From Lithological Modelling to Groundwater Modelling: A Case Study in the Tiber River Alluvial Valley
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
2.1. Geology, Sedimentology and Fluvial Sequence Stratigraphy
2.2. General Hydrogeological Setting
3. Materials and Methods
3.1. Boreholes Analyses and Correlation
- sedimentological (granulometric laser analyses)
- mineralogical (diffractometric analyses)
- chemical (definition of the content of water and crystallisation up to 200 °C, content of oxidisable organic matter up to 600 °C, inorganic carbonates up to 850 °C)
- micropaleontological (calculation of the fossiliferous content of the lithotypes)
- radiometric (C14 dating of organic matter).
3.2. Geolithological Mapping
3.2.1. Codification of Each Stratigraphic Interval Traversed by Boreholes and Recognised Lithotypes
3.2.2. Flattening of Bodies
3.2.3. Mapping of the Diverse Depths of Lithotypes and Definition of the Spatial Resolution
3.3. D Geolithological Model
- rasterization using a 50 m × 50 m cell of each paleogeographic map;
- assignment at the centroid of each cell of the corresponding lithology;
- reconstruction, for each vertical passing through the diverse centroids, of the lithotypes encountered at diverse depths.
- depth from grade to the top of the layer (Depth to top)
- depth from grade to the bottom of the layer (Depth to Base)
- lithological type (Keyword) connected with the Lithology Types Tables, listing the numerical codes defined for the diverse lithologies to be modelled.
3.4. Hydrogeological Monitoring
3.5. The Numerical Groundwater Model
4. Results
4.1. Results of Boreholes Interpretation
4.2. Results of the Geolithological and 3D Models
4.3. Results of Chemical-Physical and Level Monitoring
4.4. Numeric Hydrogeological Model
5. Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Meulen, M.; van Gessel, S.; Veldkamp, J. Aggregate resources in the Netherlands. Neth. J. Geosci. 2005, 84, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Van der Meulen, M.; Maljers, D.; van Gessel, S.; Gruijters, S. Clay resources in the Netherlands. Neth. J. Geosci. 2007, 86, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Royse, K.R.; Rutter, H.; Entwisle, D.C. Property attribution of 3D geological models in the Thames Gateway, London: New ways of visualising geoscientific information. Bull. Int. Assoc. Eng. Geol. 2008, 68, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A. Using lithologic modeling techniques for aquifer characterization and groundwater flow modeling of the Sohag area, Egypt. Hydrogeol. J. 2009, 17, 1189–1201. [Google Scholar] [CrossRef]
- Stafleu, J.; Maljers, D.; Gunnink, J.; Menkovic, A.; Busschers, F. 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Neth. J. Geosci. 2011, 90, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Moya, C.E.; Raiber, M.; Cox, M.E. Three-dimensional geological modelling of the Galilee and central Eromanga basins, Australia: New insights into aquifer/aquitard geometry and potential influence of faults on inter-connectivity. J. Hydrol. Reg. Stud. 2014, 2, 119–139. [Google Scholar] [CrossRef]
- Funiciello, R.; Giordano, G. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50.000, Foglio 347 ROMA; APAT-Servizio Geologico d’Italia: Roma, Italy, 2008; p. 158. [Google Scholar]
- Ventriglia, U. La geologia della città di Roma; Amministrazione Provinciale di Roma: Roma, Italy, 1971; p. 417. [Google Scholar]
- Marra, F.; Rosa, C. Stratigrafia e assetto geologico dell’area romana (Stratigraphy and geological setting of Rome). In La Geologia di Roma. Il Centro Storico, Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 5, pp. 49–118. [Google Scholar]
