreiras, S.M.; Santibañez, F.; Araneo, D.; Ferrando, F. Debris flows triggered from melt of seasonal snow and ice within the active layer in the semi-arid Andes. Permafr. Periglac. Process. 2020, 31, 57–68. [Google Scholar] [CrossRef]
- Vergara Dal Pont, I.; Santibañez, F.; Araneo, D.; Ferrando, F.; Moreiras, S. Determination of probabilities for the generation of high-discharge flows in the middle basin of Elqui River, Chile. Nat. Hazards 2018, 93, 531–546. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Rebolledo, S.; Vargas, G. Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quat. Int. 2006, 158, 83–95. [Google Scholar] [CrossRef]
- Moyano, R.J.; Rubio, C. Génesis y características de un nuevo flujo de detritos en Lo Valdés, Cajón del Maipo, Chile. Nadir Rev. Electron. Geogr. Austral 2011, 3, 1. [Google Scholar]
- Peña-Torrealba, H.; Klohn, W. Hidrología de desastres en Chile. Crecidas catastróficas recientes de origen no meteorológico. Rev. Soc. Chil. Ing. Hidráulica 1990, 5. Available online: http://164.77.211.36/ipac20/ipac.jsp?session=G513HF4632305.1786409&profile=cirh&uri=full%3D3100001%7E%214008%7E%210&booklistformat= (accessed on 3 November 2020).
- Rojas, O.; Mardones, M.; Arumí, J.L.; Aguayo, M. Una revisión de inundaciones fluviales en Chile, período 1574-2012: Causas, recurrencia y efectos geográficos. Rev. Geogr. Norte Gd. 2014, 57, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Wick, E.; Baumann, V.; Favre-Bulle, G.; Jaboyedoff, M.; Loye, A.; Marengo, H.; Rosas, M. Flujos de detritos recientes en la cordillera frontal de Mendoza: Un ejemplo de riesgo natural en la ruta 7. Rev. Asoc. Geológica Argent. 2010, 66, 460–465. [Google Scholar]
- Departamento General de Irrigación. Press Release. Available online: https://www.mendoza.gov.ar/prensa/irrigacion-solicita-a-vecinos-de-la-zona-de-potrerilos-que-realicen-un-uso-restringido-del-agua/ (accessed on 3 November 2020).
- Lauro, C.; Moreiras, S.M.; Junquera, S.; Vergara, I.; Toural, R.; Wolf, J.; Tutzer, R. Summer rainstorm associated with a debris flow in the Amarilla gully affecting the international Agua Negra Pass (30° 20′ S), Argentina. Environ. Earth Sci. 2017, 76, 213. [Google Scholar] [CrossRef]
- Polanski, J. Flujos Rápidos de Escombros Rocosos en zonas áridas y Volcánicas; EUDEBA (Universitaria de Buenos Aires): Buenos Aires, Argentina, 1966; p. 67. [Google Scholar]
- Sepúlveda, S.A. Methodology for debris flow hazard evaluation in mountainous environments. Comunicaciones 2000, 51, 3–18. [Google Scholar]
- Ravazzolo, D.; Mao, L.; Mazzorana, B.; Ruiz-Villanueva, V. Brief communication: The curious case of the large wood-laden flow event in the Pocuro stream (Chile). Nat. Hazards Earth Syst. Sci. 2017, 17, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, J.A.; Varela, J. Flujos de Detritos y barro que Afectaron el Sector Oriente de Santiago, el 3 de mayo de 1993 (No. 47); Servicio Nacional de Geología y Minería: Santiago, Chile, 1996.
- Jeanneret, P.; Moreiras, S.M. Inventario de procesos de remoción en masa en la cuenca baja del Río Blanco (31° S), Andes Centrales Argentinos. Rev. Mex. Cienc. Geológicas 2018, 35, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.A.; Mastrantonio, L.; Moreiras, S.M. Susceptibilidad a la ocurrencia de flujos de detritos a escala regional en el Parque Provincial Aconcagua, Mendoza, Argentina. Rev. Fac. Agrar. 2019, 51, 177–191. Available online: http://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/view/2620 (accessed on 15 October 2020).