- Corazza, A.; Lombardi, L. Idrogeologia del centro Storico di Roma. In La Geologia di Roma; Il Centro Storico. Memorie Descrittive della Carta Geologica D’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 1995; Volume 50, pp. 179–208. [Google Scholar]
- Bozzano, F.; Andreucci, A.; Gaeta, M.; Salucci, R. A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bull. Eng. Geol. Environ. 2000, 59, 1–21. [Google Scholar] [CrossRef]
- Sbarra, P.; De Rubeis, V.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Stigliano, F.; Tosi, P.; Vallone, R. Macroseismic effects highlight site response in Rome and its geological signature. Nat. Hazards 2012, 62, 425–443. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, M.; Pagliaroli, A.; Mancini, M.; Stigliano, F.; Cavuoto, G.; Simionato, M.; Peronace, E.; Quadrio, B.; Tommasi, P.; Cavinato, G.P. Integrated subsoil model for seismic microzonation in the Central, Archaeological Area of Rome (Italy). Disaster Adv. 2012, 5, 109–124. [Google Scholar]
- Mancini, M.; Marini, M.; Moscatelli, M.; Pagliaroli, A.; Stigliano, F.; Di Salvo, C.; Simionato, M.; Cavinato, G.; Corazza, A. A physical stratigraphy model for seismic microzonation of the Central Archaeological Area of Rome (Italy). Bull. Earthq. Eng. 2014, 12, 1339–1363. [Google Scholar] [CrossRef]
- Capelli, G.; Mazza, R.; Taviani, S. Acque sotterranee nella città di Roma. In La Geologia di Roma—Dal Centro Storico Alla Pe-Riferia. Mem. Descr. Carta Geol. d’It; Funiciello, R., Praturlon, A., Giordano, G., Eds.; S.E.L.C.A: Firenze, Italy, 2008; Volume 80, pp. 221–245. [Google Scholar]
- Di Salvo, C.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Capelli, G.; Cavinato, G.P.; Mazza, R. GIS-based hydrogeological modeling in the city of Rome: Analysis of the geometric the confining hydrogeological complexes. Hydrogeol. J. 2012, 20, 1549–1567. [Google Scholar] [CrossRef]
- Campolunghi, M.P.; Capelli, G.; Funiciello, R.; Lanzini, M. Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy). Eng. Geol. 2007, 89, 9–35. [Google Scholar] [CrossRef]
- Di Salvo, C.; Pennica, F.; Ciotoli, G.; Cavinato, G. A GIS-based procedure for preliminary mapping of pluvial flood risk at metropolitan scale. Environ. Model. Softw. 2018, 107, 64–84. [Google Scholar] [CrossRef]
- Pagliaroli, A.; Quadrio, B.; Lanzo, G.; Sanò, T. Numerical modelling of site effects in the Palatine Hill, Roman Forum, and Coliseum Archaeological Area. Bull. Earthq. Eng. 2013, 12, 1383–1403. [Google Scholar] [CrossRef]
- Martino, S.; Lenti, L.; Gelis, C.; Giacomi, A.C.; D’Avila, M.P.S.; Bonilla, L.F.; Bozzano, F.; Semblat, J.F. Influence of Lateral Heterogeneities on Strong-Motion Shear Strains: Simulations in the Historical Center of Rome (Italy). Bull. Seism. Soc. Am. 2015, 105, 2604–2624. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Girotti, O.; Cavinato, G.P. Il Pliocene e il Quaternario della Media Valle del Tevere (Appennino Centrale). Geol. Romana 2004, 37, 175–236. [Google Scholar]
- Mancini, M.; Cavinato, G.P. The Middle Valley of the Tiber River, central Italy: Plio-Pleistocene fluvial and coastal sedi-mentation, extensional tectonics and volcanism. In Fluvial Sedimentology VII, IAS (International Association of Sedimentolo-Gists) Special Publication; Blum, M., Marriot, S., Leclair, S., Eds.; Blackwell Publishing: Maldem, MA, USA, 2005; Volume 35, pp. 373–396. [Google Scholar]
- Milli, S.; Moscatelli, M.; Palombo, M.R.; Parlagreco, L.; Paciucci, M. Incised-valleys, their filling and mammal fossil record: A case study from Middle-Upper Pleistocene deposits of the Roman Basin (Latium, Italy). Adv. Appl. Seq. Stratigr. Italy. GeoActa Spec. Publ. 1 2008, 1, 67–88. [Google Scholar]
- Milli, S.; Mancini, M.; Moscatelli, M.; Stigliano, F.; Marini, M.; Cavinato, G. From river to shelf, anatomy of a high-frequency depositional sequence: The Late Pleistocene to Holocene Tiber depositional sequence. Sedimentology 2016, 63, 1886–1928. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Moscatelli, M.; Stigliano, F.; Cavinato, G.P.; Marini, M.; Pagliaroli, A.; Simionato, M. Fluvial facies and stratigraphic architecture of Middle Pleistocene incised valleys from the subsoil of Rome (Italy). J. Mediterr. Earth Sci. 2013, 89, 93. [Google Scholar]
- Schumm, S.A. River Response to Baselevel Change: Implications for Sequence Stratigraphy. J. Geol. 1993, 101, 279–294. [Google Scholar] [CrossRef]
- Gibling, M.R. Width and Thickness of Fluvial Channel Bodies and Valley Fills in the Geological Record: A Literature Compilation and Classification. J. Sediment. Res. 2006, 76, 731–770. [Google Scholar] [CrossRef]
- Mancini, M.; Moscatelli, M.; Stigliano, F.; Cavinato, G.P.; Milli, S.; Pagliaroli, A.; Simionato, M.; Brancaleoni, R.; Cipolloni, I.; Coen, G.; et al. The Upper Pleistocene-Holocene fluvial deposits of the Tiber River in Rome (Italy): Lithofacies, geometries, stacking pattern and chronology. J. Mediterr. Earth Sci. 2013, 95, 101. [Google Scholar]
- Amorosi, A. Reading late Quaternary stratigraphy from cores: A practical approach to facies interpretation. GeoActa 2006, 5, 61–78. [Google Scholar]
- Tye, R.S.; Bridge, J.S. Interpreting the Dimensions of Ancient Fluvial Channel Bars, Channels, and Channel Belts from Wireline-Logs and Cores. AAPG Bull. 2000, 84, 1205–1228. [Google Scholar] [CrossRef]
- Wright, V.P.; Marriott, S.B. The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sediment. Geol. 1993, 86, 203–210. [Google Scholar] [CrossRef]
- Shanley, K.W.; McCabe, P.J. Perspectives on the sequence stratigraphy of continental strata. American Association of Pe-troleum. Geol. Bull. 1994, 78, 544–568. [Google Scholar]
- Blum, M.D.; Törnqvist, T.E. Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology 2000, 47, 2–48. [Google Scholar] [CrossRef]
- Catuneanu, O. Principles of Sequence Stratigraphy; Elsevier: Amsterdam, The Netherlands, 2006; p. 375. [Google Scholar]
- Blum, M.; Martin, J.; Milliken, K.; Garvin, M. Paleovalley systems: Insights form Quaternary analogs and experiments. Earth-Sci. Rev. 2013, 116, 128–169. [Google Scholar] [CrossRef]
- Milli, S.; D’Ambrogi, C.; Bellotti, P.; Calderoni, G.; Carboni, M.G.; Celant, A.; Di Bella, L.; Di Rita, F.; Frezza, V.; Magri, D.; et al. The transition from wavedominated estuary to wave-dominated delta: The Late Quaternary stratigraphic architecture of Tiber River deltaic succession (Italy). Sediment. Geol. 2013, 284–285, 159–180. [Google Scholar] [CrossRef]
- La Vigna, F.; Mazza, R.; Amanti, M.; Di Salvo, C.; Petitta, M.; Pizzino, L.; Pietrosante, A.; Martarelli, L.; Bonfà, I.; Capelli, G.; et al. Groundwater of Rome. J. Maps 2016, 12, 88–93. [Google Scholar] [CrossRef]
- Marra, F.; Rosa, C.; De Rita, D.; Funiciello, R. Stratigraphic and tectonic features of the middle pleistocene sedimentary and volcanic deposits in the area of Rome (Italy). Quat. Int. 1998, 47–48, 51–63. [Google Scholar] [CrossRef]
- Funiciello, R.; Praturlon, A.; Giordano, G. Memorie Descrittive della Carta Geol. d’Italia. La Geologia di Roma. Dal Centro Storico Alla Periferia, Part I–II; S.E.L.C.A: Firenze, Italy, 2008; Volume 80. [Google Scholar]
- Marra, F.; Carboni, M.G.; Di Bella, L.; Faccenna, C.; Funiciello, R.; Rosa, C. Il substrato pliopleistocenico nell’area romana. Boll. Soc. Geol. Ital. 1995, 114, 195–214. [Google Scholar]
- Lanzini, M. Indagine Geognostica per il Progetto della Linea C della Metropolitana di Roma-Tratta da S. Giovanni a Alessandrino, Technical Report 1995–2000.