- Tapia Baldis, C.; Trombotto Liaudat, D. Rockslides and rock avalanches in the Central Andes of Argentina and their possible association with permafrost degradation. Permafr. Periglac. Process. 2019, 30, 330–347. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Jeanneret, P.; Lauro, C.; Vergara Dal Pont, I. Correas Gonzalez M y Junquera Torrado, S. Deslizamientos asociados a la degradación del permafrost: Evidencias geomorfológicas en el pasado y presente en los Andes Centrales (31º-34º S). Rev. Uerjde Univ. Estado Jan. Bras. Edición Espec. Geógrafos Hisp. 2019, 35, 45036. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Jeanneret, P.; Junquera Torrado, S.; Correas Gonzalez, M.; Moragues, S. Grandes colapsos de laderas asociados a la deglaciación pleistocena en los Andes Centrales de Argentina. Rev. Asoc. Geológica Argent. 2020, 77, 91–103. [Google Scholar]
- Moreiras, S.M. Zonificación de Peligrosidad y de Riesgo de Procesos de Remoción en Masa en el Valle del río Mendoza. Provincia de Mendoza. Ph.D. Thesis, Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad de San Juan, San Juan, Argentina, 2004. [Google Scholar]
- Santos, J.; Norte, F.; Moreiras, S.M.; Araneo, D.; Simonelli, S. Prediccion de episodios de precipitación que ocasionan aludes en el área montañosa del noroeste de la provincia de Mendoza, argentina. GEOACTA 2015, 40, 65–75. [Google Scholar]
- Esper Angillieri, M.Y. El Aluvión del 13 de Febrero de 1944 en la Quebrada del Carrizal, Departamento Iglesia, Provincia de San Juan. Rev. Asoc. Geológica Argent. 2007, 62, 283–288. [Google Scholar]
- Hauser, A. Flujos de barro en la zona preandina de la Región Metropolitana: Características, causas, efectos, riesgos y medidas preventivas. Rev. Geológica Chile 1985, 24, 75–92. [Google Scholar]
- Lavigne, F.; Suwa, H. Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 2004, 61, 41–58. [Google Scholar] [CrossRef]
- Lara, P. Caracterización Hidrológica de las Corrientes de Detritos en Chile Central. Master’s Thesis, Department of Civil Engineering, University of Chile, Santiago, Chile, 1996. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborna, T.J.; Listera, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A. Evaluación de Vulnerabilidad y Propuesta de Procedimientos para el Control de flujos Detríticos o Aluvionales en Segmento Juncal-Portillo, del Camino Internacional a la República Argentina; Servicio Nacional de Geología y Minería: Santiago, Chile, 2005.