- Lanzini, M. Indagine Geognostica Per il Progetto della Linea C della Metropolitana di Roma-Tratta in Variante da Piazza Risorgimento a Piazza Venezia, Technical Report 1995–2000.
- La Vigna, F.; Demiray, Z.; Mazza, R. Exploring the use of alternative groundwater models to understand the hydrogeological flow processes in an alluvial context (Tiber River, Rome, Italy). Environ. Earth Sci. 2014, 71, 1115–1121. [Google Scholar] [CrossRef]
- Huggenberger, P.; Regli, C. A sedimentological model to characterize braided river deposits for hydrogeological applica-tions. In Braided Rivers: Process, Deposits, Ecology and Management; Sambrok Smith, G.H., Best, J.L., Bristow, C.S., Petts, G.E., Eds.; IAS (International Association of Sedimentologists): Fribourg, Switzerland, 2006; Volume 36, pp. 51–74. [Google Scholar]
- Valloni, R.; Calda, N. Late Quaternary Fluvial Sediment Architecture and Aquifer Systems of the Southern Margin of the Po River Plain. In Sviluppo Degli Studi in Sedimentologia Degli Acquiferi ed Acque Sotterranee. Mem. Descr. Carta Geol. d’It.; Valloni, R., Ed.; S.E.L.C.A: Firenze, Italy, 2007; Volume 76, pp. 289–300. [Google Scholar]
- Rockworks, Rockware, Inc. Available online: https://www.rockware.com (accessed on 18 May 2017).
- Velasco, V.; Gogu, R.; Alcaraz, M. The use of GIS-based 3D geological tools to improve hydrogeological models of sedi-mentary media in an urban environment. Environ. Earth Sci. 2013, 68, 2145–2162. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Groundwater Flow Process, USGS Open-File Report 00-92; U.S. Geological Survey: Reston, VA, USA, 2000.
- Di Salvo, C.; Moscatelli, M.; Mazza, R.; Capelli, G.; Cavinato, G. Evaluating groundwater resource of an urban alluvial area through the development of a numerical model. Environ. Earth Sci. 2014, 72, 2279–2299. [Google Scholar] [CrossRef]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley: New York, NY, USA, 1990; p. 528. [Google Scholar]
- Bray, E.N.; Dunne, T. Subsurface flow in lowland river gravel bars. Water Resour. Res. 2017, 53, 7773–7797. [Google Scholar] [CrossRef] [Green Version]
- Erskine, A.D. The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 1991, 29, 556–562. [Google Scholar] [CrossRef]
- Jiao, J.J.; Tang, Z. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour. Res. 1991, 35, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.K. Correcting the Smoothing Effect of Ordinary Kriging Estimates. Math. Geol. 2005, 37, 69–94. [Google Scholar] [CrossRef]
Stratigraphic Frame | Complex Code (Di Salvo et al., 2012) | Hydrogeological Compex | Range of Kx (m/d) | Variance σ2log K | n of Tests | |||
---|---|---|---|---|---|---|---|---|
Anthropic backfill | RP | Complex 5 | 0.04-20 | 0.91 | 5 | |||
(Holocene) | ||||||||
Tiber alluvium—Clay and silty clay | AR | Complex 4 | 4a | 0.000034–0.5 | 0.84 | 17 | ||
Tiber alluvium—Sand | 4b | 0.032–43.2 | 0.65 | 41 | ||||
Tiber alluvium—Clay with peat | 4c | 0.000017–0.017 | 0.1 | 5 | ||||
Tiber alluvium—Silty, Sandy gravel | 4d | 0.003–6.5 | 0.83 | 23 | ||||
(Holocene) | ||||||||
Volcanic units | Ancient alluvium formation | Terraced alluvium formation | VTA | Complex 3 | 0.172–6.048 | 0.9 | 9 | |
(Middle-Upper Pleistocene) | ||||||||
“Fosso della Crescenza” Unit | PGT | Complex 2 | 0.000397–0.292 | 0.83 | 50 | |||
(Lower-Middle Pleistocene) | ||||||||
“Monte Mario” Unit | MM—upper portion | 0.1 | 0.13 | 3 | ||||
(Lower Pleistocene) | MM—lower portion | Complex 1 | 0.0001–0.01 | 0.7 | 3 | |||