- Moreiras, S.M.; Lenzano, M.G.; Riveros, N. Inventario de procesos de remoción en masa en el Parque Provincial Aconcagua, provincia de Mendoza-Argentina. Multequina 2008, 17, 129–146. [Google Scholar]
- Brenning, A. Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35 S). Permafr. Periglac. Process. 2005, 16, 231–240. [Google Scholar] [CrossRef]
- Mergili, M.; Marchant, C.; Moreiras, S.M. Causas, características e impacto de los procesos de remoción en masa, en áreas contrastantes de la región Andina. Cuad. Geogr. Rev. Colomb. Geogr. 2015, 24, 113–131. [Google Scholar] [CrossRef]
- Aguilar, G.; Cabré, A.; Guaita, C.; González, F.; Ortega-Culaciati, F.; Carretier, S.; Riquelme, R.; Comte, D. Denudación por flujos de detritos duran te las lluvias torrenciales de Marzo de 2015 en Atacama. In Proceedings of the XIV Congreso Geológico Chileno, La Serena, Chile, 4–8 October 2015. [Google Scholar]
- Moreiras, S.M.; Sepúlveda, S.A. Megalandslides in the Andes of central Chile and Argentina (32°–34° S) and potential hazards. Geol. Soc. Lond. Spec. Publ. 2015, 399, 329–344. [Google Scholar] [CrossRef]
- Garreaud, R.; Rutllant, J. Meteorological analysis of debris flow in Antofagasta and Santiago de Chile during 1991–1993. ATMOSFERA 1996, 9, 251–271. [Google Scholar]
- Benda, L.; Dunne, T. Erosion and Sedimentation in the Pacific Rim. In Proceedings of the Corvallis Symposium, Corvallis, OR, USA, 3–7 August 1987. [Google Scholar]
- Rengers, F.K.; McGuire, L.A.; Oakley, N.S.; Kean, J.W.; Staley, D.M.; Tang, H. Landslides after wildfire: Initiation, magnitude, and mobility. Landslides 2020, 17, 2631–2641. [Google Scholar] [CrossRef]
Main River Valley | River or Locality | Coordinates (DMS System) | Date | Classification | Trigger | Damages to People and Properties | Source | Notes |
---|---|---|---|---|---|---|---|---|
Coquimbo Region | ||||||||
Elqui (29°54′ S) | Rivadavia locality | 30°05′ S, 70°06′ W | 21 May 1934 | Several DFs from different creeks (Santa Gracia, Algarrobo, Uchumi) between Rivadavia and Diaguitas villages. San Juan and Cementerio creeks | 120 mm–72 h rainfall | Several bridges damaged along Elqui River (Algarrobal, Diaguitas Andallito Vicuña). LLOF induced by a DF blockage of the Elqui River | [72] | DF from Uchumi creek dammed the Elqui River generating a 10 m high lagoon. |
Vicuña locality | 30°01′ S, 70°41′ W | Spring, 1988 | DF | Railway destroyed | [72] | Leiva and Uchumi creeks | ||
Los Maitenes locality | 30°19′ S, 70°48′ W | 24 March 1992 | DF and mudflow | [1] | DF and mudflows at El Llano gully | |||
La Serena locality | 29°54′ S | Winter, 1997 | DF and HF | Heavy rainfall associated with the very strong ENSO event | Route disruption between La Serena and Vallenar | [45] | ||
Turbio River | 29°58′ S, 70°54′ W | 18 June 1997 | DF | Two fatalities, two people injured and 140 refugees | [45] | DF in El Almendral, next to La Vicuña locality | ||
Vicuña locality | 30°01′ S, 70°41′ W | 22 April 2004 | DF | 90 mm–12 h rainfall | 150 affected families and 60 injured persons. Houses, farmlands and grapevines destroyed. Irrigation system and school devastated. Economic lost US $6–8 millions | [72] | Diaguitas DF. Puyalles creek | |
Cochiguaz River | 30°08′ S, 70°23′ W | 6 February 2006 | DF | Heavy rainfall | ||||
Difunta Correa ravine | 30°10′ S, 70°02′ W | From 26 to 28 December 2011 | DF cluster | Snow and/or interstitial ice melting | Route interruption | [78] | ||
Huanta and Varillar localities | 29°49′ S, 70°24′ W | 24 and 25 March 2015 | DF | Heavy rainfall | Route interruption and partial blockage of the Turbio River | [79] | Culebra and Seca ravines | |