“Argille di Monte Vaticano” Unit | MV | |||||||
(Upper Pliocene) |
Borehole | X (UTM WGS84) | Y (UTM WGS84) | Elevation (m a.s.l.) | Depth | Borehole Distance from the Riverbank (km) | River Mouth Distance along the Alluvial Valley (km) | River Mouth Distance along the River (km) |
---|---|---|---|---|---|---|---|
S1 | 288,892.34 | 4,643,538.26 | 17.0 | 59 | 1.225 | 29.29 | 41.45 |
S2 | 289,991.13 | 4,642,103.57 | 18.2 | 53.5 | 0.066 | 29.00 | 39.37 |
S3 | 289,265.5 | 4,643,739.93 | 17.6 | 65 | 0.987 | 31.00 | 41.2 |
Lithotype | Code |
---|---|
Gravels and gravelly sands | 1 |
Sands and sandy silts | 2 |
Clay and clayey inorganic silt | 3 |
Clay and organic clayey silt | 4 |
Borehole | Piezometer Type | Monitored Complex | Depth of the Fissured Interval or Monitoring Cell (m from Ground) |
---|---|---|---|
S3 | Open standpipe-OS | 4d | 30–44 |
S2 | Open standpipe-OS | 4b | 50–58 |
S3 | Vibrating Wire-VW | 4a | 27 |
Associations of Lithofacies | Depositional Environments | Lithotypes |
---|---|---|
Active channel, gravels and fluvial sands (Gs) | Gravel bed braided river | Gravels, with gravelly sands |
Active channel, medium-fine sized sands and silts (Smf); crevasse splay, fine-sized sands and silts (Scr); abandoned channel, fine-sized sands, silts and clays (Sch); levee, heterolithic alternations of sands and muds (Sp) | Channel belt | Sands and sandy silts (the lithotype in question also includes deposits not strictly linked to the channel-bank system, but also the sandy-silty deposits of overbanks linked to the crevasse splays but, however, in general adjacent to the original channel belt) |
Drained floodplain muds (Dp). | Well drained floodplain | Clays and inorganic clayey silts |
Undrained floodplain muds (Dp). | Undrained floodplain; marsh; peat fen | Clays and organic clayey silts |
Facies belonging to formations previous to the most recent climatic cycle | Geological substrate | Marly clays, sands, gravels, and pyroclastics. |
Statistical Parameter | Value |
---|---|
Number of head observations | 86 |
Residual Mean | −0.23 |
Residual Standard Deviation | 1.39 |
Absolute Residual Mean | 1.06 |
Residual Sum of Squares | 170 |
RMS Error | 1.41 |
Minimum Residual | −3.81 |
Maximum Residual | 2.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, C.; Mancini, M.; Moscatelli, M.; Simionato, M.; Cavinato, G.P.; Dimasi, M.; Stigliano, F. From Lithological Modelling to Groundwater Modelling: A Case Study in the Tiber River Alluvial Valley. Geosciences 2021, 11, 507. https://doi.org/10.3390/geosciences11120507
Di Salvo C, Mancini M, Moscatelli M, Simionato M, Cavinato GP, Dimasi M, Stigliano F. From Lithological Modelling to Groundwater Modelling: A Case Study in the Tiber River Alluvial Valley. Geosciences. 2021; 11(12):507. https://doi.org/10.3390/geosciences11120507
Chicago/Turabian StyleDi Salvo, Cristina, Marco Mancini, Massimiliano Moscatelli, Maurizio Simionato, Gian Paolo Cavinato, Michele Dimasi, and Francesco Stigliano. 2021. "From Lithological Modelling to Groundwater Modelling: A Case Study in the Tiber River Alluvial Valley" Geosciences 11, no. 12: 507. https://doi.org/10.3390/geosciences11120507
APA StyleDi Salvo, C., Mancini, M., Moscatelli, M., Simionato, M., Cavinato, G. P., Dimasi, M., & Stigliano, F. (2021). From Lithological Modelling to Groundwater Modelling: A Case Study in the Tiber River Alluvial Valley. Geosciences, 11(12), 507. https://doi.org/10.3390/geosciences11120507