Difunta Correa ravine | 30°10′ S, 70°02′ W | From 20 to 22 January 2016 | DF cluster | Snow and/or interstitial ice melting | Route interruption | [78] | ||
Difunta Correa ravine | 30°10′ S, 70°02′ W | From 12 to 16 January 2017 | DF cluster | Snow and/or interstitial ice melting | Route interruption | [78] | Due to this event the route location was changed | |
Limarí (30°43′ S) | Hurtado River (30°21′ S) | 30°21′ S, 70°40′ W | 24 March 1992 | DF | Several houses were damaged in Los Maitenes (El Llano gully) | [45] | ||
Choapa (31°36′ S) | 31°48′ S | June and July 1987 | DF | A three weeks frontal system affected the region | Three fatalities. Drinking water supply interrupted due to high sediments loads, houses damaged, three bridges destroyed | [45] | ||
Metropolitan Region | ||||||||
Mapocho River (33°19′ S) | San Francisco River | 33°19′ S, 70°21′ W | 21 and 22 February 1980 | DF | Three fatalities, four missing people, and 580 refugees Estimated damages of US $500,000 | [45] | ||
Maipo River (33° 50′ S) | Santiago | 33°27′ S, 70°29′ W | 1908 | DF and mudflows | [1] | Macul creek | ||
Santiago | 33°24′ S, 70°29′ W | 1936 | DF | [1] | Macul creek | |||
Santiago | 33°25′ S, 70°30′ W | 1957 | Mudflows | [1] | Macul creek | |||
Mapocho, Maipo, Colorado and Yeso rivers | March 1980 | DF | Route interruptions and damages to infrastructures | [45] | Several DF | |||
Maipo river | 33°49′ S, 70°13′ W | July 1981 | DF | Two people died. The Queltehues water catchment was badly damaged | [45] | |||
Mapocho river and local creeks | 33°28′ S, 70°35′ W | 1982 | HF | [1] | Santiago | |||
Mapocho river and local creeks | 33°24′ S, 70°36′ W | 1984 | HF | [1] | Santiago | |||
Mapocho river and local creeks | 33°26′ S, 70°28′ W | 1987 | HF | [1] | Santiago | |||
Las Amarillas gully | 33°50′ S, 70°05′ W | September 1991 | HF | Route disruption | [45] | Santiago | ||
Santiago | 33°31′ S, 70°30′ W | 25 December 1991 | DF | [45] | Lo Cañas gully | |||
Macul and San Ramon gullies | 33°27′ S, 70°30′ W | 3 May 1993 | DF and HF in Santiago (Macul and San Ramón gullies) due to | Heavy rainfall caused by a frontal system in a moderate El Niño-ENSO event. Besides, a rise of the 0 °C isotherm was detected. | Twenty-six fatalities; nine missing people. In total, 28,000 people were affected by the event. Three hundred and seven houses destroyed; 5000 houses badly damaged, 26 roads interrupted, and economic loss of US $ 5 million. | [80] | DF volume estimated on 2 × 106 m3; velocity of 30 km/h and 10 m height waves, blocks of five to 10 m diameter were displaced | |
Las Amarillas gully | 33°50′ S, 70°05′ W | 23 and 24 April 1997 | DF and HF | Disruption of the water catchment plant affecting the water supply of an extended sector of the Metropolitana region | [45] | |||
Santiago | 33°31′ S, 70°30′ W | 12 November 2004 | DF | [46] | Las Cañas gully | |||
Santiago | 33°30′ S, 70°24′ W | 28 August 2005 | DF and mudflows | [1] | Las Cañas gully | |||
33°50′S, 70°05′ W | 2 July 2006 | DF near El Amarillo landslide | [81] | Blocks of 100 kg were displaced | ||||
Ñilhue gully | 33°22′ S, 70°26′ W | 6 September 2009 | DF | Two fatalities, one missing person and 1300 tourists isolated at Farellones ski center | [45] | |||
Lo Valdés locality | 33°50′ S, 70°05′ W | 26 February 2011 | DF | [81] | ||||
Cordillera Yerba Loca Park | 33°19′ S, 70°19′ W | 15 January 2012 | DF | [45] | ||||
Cañaveral gully | 33°22′ S, 70°24′ W | 17 June 2012 | DF | [45] | ||||
San Alfonso gully | 33°40′ S, 70°17′ W | 21 January 2013 | DF at | Very localized convective cell rainstorms | Route disruption and problems with the drinking water supply to Gran Santiago due to high sediments loads affecting one million people | [11] | Estimated deposit volume of over 5000 m3, splash marks higher up to 5m high | |
Las Cucas Estero | 33°41′ S, 70°19′ W | 17 April 2016 | DF | One fatality Evacuation of El Arenal due to a landslide | [45] | |||
Olivares River (33°09′ S) | 33°09′ S, 70°07′ W | 26 February 1954 | GLOF from the Juncal Sur glacier and associated DF | Damages to the El Alfalfal hydropower plant, loss of livestock | [82,83] | Peak discharge of 400 m3/s | ||
Colorado River (33°18′ S) | 33°18′ S, 70°01′ W | 29 November 1987 | DF induced by a rockslide mixed with ice and snow at | Parraguirre rock slide–avalanche. High snow melt and high snow accumulation triggered the initial rockslide | Forty-one fatalities. The El Alfalfal hydroelectric project under construction and Los Maitenes hydroelectric plant were destroyed, 18 bridges were damaged; economic lost estimated of US $12 million | [77,83] | Paraguirre Estero Peak discharge > 10,000 m3/s | |
Maipo River (33°50′ S) | Colorado river | 8 February 2013 | Nine DF | Intense localized rainfall | Route disruption and drinking water cutoffs in several cities (Santiago, Valparaiso, Los Andes, San Antonio) | [11] | Deposit thickness of 1 and 2 m and splash marks up to 5 m high | |
Valparaíso Region | ||||||||
Aconcagua River (32°55′ S) | Puntilla del Viento and Los Azules localities | 32°53′ S, 70°22’ W | 21 and 22 February 1980 | DF | Heavy rainfall | [45] | ||
Juncal River | 32°56′ S, 70°12′ W | 18 August 1987 | Mudflow | [1] | ||||
Blanco River | 32°54’ S, 70°17’ W | 27 December 1995 | DF | Extensive damage to mining infrastructure from Codelco’s company in Los Leones | [45] | |||
Juncal River | 32°52’ S, 70°09’ W | 18 November 2000 | DF | Route disruption in the International Corridor | [45] | |||
Valparaíso locality | 33°02′ S, 71°35′ W | August 2002 | DF, rock falls, and landslides in the Cerro Baron | Route disruption between Viña del Mar and Valparaiso | [45] | |||
Aconcagua River (32°55′ S) | Quilpué locality | 33°02′ S, 71°24′ W | September 2002 | DF | [45] | |||
Los Andes locality | 11 February 2011 | DF | [45] | |||||
Riecillos River | 32°55′ S, 70°19′ W | 8 February 2013 | DF | Heavy summer rainstorm | [11] | Estimated volume greater than 10,000 m3, splash marks up to 3–4 m high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreiras, S.M.; Sepúlveda, S.A.; Correas-González, M.; Lauro, C.; Vergara, I.; Jeanneret, P.; Junquera-Torrado, S.; Cuevas, J.G.; Maldonado, A.; Antinao, J.L.; et al. Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario. Geosciences 2021, 11, 43. https://doi.org/10.3390/geosciences11020043
Moreiras SM, Sepúlveda SA, Correas-González M, Lauro C, Vergara I, Jeanneret P, Junquera-Torrado S, Cuevas JG, Maldonado A, Antinao JL, et al. Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario. Geosciences. 2021; 11(2):43. https://doi.org/10.3390/geosciences11020043
Chicago/Turabian StyleMoreiras, Stella M., Sergio A. Sepúlveda, Mariana Correas-González, Carolina Lauro, Iván Vergara, Pilar Jeanneret, Sebastián Junquera-Torrado, Jaime G. Cuevas, Antonio Maldonado, José L. Antinao, and et al. 2021. "Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario" Geosciences 11, no. 2: 43. https://doi.org/10.3390/geosciences11020043
APA StyleMoreiras, S. M., Sepúlveda, S. A., Correas-González, M., Lauro, C., Vergara, I., Jeanneret, P., Junquera-Torrado, S., Cuevas, J. G., Maldonado, A., Antinao, J. L., & Lara, M. (2021). Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario. Geosciences, 11(2), 43. https://doi.org/10.3390/geosciences11020043